利用函数解决实际问题

利用函数解决实际问题
利用函数解决实际问题

利用数学模型解决实际问题

一、基础知识:

1、使用函数模型解决实际问题

(1)题目特点:叙述中体现两个变量之间的关系(涉及的量也许有多个,但均能够用两个核心变量进行表示)。以其中一个为自变量,则另一个变量可视为自变量的函数,进而搭建出函数模型,再根据导数,均值不等式等工具求出最值

(2)需用到的数学工具与知识点:

①分段函数:当自变量的不同取值导致解析式不同时,可通过建立分段函数来体现两个变量之间的关系,在题目中若有多种情况,且不同的情况对应不同的计算方式,则通常要用分段函数进行表示。

②导数:在求最值的过程中,若函数解析式不是常见的函数(二次函数,对勾函数等),则可利用导数分析其单调性,进而求得最值

③均值不等式:在部分解析式中(可构造和为定值或积为定值)可通过均值不等式迅速的找到最值。

④分式函数的值域问题:可通过分离常数对分式进行变形,并利用换

元将其转化为熟悉的函数求解

(3)常见的数量关系:

①面积问题:可通过寻底找高进行求解,例如:

平行四边形面积=底?高梯形面积=1

?(上底+下底)

2

?高

三角形面积=1

?底?高

2

②商业问题:

总价=单价?数量利润=营业额-成本=货物单价?数量-成本

③利息问题:

利息=本金?利率本息总和=本金+利息=本金?利率+本金

(4)在解决实际问题时要注意变量的取值范围应与实际情况相符,例如:涉及到个数时,变量应取正整数。涉及到钱,速度等问题,变量的取值应该为正数。

2、使用线性规划模型解决实际问题

(1)题目特点:叙述中也有两个核心变量,但条件多为涉及两核心变量的不等关系,且所求是关于两个核心变量的表达式,这类问题通常使用线性规划模型来解决问题

(2)与函数模型的不同之处

①函数模型:体现两核心变量之间的等量关系,根据一个变量的范围求另一个变量的范围(或最值)

②线性规划模型:体现关于两变量的不等关系,从而可列出不等式组,要解决的是含两个变量的表达式的最值。

(3)解题步骤:根据题目叙述确定未知变量(通常选择两个核心变量,其余变量用这两个进行表示),并列出约束条件和目标函数,然后利用数形结合的方式进行解决

(4)注意事项:在实际问题中,变量的取值有可能为整数,若最优解

不是整数,则可在最优解附近寻找几对整点,代入到目标函数中并比较大小

3、使用三角函数模型解决实际问题

(1)题目特点:题目以几何图形(主要是三角形)作为基础,条件多与边角相关

(2)需要用到的数学工具与知识点:

① 正弦定理:设ABC 三边,,a b c 所对的角分别为,,A B C ,则有s i n s i n s i n

a b c A B C == ② 余弦定理(以a 和对角A 为例),2222cos a b c bc A =+- ③ 三角函数表达式的化简与变形

④ 函数()sin y A x ω?=+的值域

(3)解题技巧与注意事项:

① 在求边角问题时,应把所求的边或角放在合适的三角形中

② 在直角三角形里,已知一条边,则其它边可用该边与内角的三角函数值进行表示

③ 在图形中要注意变量的取值范围

二、典型例题:

例1:如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在AB 的延长线上,N 在

AD 的延长线上,且对角线MN 过C 点。已

知3AB =米,2AD =米。

(1)设x AN =(单位:米),要使花坛AMPN

的面积大于32平方米,求x 的取值范围;

(2)若)4,3[∈x (单位:米),则当,AM AN 的长度分别是多少时,花坛AMPN 的面积最大?并求出最大面积。

(1)思路:根据相似三角形可得线段比例:ND DC AN AM

=,从而解出32

x AM x =-,则232AMPN x S AN AM x =?=-,从而可得23322x x >-,解出x 的范围即可

解:NDC NAM ND DC AN AM

= 32DC AN DC AN x AM ND AN AD x ??∴===-- 232

AMPN x S AN AM x ∴=?=- 依题意可得: ()2

233233264002

x x x x x >?-+>>- 解得:()82,8,3x ??∈+∞ ???

(2)思路:求AMPN 面积的最大值,即求表达式()232

x f x x =-的最大值,分离常数求解即可

解:设()232

x f x x =- )4,3[∈x ()4432=32422f x x x x x ????∴=++-++ ? ?--????

设2t x =-,则[)1,2t ∈ 则4

34y t t ??=++ ???,根据对勾函数可得:1t =时,y 达到最大值,即27y = 此时13t x =?=,所以33,92x AN AM x ==

=-

答:当3,9AN AM ==时,四边形AMPN 的面积最大,为227m

例2:时下网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格:x (单位:元/套)满足的关系式()2462

m y x x =+--,其中26,x m <<为常数.已知销售价格为4元/套时,每日可售出套题21千套.

(1)求m 的值;

(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

解:(1)将4,21x y ==代入关系式可得:()221446102

m m =+-?= (2)思路:依题意可得售出一套,所得利润为()2x -元,所以总的利润()()()2102462f x x x x ??=-+- ?-??

,其中26x <<,利用导数判定()f x 的单调性,进而可求得最大值点x

解:依题意所获利润()()()()21022462f x x y x x x ??=-=-+- ?-?? 化简可得:()32456240278f x x x x =-+- ()26x <<

()()()'21211224043106f x x x x x ∴=-+=--

令()'0f x >,即解不等式()()31060x x -->

26x << ∴ 解得103

x < ()f x ∴在102,3?? ???单调递增,在10,63?? ???

单调递减

()f x ∴在103x =取得最大值,即 3.3x

例3:某人销售某种商品,发现每日的销售量y (单位:kg )与销售价

格x (单位:元/kg )满足关系式???????≤≤--<<-+-=159,6

177,96,)9(61502x x x x x a x y ,其中a 为常数.已知销售价格为8元/kg 时,该日的销售量是80kg.

(1)求a 的值;

(2)若该商品成本为6元/kg ,求商品销售价格x 为何值时,每日销售该商品所获得的利润最大.

解:(1)当8x =时,()2150808986

a =+--,解得:5a = ()215059,696177,9156

x x x y x x x ?+-<

解:设商品利润为()f x ,则有()()6f x x y =-?,由第(1)问可得:

()()()()()2150659,69661776,9156x x x x f x x y x x x x ???-+-<

当69x <<时,()()()2

150596f x x x =+--

则()()()()()()2'592691579f x x x x x x ??=-+--=--?? 令()'0f x >,由()6,9x ∈ 解得:67x <<

()f x ∴在()6,7单调递增,在()7,+∞单调递减

()()7170f x f ∴≤=

当915x ≤≤时,()()2

217763186f x x x x =-+=--+

()f x ∴在()9,15单调递减

()()9150f x f ∴≤=

()()79f f ∴≥

()max 170f x ∴= 例4:已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元,每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量度搜好,均按10元/天支付,超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付

(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?

(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求出该厂多少天购买一次配料才能使平均每天支付的费用最少?

解:(1)第8天剩余配料为2200400?=(千克)

第9天剩余配料为200千克

∴该厂用于配料的保管费为:700.034000.0320088P =+?+?=(元)

(2)当7x ≤时,36010236236370y x x x =++=+

当7x >时,()()3602367067621y x x x =+++-+-+

++????

23321432x x =++

综上所述:2236370,73321432,7

x x y x x x +≤?=?++>? 设W 为平均每天支付的费用,则2236370,73321432,7x x y x W x x x x x +?≤??==?++?>??

当7x ≤时,236370236370x W x x +==+,当7x =时,min 28264047W =≈ 当7x >

时,432144332133213321393W x x x x ??=+

+=++≥?+= ??? 等号成立条件:14412x x x

=

?= min 393W ∴=(元) 例5:甲,乙两校计划周末组织学生参加敬老活动,甲校每位同学的往返车费是5元,每人可为3位老人服务,乙校每位同学往返车费是3元,每人可为5位老人服务,两校都有学生参加,甲校参加活动的学生比乙校至少多1人,且两校同学往返总车费不超过45元,如何安排甲,乙两校参加活动的人数,才能使收到服务的老人最多?此时受到服务的老人最多有多少人?

思路:本题涉及的变量有两个:甲校人数与乙校的人数,且所给条件均为关于两校人数的不等式,所以可联想到线性规划问题。可设甲校人数为x ,乙校人数为y ,所求问题为目标函数35z x y =+,列出约束条件后通过数形结合即可求出z 的最大值

解:设甲校人数为x ,乙校人数为y ,依题意,,x y 应满足的条件为: 53451

,x y x y x y N *?+≤?-≥??∈?

目标函数33555

z z x y y x =+?=-+,通过数形结合可得。动直线l 经过M 时,z 取得最大值

53456:15x y x M x y y +==?????-==?? ()6,5M ∴ max 3543z x y =+=

例6:如图,某海滨浴场的岸边可近似地看成直线,位于岸边A 处的救生员发现海中B 处有人求救,救生员没有直接从A

处游向B 处,而是沿岸边自A 跑到距离B 最近的D

处,然后游向B 处,若救生员在岸边的行进速度

为6米/秒,在海中的行进速度为2米/秒,

45BAD ∠=。

(1)分析救生员的选择是否正确;

(2)在AD 上找一点C ,使救生员从A 到B 的时间为最短,并求出最短时间

解:(1)思路:所谓“选择是否正确”,是指方案二所用的时间是否比直接游到B 处时间短,所以考虑分别求出两种方案所用的时间,再进行比较即可。

解:从图形可得:300

sin 45

AB ==1t ==s ) 而300AD BD ==,所以230030020062

t =+=(s ) 12t t >,所以救生员的选择是正确的

(2)思路:要求得时间的最值,考虑创设一个变量x ,并构造出时间关于x 的函数()f x ,再求出()f x 的最小值即可。不妨设CD x =,则

BC =所以时间()30062x f x -=+,再求导求出()f x 的最小值即可

解:设CD x =,则BC =()f x

∴ ()30062

x f x -=+

()'

1162f x ∴=-+=

令()'0f x >,即解不等式303x x >?>

2229300x x ∴>+ 2

2

3008x ∴>,解得:x >()

f x ∴在(单调递减,在()单调递增

()(

min 50f x f ∴==+

答:当CD =时,救生员所用的时间最短,为50+

答:甲,乙两校参加活动的人数分别为6和5时,受到服务的老人最多,最多为43人

例7:某人有楼房一幢,室内面积共计180m 2,拟分割成两类房间作为旅游客房,大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m 2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天能获得最大的房租收益?(注:设分割大房间为x 间,小房间为y 间,每天的房租收益为z 元),求,x y 各为多少时,每天能获得最大的房租收益?每天能获得最大的房租收益是

苏科版数学八年级上64用一次函数解决问题同步练习有答案

用一次函数解决问题 一.选择题(共10小题) 1.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有() ①甲车的速度为50km/h ②乙车用了3h到达B城 ③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km. A.1个B.2个C.3个D.4个 2.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法: ①出发mh内小明的速度比小刚快; ②a=26; ③小刚追上小明时离起点43km; ④此次越野赛的全程为90km, 其中正确的说法有() A.1个B.2个C.3个D.4个 3.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法: ①公交车的速度为400米/分钟;

③小刚下公交车后跑向学校的速度是100米/分钟; ④小刚上课迟到了1分钟. 其中正确的个数是() A.4个B.3个C.2个D.1个 4.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是() A.300m2B.150m2C.330m2D.450m2 5.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是() A.0.5千米B.1千米C.1.5千米D.2千米 6.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()

7.6用锐角三角函数解决问题(3)

7.6锐角三角函数解决问题(3) 学习目标: 1.掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、角有关的实际问题,培养学生。 2.经历探索实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用. 教学流程提纲 1.仰角、俯角的定义:如图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线 与水平线的夹角叫做俯角。右图中的∠1就是俯角,∠2就是仰角。 2.课本例题讲解 3.课本练习 4.拓展例题 如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离. 变式:如上图,飞机在一定高度上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行10km 后,在B处测得该小岛的俯角为60°,求飞机的飞行高度。 本节课2个目标你达成个?分别是:

7.6锐角三角函数解决问题(3)过关检测 1.热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30o,看这栋高楼底部C处的俯角为60o,若热气球与高楼的水平距离为90m,则这栋高楼有多高?(结果保留整数,2≈1.414,3≈1.732) 2.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离. 3.据黄石地理资料记载:东方山海拔DE=453.20米,月亮山海拔CF=442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

《用一次函数解决问题》解答题专题练习

《用一次函数解决问题》解答题专题练习 1.星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x (h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围; (2)请在同一个平面直角坐标系中画出(1)中两个函数的图象; (3)请回答谁先到达老家. 2.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题: (1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分; (2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式; (3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分; (4)求A、C两点之间的距离; (5)直接写出两机器人出发多长时间相距28米. 3.甲、乙两人利用不同的交通工具,沿同一路线从A地出发 前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所 示.(1)甲的速度是km/h; (2)当1≤x≤5时,求y乙关于x的函数解析式; (3)当乙与A地相距240km时,甲与A地相距km. 4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系. (1)求整改过程中硫化物的浓度y与时间x的函数表达式; (2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高 允许的1.0mg/L?为什么?

7.6用锐角三角函数解决问题(2)学案

7.6用锐角三角函数解决问题(2)学案 学习目标: 通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。 教学过程: 一、复习巩固: 1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。 2、在△ABC中,∠C=90°。 (1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。 二、例题学习: 问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)? 拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m? 2、小明将有多长时间连续保持在离地面30.3m以上的空中? 三、练习巩固

, B B A 1、如图,单摆的摆长A B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。问这时摆球B ' 较最低点B 升高了多少? 2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角. 3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米) 四、小结 五、课堂作业

B A O B A 初三数学课堂作业 1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( ) A. αcos 5 B. αcos 5 C . αsin 5 D. αsin 5 第1题 第3题 第4题 2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( ) A .8米??B.83米? C .833米? D.433 米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 ??B.253 C.10033 ?D .25253+ 4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。时跷跷板与地面的夹角为_____ ____。 7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低 位置的高度之差。 5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离. 6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’ 较最低点B 升高了多少(精确到1cm)? sin110.191?≈cos110.982?≈tan110.194?≈

《用一次函数解决问题》教案

《用一次函数解决问题》教案 教学目标 1、巩固一次函数知识,灵活运用变量关系解决相关实际问题. 2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力. 3、让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.教学重点 1.建立函数模型. 2.灵活运用数学模型解决实际问题. 教学难点 灵活运用数学模型解决实际问题. 教学过程 一、创设情境复习导入 做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.方案选择的问题对于我们来说并不陌生,但是书写起来比较麻烦,事实上这类问题用一次函数来解决会更好理解,书写起来也更加简捷,这节课我们就来体会一下如何运用一次函数选择最佳方案问题. 二、尝试活动探索新知 例1一种节能灯的功率为10瓦(即0.01千瓦),售价为60元;一种白炽灯的功率为60瓦(即0.06千瓦),售价为3元.两种灯的照明效果一样,使用寿命也相同(3000小时以上).如果电费价格为0.5元/(千瓦×时),消费者选用哪种灯可以节省费用? 分析:1、指出问题中的常量、变量? 2、变量之间存在着怎样的关系? 总结:要考虑如何节省费用,必须既考虑灯的 售价又考虑电费.不同灯的售价分别是不同的常数,而电费与照明时间成正比例,因此,总费用与灯的售价、功率这些常数有关,而且与照明时间有关,写出函数解析式是分析问题的关键. 解:设照明时间为x小时,则: y=60+0.01×0.5x; 节能灯的总费用为 1 y=60+0.005x 即: 1 y=3+0.06×0.5x 白炽灯的总费用为 2 y=3+0.03x 即: 2

函数图像应用题专题复习

函数图像应用题专题复习 一.一次函数应用题 1.“利民平价超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销 售量y (件)与售价x(元/件)之间的函数关系如右图:(20≤x ≤60): (1)求每天销售量y (件)与售价x(元/件)之间的函数表达式; (2)若该商品每天的利润为w (元),试确定w (元)与售价x (元/件)的函数表达式,并求售价x 为多少时,每天的利润 w 最大?最大利润是多少? 2.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 设慢车行驶的时间为(h)x ,两车之间的距离....... 为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解: (3)求慢车和快车的速度; (4)求线段BC 所表示的y 与x 问题解决: (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车 相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12 ; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶 y

的速度之和为 900225(km /h)4 =,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)?=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 044506. k b k b =+??=+?,解得225900.k b =??=-?, ∴线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.(46x ≤≤). (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =. 此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出 发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . 3. (2015年浙江)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖 颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出 发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达 游乐园.他们离开衢州的距离(千米)与乘车时间(小时)的关系如下图所示. 请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米? (2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米? (3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时? 解:(1)∵, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为, ∵当时,;当时,, ∴,解得 .∴乐乐乘私家车路线的解析式为.∴当时,. 设颖颖乘高铁路线的解析式为,∴,解得. y t 24024021 =-y kt b =+1t =0y =2t =240y =02240k b k b +=??+=?240240k b =??=-? 240240y t =- 1.5t =120y =1y k t =1120 1.5k =180k =

《用锐角三角函数解决问题》教案

《用锐角三角函数解决问题》教案1 教学目标 1、了解测量中坡度、坡角的概念. 2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题. 3、进一步培养学生把实际问题转化为数学问题的能力. 重点难点 重点:有关坡度的计算. 难点:构造直角三角形的思路. 教学设计 一、引入新课 如下图所示,斜坡AB 和斜坡A 1B 1哪一个倾斜程度比较大?显然,斜坡A 1B l 的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,1111 B C BC AC AC ,即tan A 1>tan A . 在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度. 二、新课 1.坡度的概念,坡度与坡角的关系. 如图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i =AC BC ,坡度通常用l :m 的形式,例如上图中的1:2的形式.坡面与水平面的夹角叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i =tan B ,显然,坡度越大,坡角越大,坡面就越陡. 2.习题讲解. 1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)

分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决.2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角.和坝底宽AD.(i =CE:ED,单位米,结果保留根号) 三、练习 课本第114页课内练习. 四、小结 会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决. 五、作业 课本117页习题7.6的1、2题. 《用锐角三角函数解决问题》教案2 教学目标 知识与技能 1.通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系. 2.把实际问题转化为数学问题,同时借助计算器进行有关三角函数的计算,并能对结果的意义进行说明. 数学思考与问题解决 经历实际问题数学化的过程,进一步体会三角函数在解决问题中的作用,不断探索解决实际问题的方法和规律. 情感与态度 在独立思考探索解决问题方法的过程中,培养学生不断克服困难,增强应用数学的意识和解决实际问题的能力.

最新苏科初中数学八年级上《6.4 用一次函数解决问题》word教案

6.4 一次函数的应用(1) 教学目标: 1、能根据实际问题中变量之间数量的关系,确定一次函数关系式; 2、能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题,增强学生的应用意识和创新意识。 3、.初步体会方程与函数的关系。 重点;将实际问题转化成数学问题,建立一次函数关系式。 难点:理解实际问题中的数量关系,将实际问题转化成数学问题,建立一次函数关系式,并解决实际问题。 教学过程: 一、课前复习与预习:1、已知一次函数的图像经过(1,2),(—1,4)求一次函数的关系式。 2、直线m上有两点A(—2,—3),B(—5,-9),求直线m的关系式。 预习:1、某校办工厂现年产值是30万元,如果每增加1元投资,一年可增加2.5元产值。那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式 为。 2、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。 写出每月电话费y (元)与通话次数x之间的函数关系 式; 二、新授 1、导入:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数的应用. 2、新课讲解: 活动一 一辆汽车在普通公路上行驶了35km后,驶入高速公路,然后以105km/h的速度匀速前进。 1、你能写出这辆车行驶的路程s(Km)与它在高速公路上行驶的时间t(h)之间的关系吗? 2、若从上高速公路开始记时,行驶了4小时到达目的地,则该车从出发点到目的地的路程有多远呢? 3、高速公路上里程表显示行驶了175km,问车在高速公路上行了多长时间? 问题一:车在高速公路上行驶的路程与哪些量有关系? 问题二:车内里程表上记录的数据是汽车行驶在哪几段公路上的路程? 活动二、 某班同学秋游时,照相共用3卷胶卷,秋游后冲洗3卷胶卷并根据同学需要加印照片,已知冲洗胶卷的价格是3.0元/卷,加印照片的价格是0.45元/张, (1)试写出冲印后的费用y(元)与加印张数x之间的关系式。 (2)如果本班共有学生40人,每人加印照片1张,共需费用多少元? (3)如果秋游后尚结余49.5元,那么冲洗胶卷后还可以加印多少张照片? 问题冲印合计费用的多少与什么有关? 变式1:已知冲洗胶卷的价格是3元/卷,加印不超过100张,0.5元/张;加印超过100张可进行优惠,前100张按0.5元/张收费,超过部分按0.4元/张收费。

八年级数学上册利用一次函数解决实际问题教案

教学设计 一、内容和内容解析 1.内容 利用一次函数解决实际问题. 2.内容解析 一次函数是最基本的初等函数之一,是学习后续各类函数的基础.一次函数的核心内容是一次函数的概念、图象和性质以及应用.一次函数的图象和性质的核心,是图象“特征”、函数“特征”以及它们之间相互转化关系,这也是一次函数的本质属性所在.一次函数图象和性质,本身就是“数”与“形”的统一体.通过对实际问题图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法. 本节课内容属于《义务教育数学课程标准(2011年版)》中的“数与代数”领域,是在已经学习了一次函数的图象和性质的基础上,由一个贴近学生生活的中国渔政执法视频开始,利用问题串的形式,用一次函数的相关知识来解决实际问题.在具体的探究过程中,先由分析图象开始,并由分析所得的信息解决相关的实际问题,再利用几何画板将图象进行变化,由此分析其操作的实际意义并衍生处两个新的问题,最终利用一次函数的知识解决这两个问题.在解决实际问题的过程中,体会运用一次函数解决实际问题的作用,初步体验建立函数模型的过程和方法. 基于以上分析,确定本节课的教学重点是:分析实际问题的图象,利用一次函数解决具体问题. 二、目标和目标解析 1.目标 (1)掌握并运用一次函数的图象和性质,体会数形结合思想和建立函数模型研究数学问题的基本方法. (2)通过对实际问题图象的分析,进一步加深对一次函数性质的理解. (3)能够从实际问题中抽象出一次函数关系,并运用一次函数及其性质解决实际问题,发展学生的应用意识. 2.目标解析 (1)从复习一次函数的图象和性质开始,不断渗透图象中k、b、交点坐标的实际意义,体会并利用数学结合的思想来解决问题。 (2)对于问题情境中给出的三个问题,以及衍生的两个变式,无一不是通过对函数图象的分析,结合一次函数的性质来解决。在这样的过程中,巩固对性质的理解。

三角函数常见问题十种求解策略

三角函数常见问题十种求解策略 导语:三角形中的三角函数问题,是三角函数和解三角形两个知识点的有机结合,也是近年来高考中常见的考点之一。以下是为大家精心的高中数学,欢迎大家参考! 一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90,90)的公式. 1.sin(kπ+α)=(-1)ksinα(k∈Z); 2.cos(kπ+α)=(-1)kcos α(k∈Z); 3.tan(kπ+α)=(-1)ktanα(k∈Z); 4.cot(kπ+α)=(-1)kcot α(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图” 1.sinα+cosα>0(或 2.sinα-cosα>0(或 3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内; 4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内. 三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。 四、“见齐思弦”=>“化弦为一” 已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α. 五、见“正弦值或角的平方差”形式,启用“平方差”公式:

1.sin(α+β)sin(α-β)=sin2α-sin2β; 2.cos(α+ β)cos(α-β)=cos2α-sin2β. 六、见“sinα±cosα与sinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故 1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α; 2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α. 七、见“tanα+tanβ与tanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=??? 八、见三角函数“对称”问题,启用图象特征代数关系:(A≠ 0) 1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称; 2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称; 3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数 y=Acot(wx+φ)的对称性质。 九、见“求最值、值域”问题,启用有界性,或者辅助角公式: 1.|sinx|≤1,|cosx|≤1; 2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

八年级数学上册第六章一次函数6.4用一次函数解决问题教案2(新版)苏科版

八年级数学上册第六章一次函数6.4用一次函数解决问题教案2 (新版)苏科版 用一次函数解决问题(2) 教学目标 【知识与能力】 能根据实际问题中变量之间的关系,确定一次函数的关系式;能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题. 【过程与方法】 在应用一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性. 【情感态度价值观】 通过具体问题的分析,进一步感受“数形结合”的思想方法——从一次函数图像中读信息,发展解决问题的能力,增强应用意识. 教学重难点 【教学重点】 能结合一次函数表达式及其图像解决简单的实际问题 【教学难点】 能结合一次函数表达式及其图像解决简单的实际问题,体会分类 教学过程 一、例题 问题2 甲、乙两家公司的月出租汽车收取的月租费分别是 1y (元)和2y (元),它们都是用车里 程x (千米)的函数,图像如图所示, (1)每月用车里程多少时,甲、乙两公司的租车费相等? (2)每月用车里程多少时,甲公司的租车费比乙公司少? (3)每月用车里程多少时,乙公司的租车费比甲公司少? 观察图像,可知x =2000时,两个图像相交于一点,即此时两个函数的自变量相同,函数值也相同,所以,每月用车里程为2000km 时,两家公司的租车费相同.当x <2000时,1y <2y ,所以每月用车里程小于2000km ,甲公司的租车费较少.当x >2000时,1y >2y ,所

以,每月用车里程大于2000km 时,乙公司的租车费较少. 引导学生先求函数表达式,再求交点,画图像,看图说话. 引导学生发现:两条直线上升的速度存在差异,它们有一个交点,设计问题引导学生“读图”.通过这一活动,让学生熟练掌握在解决实际问题中的决策性问题的方法.根据实际情况选择方案,进而理解一次函数与方程及不等式的联系. 交流 某蔬菜基地要把一批新鲜蔬菜运往外地, 有两种运输方式可供选择,主要参考数据如下: 运输 方式 速度 /(千米/时) 途中综合费用 / (元/时) 装卸费用 / 元 汽车 60 270 200 火车 100 240 410 (1)请分别写出汽车、火车运输总费用y1(元)、 2y (元)与运输路程x (千米)之间的函数表达式. (2)你认为用哪种运输方式好? 独立思考:怎样从表格中提取信息? 分别写出汽车、火车运输总费用 1y (元)、2y (元)与运输路程x (千米)之间的函数表达 式, 1y =200+4.5x , 2y =410+2.4x . 根据函数表达式求出函数图像的交点坐标. 讨论:(1)x 为何值,y1= 2y . (2)x 为何值, 1y >2y . (3)x 为何值,1y <2y . 合作讨论、分析探究、寻求结果,在教师指导下顺利完成活动. 通过学生的交流活动,使学生明确解决问题的基本思路和方法,是分别计算两种运输方式所需要的费用,然后再对相同的运输里程比较费用的大小.这就需要分别写出汽车、火车运输总费用1y (元)、2y (元)与运输路程x (千米)之间的函数表达式,然后对同一自变量的

利用一次函数图象解决实际问题专项训练(含答案)

一次函数专项训练 专训1.一次函数的两种常见应用 名师点金: 一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题 题型1行程问题 (第1题) 1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论 ①A,B两城相距300 km; ②乙车比甲车晚出发1 h,却早到1 h; ③乙车出发后2.5 h追上甲车; ④当甲、乙两车相距50 km时,t=5 4 或 15 4 . 其中正确的结论有( ) A.1个B.2个C.3个D.4个

2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了________h; (2)求线段DE对应的函数解析式; (3)求轿车从甲地出发后经过多长时间追上货车. (第2题) 题型2工程问题 3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示. (1)求甲组加工零件的数量y与时间x之间的函数解析式. (2)求乙组加工零件总量a的值. (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

数学人教版八年级下册利用函数图像解决实际问题

19.1.2函数的图象 第1课时函数的图象 教学目标1.理解函数图象的意义; 2.能够结合实际情境,从函数图象中获取信息并处理信息.教学重点:理解函数图象的意义 教学难点:能够结合实际情境,从函数图象中获取信息并处理信息. 教学过程 下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t 变化而变化,你从图象中得到了哪些信息 气温T是时间t的函数 (1)最低、最高温度分别是多少? (2)哪些时段温度呈下降状态?上升状态呢? (3)我们可以从图象中看出这一天中任一时刻的气温大约是多少吗? (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗? 例1 下图表示一辆汽车的速度随时间变化的情况:

①汽车行驶了多长时间?它的最高时速是多少? ②汽车在哪些时间段保持匀速行驶?时速分别是多少? ③出发后8分到10分之间可能发生了什么情况? ④用自己的语言大致描述这辆汽车的行驶情况. 例2小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米? (2)小明在书店停留了多少分钟? (3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟? (4)我们认为骑单车的速度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗? 解析:根据图象进行分析即可. 解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米; (2)根据题意,小明在书店停留的时间为从8分钟到12分钟,故小明在书店停留了4分钟; (3)一共行驶的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟; (4)由图象可知:0~6分钟时,平均速度为1200 6=200(米/分);6~8分钟时, 平均速度为1200-600 8-6 =300(米/分);12~14分钟时,平均速度为 1500-600 14-12 = 450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.

实际问题与二次函数-详解与练习(含答案)

. 初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题 一、围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的 函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 分析:关键是用含x 的代数式表示出矩形的长与宽。 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0 180 <x<x >x >∴?? ?- (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(218 2=-?-=- =a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回扣问题实际时,一定注意不要遗漏了单位。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠 墙。问如何围,才能使养鸡场的面积最大? 分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(2 50x -)(米), 根据题意,得:x x x x y 252 1 )250( 2+-=-=; 又∵500,02 500 <x<>x x >∴??? ??- ∵x x x x y 2521)250( 2+-=-=中,a=2 1 -<0,∴y 有最大值, 即当25) 2 1(2252=-?- =-=a b x 时,2625) 2 1(42504422max =-?-=-=a b ac y

相关文档
最新文档