66 微分方程稳定性理论简介 一阶方程的平衡点及稳定性

非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 在19世纪中叶,通过刘维尔的工作,人们已经知道绝大多数的微分方程不能用初等积分方法求解.这个结果对于微分方程理论的发展产生了极大影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而是从微分方程本身来推断其解的性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家庞加莱(Poincar é,1854-1912)在19世纪80年代所创立,后者由俄国数学家李雅普罗夫(Liapunov,1857-1918)在同年代所创立.它们共同的特点就是在不求出方程的解的情况下,直接根据微分方程本身的结构和特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. §6.1 引言 考虑微分方程 (,)d f t dt =x x (6.1) 其中函数(,)f t x 对n D R ∈?x 和t ∈(-∞,+∞)连续,对x 满足局部李普希兹条件. 设 方程(5.1)对初值(t 0,x 1)存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x =.现在的问题是:当01x x -很小时,差0001(,,)(,,)x t t x t t x ?-的变化是否也很小?本章向量1(,...,)T n x x =x 的范数取1 221 ()n i i x ==∑x . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性,第2章的定理2.7已有结论.现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性(见下面的例3),这就产生了李雅普诺夫意义下的稳定性概念. 如果对于任意给定的0ε>和00t ≥都存在0(,)0t δδε=>,使得只要0x 满足

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

高等数学 简明二阶微分方程讲义

高等数学简明二阶微分方程讲义 作者:齐睿添 ————微分方程的理论帮助了很多工程学,物理学中实际 问题的解决 讨论0. 欧拉公式 欧拉公式在二阶线性齐次常系数方程通解的推导和其非齐次方程的自由项为三角函数时的求解过程中有重要的应用. 讨论1. 二阶常系数线性齐次微分方程 实际问题1. 如图,在水平光滑平面上有一物体在弹簧和阻尼器的牵拉下往复运动.阻力f的大小与物体运动速率成正比,阻力f的方向与速度方向相反(f=-cv).

物体的位置随时间如何变化? 设位置函数x=x(t) 已知: F弹=-kx,f=-cv 故由牛顿第二定律: 合力=-kx-cv=ma 即a+(c/m)v+(k/m)x=0 得到微分方程: 记 得到形如下式的方程(*) 这便是一个二阶常系数线性齐次微分方程. 其通解如下表所示: 特征方程

(上表的具体推导与证明详见教材P174-177) 可以发现其通解形式是符合物块运动的直观直觉的. 1)如果阻力很大,弹簧弹性弱,那么物块晃动两下很快就会停止. 这种情况下,列出方程的通解应是表中第一条或者第二条. 例如:取m=1kg, k=3, c=4, 一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 我们依照数学习惯将时间(自变量)记为x, 将位置(因变量)记为y. 那么方程为: . 特征方程为,有两个不相等实根 通解为 把初值条件带入 求得 故该例的解为 图像

2)如果阻力很小,弹簧的弹性很强,那么物块将反复往返震荡,幅度随时间越来越小.这种情况下方程通解应是上表第三条. 例如: 取m=1kg,c=3,k=4,一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 即为 带入初值条件 C_1=1/2, C_2=-17根号7/14 图像为

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

常微分方程考研讲义第三章一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

2dy y dx = 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3)

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下 ①当12i = 时di dt 达到最大值m di dt ?? ???,这时101ln 1m t i λ-??=- ???

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程讲义 (2)

常微分方程讲义(一) 课程目标: 掌握常用的常微分方程解题技巧;利用常微分方程的思想建模。上课方式: 课堂讲授、练习与考试。 课程特点: 承接高数、微积分、数学分析等课程而来,与导数、积分的关系非常紧密,在经济数学中有广泛的应用;常与其他数学工具与方法混合使用。 参考书目: 《常微分方程》,蔡燧林编著,武汉大学出版社,2003;及所有标注有“常微分方程”、“应用”、“经济数学”、“金融数学”的教材与专著。 为什么在模拟经济变化时要引入常微分方程? 注重刻画在无穷小时间段内的变量的动态变化,实现了从“静态”向“动态”的飞跃。 微分方程比初等函数更近于现实,更真于模拟。 什么是方程?)(x y 。 f 什么是微分方程? dy的方程; 常微分方程:含有dy、dx、 dx

偏微分方程:含有y ?、x ?、x y ??的方程。 x y ??的几何含义:割线、割线的斜率 dx dy 的几何含义:切线、切线的斜率 dx dy x y x =??→?0lim :数学上——切线的斜率,导数 经济上——变化率,边际 例:求2x y =与x e y =的导数 应当记下来的等式: 1)'(-=n n nx x ,c x dx nx n n +=?-1 x x e e =)'(,c e dx e x x +=? x x 1 )'(ln =,C x dx x +=?ln 1 x x cos )'(sin =,?+=C x xdx sin cos x x sin )'(cos -=,?+=-C x dx x cos )sin ( x tgx 2sec )'(=,?+=C tgx xdx 2sec x ctgx 2csc )'(-=,?+=-C ctgx dx x )csc (2 0)'(=C k kx =)'( '')'(b a b a +=± '')'(ab b a ab += 2' ')'(b ab b a b a -= '')])'([(g f x g f =

微分方程稳定性

目录 摘要 ............................... 错误!未定义书签。ABSTRACT ............................ 错误!未定义书签。前言 ............................... 错误!未定义书签。微分方程稳定性分析原理.................. 错误!未定义书签。捕鱼业的持续收获模型 ................... 错误!未定义书签。种群的相互竞争模型..................... 错误!未定义书签。参考文献 ............................ 错误!未定义书签。

摘要 微分方程稳定性理论是微分方程的一个重要的理论。微分方程理论就是通过一些定量的计算来研究系统的稳定性,也就是系统在受到干扰项偏离平衡状态后能否恢复到平衡状态或者是平衡状态附近的位置。用微分方程描述的物质运动的特点依赖于初值,而初值的计算或者测定不可避免的又会出现误差和干扰。如果描述这个系统运动的微分方程的特解是不稳定的,则初值的微小误差和干扰都会导致严重的后果。因此,不稳定的特解不适合作为我们研究问题的依据,只有稳定的特解才是我们需要的。本文就一阶微分方程和二阶微分方程的平衡点及稳定性进行了分析,并且建立了捕鱼业持续收获模型和两种群相互竞争模型。 【关键词】微分方程;平衡点;稳定性;数学建模

ABSTRACT Differential equation stability theory is an important theory of differential equations. Differential equation theory is to study the stability of the system by some quantitative calculation, also is the system in the disturbance of deviating from the equilibrium state after the item will return to equilibrium or is near the equilibrium position. Using differential equation to describe the characteristics of the material movement depends on the initial value, and the calculation of initial value or determination of the inevitable will appear the error and interference. If the special solution of the differential equation describing the system movement is unstable, the initial value of small errors and interference will lead to serious consequences. Therefore, special solution is not suitable for the unstable as the basis of our research question, only stable solution is we need. In this paper, the first order differential equation of second order differential equation and the balance and the stability are analyzed, and the fishing sustained yield model is established and two species and two species competing models. 【key words】Differential equations; Balance; Stability; Mathematical modeling

常微分方程 稳定性理论

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的. 李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数 dt x dV ) (的符号性质,就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法. 为了便于理解,我们只考虑自治系统 )(x F dt dx =n R x ∈ (6.11) 假设T n x F x F x F ))(,),(()(1 =在{} K x R x G n ≤∈=上连续,满足局部利普希茨条件,且 O O F =)(. 为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数 R G x V →:)( 满足0)(=O V ,)(x V 和 i x V ??),,2,1(n i =都连续,且若存在K H ≤<0,使在{} H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有 )0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数. 通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2 22 1x x V +=在),(21x x 平面上为正定的; 函数 )(2 22 1x x V +-=在),(21x x 平面上为负定的; 函数222 1x x V -=在),(21x x 平面上为变号函数;

函数 2 1x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =. 在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面 C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且 0)0,0(=V ,故在021==x x 的充分小的邻域中, ),(21x x V 可以任意小.即在这些邻域中 存在C 值可任意小的闭曲线C V =. 对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方. 对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点. 定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定; (2) )(1 ) 11.5(x F x V dt dV i n i i ∑ =??=常负, (a) (b)

基础讲义(下)复习过程

2015基础讲义(下)

2015年考研数学基础班讲义(下) 武忠祥 第 七 章 微 分 方 程 考 试 内 容 概 要 (一)常微分方程的基本概念 1.微分方程 含有未知函数的导数或微分的方程称为微分方程。简称方程。 2.微分方程的阶 微分方程中所出现的未知函数最高阶导数的阶数,称为微分方程的阶。 3.微分方程的解 满足微分方程的函数,称为该方程的解。 4.微分方程的通解 如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,则称之为微分方程的通解。 5.微分方程的特解 微分方程的不含任意常数的解,称之为特解。 6.初始条件 确定特解的一组常数称为初始条件。 7.积分曲线 方程的一个解在平面上对应一条曲线,称为该微分方程的积分曲线。 (二)一阶微分方程 1.可分离变量的方程 能表示为x x f y y g d )(d )(=的方程,称为可分离变量的方程. 求解的方法是两端积分 .d )(d )(??=x x f y y g 2. 齐次方程 能化为 ?? ? ??=x y dx dy ?的微分方程称为齐次微分方程.

求解齐次微分方程的一般方法为:令x y u = ,则u x u y '+=',从而将原方程化为u u u x -=')(?,此方程为可分离变量的方程。 3. 线性方程 形如)()(x Q y x p y =+'的方程称为一阶线性微分方程。 求解一阶线性微分方程的一般方法为常数变易法,或直接利用以下通解公式 .d e )(e d )(d )(?? ????+??=?-C x x Q y x x p x x p 4. 伯努利方程 (仅数学一要求) 形如n y x Q y x p y )()(=+'的方程)1,0(≠n ,称为伯努利方程。 求解伯努利方程的一般方法为:令n y u -=1,将原方程化为一阶线性微分方程。 5. 全微分方程(仅数学一要求) 如果方程0d ),(d ),(=+y y x Q x y x P 的左端是某个函数),(y x u 的全微分: y y x Q x y x P y x du d ),(d ),(),(+= 则称该方程为全微分方程。 此方程的通解为 C y x u =),( 求),(y x u 有以下三种方法 1)偏积分 2)凑微分 3)线积分 当),(),,(y x Q y x P 在单连通域G 内具有一阶连续偏导数时,方程 0d ),(d ),(=+y y x Q x y x P 是全微分方程的充要条件是 x Q y P ??=??

平衡微分方程的适用范围

1、 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 2、 张量:怎样判断? (1)商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 (2)能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子(拉普拉斯算子),▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量? 对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 8、 动力学的平衡微分方程如何表示?(达朗贝尔原理) 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压(v=1/2): 从体积弹性模量() ν213-=E K 来看,当5.0=ν时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。 14、弹性力学为什么可用逆解法、半逆解法: 解的唯一性定理表明,无论用什么方法求得的解,只要能满足全部基本方程和边界条件,就一定是问题的真解。 15、叠加原理建立在什么条件下: 基本方程和边界条件满足线弹性条件,举例:在线弹性条件下,复杂问题可通过简单叠加处理。 16、圣维南原理的思想: 在物体内,距外加载荷作用处相当远的各点的应力状态,在外载荷的合力和合力矩相同时,与外载荷的具体分布形式关系很小。

微分方程稳定性理论简介

微分方程稳定性理论简介 1、一阶自治方程 ()()x t f x = (1) 使代数方程()0f x =的实根=x 0x 称为(1)的平衡点或奇点。0x x =也是方程(1)的解。 设x(t)是方程的解,若从0x 的 某邻域的任一初值出发都有0lim ()t x t x →+∞=,则称0x 是方程(1)的稳定平衡点(渐近稳定);否则,称0x 是方程(1) 的不稳定平衡点。 例 dx x dt =- 判断平衡点稳定性的方法 (1) 间接法:利用定义,需要求出方程的解 (2) 直接法:不求方程的解 方程(1)的近似方程为: ))(()(00x x x f t x -'= (2) 对于一阶方程(1)与(2)的平衡点0x 的稳定性有如下结论: 若0()0f x '<,则0x 是(1)与(2)的稳定平衡点 若0()0f x '>,则0x 是(1)与(2)的不稳定平衡点 2、二阶方程 可用两个一阶方程表示为 ()(,)()(,)x t f x y y t g x y =??=? (3) 二维(平面)自治系统 使 (,)0(,) 0f x y g x y =??=? 的实根000(,)P x y 称为(3)的平衡点。同样,若存在000(,)P x y 的某个邻域的任一初值))0(),0((y x 出发,当t →+∞时 00((),())(,)x t y t x y →,则称000(,)P x y 是稳定的平衡点。 应用直接法讨论(3)的稳定性,先看线性常系数方程 ()()x t ax by y t cx dy =+??=+? (4) 二维(平面)线性自治系统

系数矩阵记做 a b A c d ??=???? ,设det 0A ≠,此时(4)有唯一平衡点0(0,0)P 。它的稳定性由(4)的特征方程 det()0A I λ-= 的根所决定。 2det()()0a b A I a d ad bc c d λλλλλ --==-++-=- 结论: 0????→???????????→???????????????????????????????????→???????→?? - (S 稳定)同号结点相异+ (U )异号鞍点 (U)实根- (S)临界结点+ (U)重根- (S)退化结点+ (U)- (S)实部不为0焦点复根+ (U) 实部为中心(U ) 进一步,令()p a d =-+,det q ad bc A =-=,则特征方程为20p q λλ++=,特征根为 1,21 (2p λ=-± 1)240p q -> i) 0q > 0结点(S )p >→ 0结点(U )p <→ ii) 0鞍点(U )q <→ 2) 240p q -= 0临界(退化)结点(S )p >→0临界(退化)结点(U )p <→ 3) 240p q -< 0焦点(S )p >→0焦点(U )p >→

常微分方程作业(四)

《常微分方程》第四次作业 第4章 n 阶线性微分方程 1.试求下列各方程的通解 (1)0209=+'+''y y y (2)02=+'-''y y y (3)0=-''y y (4)0)4(=''-y y (5)0)4(=+y y (6)0=+'-''-'''y y y y (7)022)4()6(=+''--y y y y 2.试求下述各方程满足给定的初始条件的解: (1)023=+'-''y y y ,2)0(=y ,3)0(-='y ; (2)044=+'+''y y y ,4)2(=y ,0)2(='y ; (3)0='+''y y ,2)0(=y ,5)0(='y . 3.求下列各方程的通解: (1)5127=+'-''y y y (2)x y y y 2e 3=+'+'' (3)873782++=+'-''x x y y y (4))25(e 1362+-=++t t x x x t (4)x x y y y 2cos 102=+'-'' 4.一拉紧弹簧所受到的拉力与它的长度成正比,当弹簧受到9.8N (1kg 力)拉力时,其长度增长1cm 。今有重2kg 的物体挂在弹簧下端,保持平衡。假若将它稍向下拉,然后再放开,试求由此所产生振动的周期。 5.一质量为m 的质点由静止开始沉入液体中,当下沉时,液体的反作用与下沉的速度成正比,求此质点的运动规律。 6.有一LRC 电器,其中LC 并联。再与R 及电器E = t v ωsin 串联,试求:(1)通过电阻R 的电流强度;(2)在解频率等于何值时,电流强度最大或最小? 第5章 定性和稳定性理论简介 1.设0)0,(=t f 用δε-语言叙述微分方程),(d d x t f t x =的零解不稳定的定义。 2.考虑纯量方程x t a t x )(d d =,)(t a 是),0[∞+上的连续函数。证明: (1)零解x = 0是稳定的充分必要条件是存在0)(0>t M ,使得?≤t t t M ds s a 0)()(0对一切00≥≥t t 成立。 (2)零解0=x 是渐近稳定的充分必要条件是-∞=?∞→t t t ds s a 0)(lim 。 3.证明方程组 ???????+--=+-=)(d d )(d d 2222y x ay x t y y x ax y t x 的零解是渐近稳定的(其中0>a )。 4.试研究单摆的运动方程 0sin =+θθl g

常微分方程考研讲义第三章一阶微分方程解的存在定理

常微分方程考研讲义第三章-一阶微分方程解的存在定理

————————————————————————————————作者: ————————————————————————————————日期: ?

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的 误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点]解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间]12学时 [教学内容]解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

相关文档
最新文档