浅析数学建模思想在中学数学教学中应用
数学建模在中学数学教学中的应用

数学建模在中学数学教学中的应用导言:数学建模是一种将实际问题转化为数学问题,并通过数学方法进行求解和分析的过程。
它不仅是现代科学研究的重要工具,也在中学数学教学中发挥着重要的作用。
本文将探讨数学建模在中学数学教学中的应用,并探讨如何通过数学建模来提高学生的数学素养和解决实际问题的能力。
一、数学建模在数学教学中的意义数学建模是将抽象的数学理论与实际问题相结合的过程,它能够帮助学生理解数学的实际应用,激发学生的学习兴趣,提高学生的数学素养和解决问题的能力。
通过数学建模,学生可以将抽象的数学概念与实际问题相联系,从而更好地理解和应用数学知识。
同时,数学建模还能培养学生的创新思维和实际动手能力,提高他们解决实际问题的能力。
二、数学建模在中学数学教学中的实际应用1. 实际问题的建模过程数学建模的核心是将实际问题转化为数学问题,并通过数学方法进行求解。
在中学数学教学中,可以通过引导学生分析和解决实际问题的过程,培养学生的建模思维。
例如,通过引导学生分析实际生活中的购物问题,让他们学会使用比例关系和代数方程进行建模和求解。
2. 数学建模与课程内容的融合数学建模可以与中学数学课程内容相结合,使学生更好地理解和应用数学知识。
例如,在几何学中,可以通过引导学生分析实际问题,将几何图形与实际情境相联系,从而更好地理解和应用几何知识。
在代数学中,可以通过引导学生分析实际问题,将代数方程与实际情境相联系,从而更好地理解和应用代数知识。
3. 数学建模与跨学科的融合数学建模是一门跨学科的学科,它与物理、化学、生物等学科有着密切的联系。
在中学数学教学中,可以通过引导学生分析和解决与其他学科相关的实际问题,培养学生的跨学科思维。
例如,在物理学中,可以通过引导学生分析实际物理问题,将物理定律与数学模型相结合,从而更好地理解和应用物理知识。
三、数学建模在中学数学教学中的教学策略1. 引导学生主动探究数学建模教学注重培养学生的主动学习能力和探究精神。
数学建模思想融入高中数学教学的探索与实践

数学建模思想融入高中数学教学的探索与实践我国教育体制改革的逐步开展下,如何提高学生核心素养和综合创新能力已成为当前高中教育的主要任务。
为了更加有效地引导学生学习,教师要通过建模方法来指导学生把数学知识整理得有条理,从而帮助学生形成问题意识,勇于提出问题,从而帮助他们更加深刻地理解数学知识,并通过合理的方法将数学知识与实际问题联系起来,提高自身的数学学科素养。
一、数学建模的内涵数学建模是运用数学思想、方法和知识解决实际问题的过程,是数学教育教学的基本内容。
数学建模是从实际问题中建立数学模型的过程,是指经过对数据专业知识及其他专业知识的实际运用,能将数据学科的外部功能与内部应用层次加以统一衍射。
在数学模型上将所有的数据编程语言及其他元素都加以外部运用,将数学本身的实用、功用加以深入体现和演绎。
从数学教学、核心素质训练等方面分析,数学模型属于把数据专业知识和语言运用到外部环境中的一个表现方式,使学生对具体数据及各种功能应用有更深层次的认识。
同样,数学教学中模型能够使单调沉闷的几何教材显得更为充实、活泼有趣,能对学生积极主动学习产生积极影响。
从各个方面来说,数学模型对于全方位提高学生素质能力都具有重要的促进意义。
二、将数学建模思想融入高中数学教学的意义(一)借助模型,有助于理解由于学生在学习的过程当中难免出现一些学生不理解的问题,所以通过建模有助于孩子理解是非常关键的。
就如简单的计算,很可能学生在实际应用问题当中根本就很难掌握,可是经过实际地训练学生很快就会找到许多一开始忽略的细节点。
比如,在游泳池进水与放水这种很单纯的问题当中,学生对这两种变量之间的关系根本就无法判断,经过实际建模地训练学生却很轻松地就能够掌握。
而实际上在日常生活当中,也有许多建模训练能够用于表现某些数学概念与内容,数学根本就来自日常生活当中,学生不管在任何时候都不能离开了和实际生活的联系。
模块的建立可以帮助学生认识某些抽象的概念,也有助于学生获得更多的提高。
数学建模思想在中学数学中的应用

数学建模思想在中学数学中的应用在中学数学的学习中,数学建模思想具有重要的地位和作用。
它不仅能够帮助学生更好地理解数学知识,提高解决实际问题的能力,还能培养学生的创新思维和应用意识。
数学建模,简单来说,就是将实际问题转化为数学问题,然后通过建立数学模型来解决问题的过程。
中学数学中的许多知识,如函数、方程、不等式、几何图形等,都可以作为构建数学模型的工具。
以函数为例,在生活中,我们常常会遇到各种各样的变化关系。
比如,汽车行驶的路程与时间的关系、销售商品的利润与销售量的关系等。
这些关系都可以用函数来描述和分析。
通过建立函数模型,我们可以预测未来的趋势,做出合理的决策。
再比如,在几何图形的学习中,数学建模思想也有广泛的应用。
例如,计算一个不规则物体的体积,我们可以通过将其转化为规则几何体的组合,然后利用相应的体积公式来求解。
又如,在测量建筑物的高度时,我们可以利用相似三角形的性质建立数学模型,从而得出准确的结果。
数学建模思想在中学数学应用题中的应用尤为明显。
例如,一道常见的行程问题:甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度为每小时 5 千米,乙的速度为每小时 4 千米,经过 3 小时两人相遇,问 A、B 两地的距离是多少?在解决这道题时,我们可以建立一个简单的线性方程模型。
设 A、B 两地的距离为 x 千米,根据路程=速度×时间,可得到方程:5×3 + 4×3 = x,解得 x = 27 千米。
在解决这类应用题时,关键是要将实际问题中的数量关系转化为数学语言,明确已知量和未知量,然后选择合适的数学模型进行求解。
这需要学生具备较强的阅读理解能力和逻辑思维能力。
数学建模思想的应用还能够激发学生的学习兴趣。
传统的数学教学往往注重理论知识的传授和解题技巧的训练,容易让学生感到枯燥乏味。
而通过引入数学建模,将抽象的数学知识与实际生活紧密联系起来,让学生看到数学的实用性和趣味性,从而提高他们学习数学的积极性和主动性。
数学建模思想在中学数学教学中的运用

律进 行 观察 和研 究 , 住 问 题 的 本 质 ; 后 把 反 映 实 际 问题 抓 最 的数 量关 系建 立 起 来 , 用 数 学 的 方 法 对 问 题 进 行 分 析 和 运 解决 . 实 数 学 建 模 就 是 理 论 联 系 实 际 的 桥 梁 . 学 建 模 在 其 数 科 学 技 术 发 展 中 的 重 要 作 用 已 被 各 类 学 科 重 视 起 来 . 学 数
模型准备 : 了解 问 题 的 实 际 背 景 , 确 建 模 目的 , 握 明 掌 对 象 的各 种 信 息 , 清 实 际 对象 的特 征 . 弄 模 型 假 设 : 据 实 际对 象 的 特 征 和 建 模 目的 , 问 题 进 根 对 行 必 要 的合 理 的简 化 . 假设 不 同 模 型 也 就 不 同. 于 简 单 的 过
问题 的一 种 数 学 简 化 , 的存 在 形 式 一 般 都 是 某 种 意 义 上 它 接 近 实 际事 物 的抽 象 , 并 不 是 与 实 际 的 问 题 相 同 , 者 在 它 二
模 型 检验 : 型 分 析 结 果 与 实 际 对 象 相 结 合 , 结 果 进 模 对
行评 价.
数据 的 收集 是 建 立 模 型 的首 要 工 作 , 些 数 据 是 要 通 这
过实 际 调 查 得 到 的 ; 后 对 实 际 对 象 的 固 有 特 征 和 内 在 规 然
语 言 以其 科 学 性 、 辑 性 、 观 性 及 可 重 复 性 的特 点 , 描 逻 客 在 述各 种现 象 时体 现 出其 别 具 一 格 的严 密 与 贴 合 实 际 . 图 1 如
数学建模思想在初中教学中的应用

数学建模思想在初中教学中的应用摘要:在教学中引入建模思想,适当开展数学建模的活动,对学生的能力培养能发挥重要作用,也是数学教学改革推进素质教育的一个切入口,本文是本人对教学中引入数学建摸的作用及活动方法的一些简单体会。
关键词:数学建模建模思想培养能力提高素质在教学中引入建模思想,适当开展数学建模的活动,对学生的能力培养能发挥重要作用,也是数学教学改革推进素质教育的一个切入口。
让学生学会解决简单的实际问题是新课标的教学目的之一,数学建模就是将具有实际意义的应用题,通过数学抽象转化为数学模型,以求得问题的解决。
一、数学建模与学生能力培养数学建模面临的是实际问题,它是用实际生活的语言描述的,而不是现成的数学语言描述的问题,且问题也是较复杂的,问题夹杂着有用或无用的,主要或次要的信息,学生首先要对问题提供的信息进行分析、筛选、区分,抓住主要因素进行定量研究。
要尽可能完美地表达实际问题和求解方便这一对矛盾。
这是一个抽象描述,简化问题的过程,这一过程使学生的分析、抽象、综合区分信息的能力得到训练和发挥。
二、数学建模开展的方法用数学建模解决实际问题,首先经过观察分析,筛选获得的信息,洞察实际问题中的数学结构,提炼出数学模型,然后再运用数学知识去处理建立的模型,这不仅要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比、推断等能力,学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,为将数学建模活动融入到平时的教学中,根据我的体会,针对以下几个例子以做分析:1. 建立不等式模型在市场经营、生产决策和社会生活中,如估计生产数量,核定价格范围,盈亏平衡分析,投资决策等,则可挖掘实际问题所隐含的数量关系,转化为不等式(组)的求解或目标函数在闭区间的最值问题。
例1 某工厂生产的产品每件单价是80元,生产成本是60元,该工厂每月其它总开支是50000元。
如果该工厂计划每月至少要获得200000元利润,假定生产的全部产品都能卖出,问每月的生产量应是多少?简析:设每月生产x件产品,则总收入为80x,直接生产成本为60x,每月利润为80x-60x-50000=20x-50000,问题转化为求不等式20x-50000≥200000的解,解得x≥12500(件)。
中学数学教学中有效开展数学建模的实践探讨

中学数学教学中有效开展数学建模的实践探讨数学建模是一种将数学理论与实际问题相结合的方法,通过建立数学模型来解决实际问题。
在中学数学教学中,有效地开展数学建模对于培养学生的综合能力和创新思维至关重要。
本文将探讨中学数学教学中如何有效地开展数学建模的实践。
首先,数学建模的实践需要从实际问题出发。
教师可以选择与学生生活息息相关的问题作为数学建模的题材,例如环境保护、交通规划等。
通过将抽象的数学概念与实际问题相结合,可以激发学生的学习兴趣,提高他们对数学的实际运用能力。
其次,数学建模的实践需要培养学生的团队合作能力。
数学建模往往需要学生分组合作,共同解决问题。
在这个过程中,学生需要相互合作、交流和协作,培养他们的团队合作意识和能力。
教师可以通过组织小组讨论、合作解决问题的方式来促进学生的团队合作。
另外,数学建模的实践需要注重培养学生的创新思维。
数学建模的过程中,学生需要运用已学的数学知识,进行问题分析、模型构建和解决方案的选择。
这需要学生具备创新思维,能够灵活运用数学知识解决实际问题。
教师可以通过提供开放性的问题,引导学生思考和探索,培养他们的创新思维。
此外,数学建模的实践需要注重培养学生的实际操作能力。
数学建模不仅仅是理论上的思考,还需要学生具备一定的实际操作能力。
例如,学生可能需要进行数据的收集和整理,使用计算机软件进行数据分析和模拟实验等。
教师可以通过提供实际操作的机会,让学生亲自动手解决问题,提高他们的实际操作能力。
最后,数学建模的实践需要注重培养学生的表达能力。
数学建模的结果需要通过报告、展示等形式进行表达。
学生需要将复杂的数学概念和模型结果以简洁明了的方式呈现给他人。
因此,教师需要关注学生的表达能力培养,引导他们学会用简单明了的语言和图表来表达数学建模的结果。
总之,中学数学教学中有效开展数学建模的实践对于培养学生的综合能力和创新思维至关重要。
通过从实际问题出发,培养学生的团队合作能力、创新思维、实际操作能力和表达能力,可以有效地开展数学建模的实践。
数学建模进入中学数学课堂的思考

数学建模进入中学数学课堂的思考自从上个世纪90年代初,数学建模就被引入到中小学数学教学当中,尤其是在高中学段。
但是,从教育实践与研究的角度来看,数学建模教育的现状和挑战还比较严峻。
本文将从以下几个方面深入探讨数学建模进入中学数学课堂的思考。
一、数学建模的概念和意义在开始探讨数学建模进入中学数学课堂的思考之前,我们需要先了解数学建模的概念和意义。
数学建模是指将数学理论和方法应用于实际问题中,通过建立数学模型来对问题进行分析、预测和解决的过程。
数学建模涉及到数学、自然科学、社会科学和工程技术等多个领域,是一个综合性强、应用性广泛的学科。
1、扩展学生对数学的认知和理解,提高数学的实践应用能力,增强数学知识的生动性和趣味性。
2、促进学生综合运用数学知识和思维,培养解决实际问题的能力,增强学生的创新意识和创造力。
3、为学生未来的学习和职业发展奠定坚实的基础,为社会的发展做出贡献。
在中学数学教学中,数学建模的应用十分广泛,可以应用在以下几个方面:1、实际问题的建模与分析。
教师可以引导学生分析实际问题,提取其中的数学模型,并通过数学方法对问题进行分析和解决。
2、模型建立和求解。
教师可以根据教学要求和学生的实际情况,设计不同难度和不同类型的数学模型,引导学生使用不同的数学方法求解问题。
3、实验设计和数据处理。
教师可以组织学生进行实验,采集数据并进行处理,通过数学方法对实验结果进行分析和解释。
三、数学建模教育的现状和挑战尽管数学建模在中学数学教育中发挥着重要的作用,但是数学建模教育仍然面临以下一些挑战:1、教师素质的不足。
数学建模需要教师具备熟练的数学知识和实践能力,才能满足学生的需求。
而实际上,数学建模教育的教师力量还不足,很多教师缺乏数学建模的理论和实践经验。
2、学生素质的不足。
教师需要对学生进行思维教育和实践训练,才能够真正提高学生的数学建模能力。
但是学生在数学知识和思维能力方面的不足,也是制约数学建模教育发展的重要因素。
数学建模优秀论文范文-建模思想在初中数学学习中的重要性

数学建模优秀论文范文-建模思想在初中数学学习中的重要性————————————————————————————————作者:————————————————————————————————日期:数学建模论文范文:建模思想在初中数学学习中的重要性-中学数学论文数学建模论文范文:建模思想在初中数学学习中的重要性摘要:数学建模就是运用数学思想、方法和知识解决实际问题的过程。
在平时的数学课堂学习中,教师通过联系课本已学过的知识,将复杂抽象的实际问题带到课堂上,使学生通过多方面分析问题、总结结论,调动学生的积极性,把问题中复杂的非数学信息转换成简单易懂的数学信息,建立合适的数学模型。
学生通过数学模型的建立和求解来解决实际问题。
本文论述了数学建模的概念、列举了几种基本的数学模型。
通过数学建模案例分析,说明数学建模对初中数学学习得重要作用。
关键词:数学建模;数学模型;初中数学一、数学建模对学生的思维发展和能力培养具有重要的作用1.建立模型的过程是培养学生发散思维的过程对于初中数学练习题中出现的一些复杂的数学现象与数据,建模思想主要就在于从复杂的实际问题中提取关键条件、抓住要点,将抽象问题简单化,用一个合理的数学模型将已知的变量关系表式出来。
与传统的数学思想模式不同,建模思想旨在让学生主动思考、探索、解决问题。
这对于学生活跃思维的培养起到非常重要的作用。
2.建模思想有助于提高学生解决问题的能力应用传统的数学思想解题难免会枯燥乏味,而建模思想的应用仿佛给干涸的沙漠注入了一汪清泉。
建模思想充满了想象空间,它是多变的。
而初中的学生本身就有着活泼的个性。
因此,相比于死板的解题思路,学生们更倾向于这种灵活多变的思维模式。
这使得学生对于问题的思考变得更全面、更多样化,从而对于解题的能力也会有很大提高[1]。
二、几种基本的数学模型由于数学模型这一思想方法几乎贯穿于整个中学数学学习过程之中,在解决实际问题时,通过建立函数模型、建立方程模型等都蕴含着数学模型的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析数学建模思想在中学数学教学中应用Last revised by LE LE in 2021浅析数学建模思想在中学数学教学中应用四川省宜宾市翠屏区沙坪中学毛泽胜摘要:在新一轮的课程改革中,数学知识的应用是数学教育的重要内容。
呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识,开展中学数学建模教学与应用的研究,对提高学生数学应用意识,培养学生灵活的思维能力,分析问题、解决问题的能力,促进中学数学教学改革,全面推进中学数学素质教育有十分重要的意义。
本文在对数学模型、数学建模和数学建摸思想研究的基础上,开展对中学数学建模教学活动的理论依据和教学原则的探讨,并对中学的方程、不等式、函数、统计、三角等教学内容进行数学建模教学进行了一些研讨。
因此本文认为数学建模的教学将为中学数学课堂教学改革提供一条新路,将为培养更多更好的“创造型”人才提供一个全新的舞台。
关键词:数学模型、数学建模、数学建模思想、课程改革、中学数学教学随着课程改革的不断深入,数学教学转变了传统的观念,教材编写背景结合了生活实际和社会实践,突出了理论与知识结合,理论与实践结合,强调学生对数学知识的应用,呼唤数学应用意识。
而中学学数学最常用和最有效的教学方法之一是探索法,这一方法与数学建模有很多共同特征,本文拟通过数学模型、数学建模和数学建模思想的研究,探讨数学建模思想应用于中学数学教学的可行性,为中学数学课堂教学改革寻找一条可行之路。
一、数学模型、数学建模和数学建模思想的定义所谓数学模型,是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表述出来一种数学结构。
广义的解释:凡是一切数学概念、数学理论体系、各种数学公式、各种方程(代数方程、函数方程、微分方程、……)以及由公式系列构成的算法系统等等都称之为数学模型。
而创建一个数学模型的全过程称为数学建模,即用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。
总之,数学模型与数学建模较为严格的定义是,对于现实世界的一个特定对象,为了一个特定目的,根据对象特有的内在规律,在做出问题分析和一些必要、合理的简化假设后,运用适当的数学工具,得到的一个数学结构就称为该特定对象的数学模型。
数学建模的过程,可以用如下框图来说明:近似、概括、抽象数学化(用数学理论研究解决数学问题)(得解)检验 回到实际问题 数学建模的思想就是用数学模型的思路、方法去数学建模,解决实际生产、生活当中所遇到的问题在的思想和方法的统称。
二.数学建模思想应用于中学数学教学的理论依据对于高等教育中的数学模型、数学建模以及数学建模思想能否应用于中学数学教学呢能得到那些教育理论支撑呢1.理论联系实际。
数学学科的特征之一是它高度的抽象性,但是数学的高度抽象性决定了数学应用的广泛性,这种广泛性被越来越发达的科学技术所证实,同时数学的应用又推动了数学的新的发展。
数学学科的这一特征决定了数学学习必须坚持理论联系实际的原则,通过数学教学活动让学生认识到数学来源于实际,数学无处不在,我们所学的数学知识是有用的,许多生产生活中的问题都可以用我们所学的数学知识给予解决。
数学理论只有与实际相结合为实践服务才有生命力。
而学数学是为了用数学,数学学习只有坚持理论与实际相结合的原则才能真正理解并掌握数学知识。
在中学教学进行数学建模,就是为学生创设一个学数学、用数学的环境。
学生通过亲自参与探究、发现、分析、学习、求解、检验这样一个问题解决的全过程,得到学数学用数学的实际体验,不但增强了用所学数学知识来观察、分析身边的事物和现象的数学应用意识,而且受到“理论联系实际”、“实践是检验真理的唯一标准”等马克思主义实践论与认识论的重要观点的教育,因为数学建模的过程实际就是实践—理论—实践的过程,就是从实践中来再回到实践中去的过程。
2.建构主义的学习观。
建构主义认为知识并非主体对客观实在的简单的被动的反映,而是学习者以自身已有的知识和经验为基础的一个主动的建构过程,也就是说,所有的知识都是建构出来的。
在建构过程中,主体已有的认知结构发挥了特别重要的作用,并且这个认知结构处于不断的发展中。
建构主义的学习观认为:知识不能简单地由教师或其他人传授给学生而只能由每个学生依据自己已有的知识和经验主动地加以建构。
学习活动是一个“顺应”的过程,是认知框架的不断变革或重组的过程。
学生的学习活动是在一个特定的环境——学校里,在教师的直接指导下进行的。
因此,学生的学习活动就成为了一种特殊的建构活动,一种高度组织化的社会行为。
学生在数学知识应用和建模教学活动中,通过调查研究自己发现问题;将问题数学化制定解决方案;遇到问题自己去收集、查找资料;向书本学习向内行人士学习,最终解决问题。
这个过程是一个学习的过程,是一个做数学的过程,更是一个主动建构自己认知结构的过程。
当然存在学生的个体差异,不同的学生就会有不同的建构。
学生要接受教师的指导和帮助,进行师生的交流,学生之间的交流和相互质疑。
从而在数学建模教学中,更要发挥教师的主导作用,更要注意开展好师生、生生之间的交流与合作,使环境因素对学生的学习建构活动带来充分的积极影响。
3.创新教育的观点。
“创新是一个民族的灵魂,是国家兴旺发达的不竭动力”,基础教育阶段的创新教育是面对全体学生,着重于培养学生的创新意识和创新情感,为创新人格的形成、创新能力的培养打下基础的。
因此教育的重心是启发引导学生探索,启发引导学生创新。
建模思想应用于数学教学是以学习和掌握科学的思维规律为前提,以所学数学知识为基础,让学生在对自然界的数学过程进行科学探索和研究中学习数学,是提高学生综合素质、开发学生潜在创造力的极好方式。
三.数学建模思想应用于中学数学教学的教学原则数学知识应用的教学,主要研究的是具有实际背景的例子,多是经过加工的实际问题,但突出的是数学,所要达到的教学目的是加深对所学知识的理解,巩固所学数学知识和数学方法,解决数学知识“有用”的认识问题。
数学建模运用的是数学工具,解决的是来自生产生活中的非数学问题。
尽管受知识和能力所限,中学数学建模问题较多的还带有应用的性质。
但是仍需经历:采集信息,建构数学模型、对数学模型求解、实践检验的全过程。
因此数学知识与数学建模的教学模式,必须体现以下教学原则。
1.“再创造”原则。
数学知识应用与建模课堂教学为学生提供了一个自己学习、自己探索、自己提出问题、自己解决问题的可能和机会。
所以数学建模的核心是在学生的积极参与前提下进行的“再创造”活动。
2.“数学化”原则。
学生是在将实际问题抽象成纯数学问题,也就是将实际问题数学化的过程中学习数学。
我们所看重的是帮助学生学会数学的思考,学会数学的观察世界。
因此整个教学过程印证了着名的荷兰数学家弗赖登塔的名言:与其说是学习数学,还不如说是学习“数学化”。
3.“数学现实性”原则。
教学中我们充分肯定并强调学生个体的特殊性,对不同能力的学生开展不同层次的数学应用与建模活动,尽量为不同的学生提供不同的但是能展现他们创造力的舞台,让他们在不同程度上都能用数学,在用数学的过程中获得不同程度的数学应用的体验。
实现每个学生在自己“数学现实”基础上的数学能力、应用意识与实践能力的提高。
进而获得“学然后之不足”的感悟,从而更刻苦的去学习数学。
4.“严谨性”原则。
中学数学建模不应刻意追求建模过程的复杂和完美,不应要求模型推证计算的绝对严谨,而是在学生的“数学现实”条件下的严谨。
因此对学生建模结论执有的应是一种特定的评价标准。
由于现实是,当今社会科学技术的飞速发展与中学生有限知识之间存在着很大的差异。
必须认识到科学的“发现”和“创新”也是有高低不同层次的。
一名中学生要想提出一个新概念、要想发现人们从来不知道的新定理、新方法、新理论是几乎不可能的。
但是通过他们自己的努力和踏踏实实的工作,去发现可能别人早已知道而只对他们来说是未知的知识、规律却是完全可能的。
从这个意义上讲,中学生也完全可以获得数学的发现。
这就是一名中学生创新能力的表现。
开发并扶植它正是数学建模教学的目的。
此外,数学建模的教学还应遵循:具体与抽象相结合;归纳与演绎相结合;数与形相结合;理论与实践相结合;探索与论证相结合的一般教学原则.同时做到目的与手段的辩证统一;间接经验与直接经验的有机统一;理论与应用的有机统一;学习与创造的有机统一。
四. 数学建模思想应用于中学数学教学的举隅数学建模思想可应用于中学数学教学那些地方呢根据课标要求和现行教材内容,主要有:不等式的应用,函数的应用,三角函数的应用,几何的应用等.结合时代发展的特点,教材和习题中涉及现代生活的经济统计图表(识别、分析、绘制),动态规划(生产计划问题等),网络规划(绘制、计算、优化),股票、彩票发行模型,风险决策,市场预测,存贮原理,供求模型,广告与税款等等,还有跨学科的生态平衡、环境保护、人口生命等方面的问题等等。
现做一些举例。
(一)、建立或化归为方程或不等式模型, 解决实际生产生活的“等量或不等关系”问题现实世界中广泛存在着数量之间的相等或不等关系,如,投资决策、人口控制、资源保护、生产规划、交通运输、水土流失等问题中涉及的有关数量问题,常归结为方程或不等式求解.例如字母符号是基本的数学语言,在应用问题中用x表示实际问题中的未知量,通过分析问题中已知量与未知量的相等或大小关系,“翻译”成表示未知数x 和已知数之间相等或大小关系的方程或不等式,即得到刻画实际问题的相等或大小关系的数学模型。
例如某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。
已知生产一件A种产品,需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克,乙种原料10千克,可获利润1200元,按要求安排A、B两种产品的生产件数,有哪几种方案,请你给设计出来。
我们可以用建模的思想方法,建立或化归为不等式模型,设安排生产A种产品x 件,则生产B种产品为(50-x)件,根据题意得9x+4(50-x)≤360,3x+10(50-x)≤290,解得30≤x≤32而x为整数所以x只能取30、31、32,相应的(50-x)的值为20、19、18。
因而我们得到了方案有三种:第一种生产方案:生产A种产品30件、B种产品20件;第二种生产方案:生产A种产品31件、B种产品19件;第三种生产方案:生产A种产品32件、B种产品18件;(二)、建立或化归为函数模型,解决实际生产生活的“动态变化”问题现实生活中普遍存在着最优化问题——最佳投资、最小成本、设计最佳等,常常归结为函数的最值问题(盈利最大、用料最省),通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法解决。