离散数学07抽象代数共68页文档
离散数学-群

a ◦ b = a g (g-1 a-1 g-1) = g-1。 同理可证,b ◦ a = g-1。 所以 G 的每个元素都有逆元。 综上所述,< G; ◦ > 是群。
注:
因为半群 < S; > 中 是可结合的,所以可以定义元素的幂。
对任意 a S,定义
a1 = a,an + 1 = an a (n = 1, 2, …),
并且对于任意正整数 m 和 n,有
am an = am + n,(am)n = amn。
3
定理5-1 设 < S; > 是一个有限的半群,则必有 a S,使得 a 是一个幂等元,即 a a = a 。
第二部分 抽象代数
0
第五章 群
本章在了解了代数系统一般概念的基础上,着重讨论具有一个 二元运算的代数系统,常称为二元代数,包括半群、独异点和 群。半群和独异点在自动机理论、形式语言及程序设计的数学 基础中占有重要的地位,而群是抽象代数中最古老且发展得最 完善的代数系统,在计算机科学中,对于代码的查错和纠错、 自动机理论等各个方面的应用的研究,群是其基础。
代数系统中唯一的单位元常记为 e。 5
在独异点 < S; > 中,也可定义元素的幂:
对任意 a S,有
a0 = e,an + 1 = an a (n = 0, 1, 2, …),
并且对于任意非负整数 m 和 n,有
am an = am + n,(am)n = amn。
设 < S; > 为独异点,则关于运算 的运算表中没有两行或 两列是相同的。
离散数学集合论部分PPT课件

第23页/共193页
注意: 与{}是不同的。 {}是以为元素的集合, 而没有任何元素,能 用构成集合的无限序列: ,{},{{}},···
例 设A={{1,2,3}, 1,2,3}, 则 {1,2,3} A 且 {1,2,3} A 。
第27页/共193页
重要结论
➢对任意集合A, 有A A。 ➢空集是任意集合的子集,且空集是唯一的。 ➢对于任意两个集合A、B,A=B的充 要条件是AB且BA。(这个结论非常简单, 但它非常重要,很多证明都是用这个Fra bibliotek法或思路来证明。)
第2页/共193页
集合的基本概念
例:
1. 二十六个英文字母可以看成是一个集合;
2. 所有的自然数看成是一个集合; 3. 重庆邮电大学计算机学院2010级的本科学生可以看成是一个集合; 4. 这间教室中的所有座位可以看成是一个集合。
第3页/共193页
集合的元素
组成一个集合的那些对象或单元称为这 个集合的元素。通常,用小写的英文字母a, b, c,…表示集合中的元素。元素可以是单 个的数字也可以是字母,还可以是集合。
下列选项正确的是( 3 );
(1) 1A
(2){1,2,3} A
(3){{4,5}} A (4) ØA
例3.4 下列各选项错误的是(2);
(1) Ø Ø
(2) Ø Ø
(3) Ø { Ø }
(4) Ø { Ø }
例3.5 在0 ___ Ø 之间填上正确的符号:(4)
大学数学离散数学

大学数学离散数学离散数学是一门研究离散对象及其结构、性质和关系的数学学科。
离散数学在计算机科学、信息科学、工程学以及许多其他领域中具有重要的应用价值。
本文将介绍离散数学的基本概念、主要内容和应用领域。
一、概述离散数学是数学中的一个分支,研究的对象是离散的、离散化的数学结构。
它关注的是非连续、离散的数学概念和算法,与连续数学不同,离散数学是离散化的、离散性质的研究。
离散数学的主要内容包括集合论、逻辑、关系、图论、代数结构和组合数学等。
二、集合论集合论是离散数学中的基石,它研究的是集合这一基本概念及其性质。
集合是指具有确定特征的对象的整体,集合论主要研究集合的运算、集合的关系、集合的划分等基本问题。
集合论的基本公理包括空集公理、对偶公理、包含公理等。
三、逻辑逻辑是研究正确推理和证明的数学学科,也是离散数学的重要组成部分。
逻辑分为命题逻辑、谓词逻辑和模态逻辑等不同的分支。
离散数学中的逻辑包括命题逻辑和谓词逻辑,它们用于描述命题的真值和命题之间的关系。
四、关系关系是数学中的一种基本概念,描述了事物之间的联系和相互作用。
离散数学中的关系论主要研究二元关系和等价关系。
二元关系是指一个集合上的二元对组成的集合,它描述了两个元素之间的某种联系。
等价关系是一种满足自反性、对称性和传递性的二元关系,它将集合划分为不同的等价类。
五、图论图论是离散数学中的一门重要学科,研究图及其性质和应用。
图是由顶点和边组成的数学对象,它是描述许多实际问题的有效工具。
图论主要研究图的连通性、图的着色、最短路径、最小生成树等基本问题,并在网络、电路设计、运筹学等领域有广泛的应用。
六、代数结构代数结构是离散数学中的一个重要分支,研究的是集合上的运算和结构。
常见的代数结构包括群、环、域等,它们用于描述抽象代数系统的性质。
代数结构在计算机科学中有广泛的应用,例如密码学中的置换群、编码理论中的线性空间等。
七、组合数学组合数学是离散数学中的一门重要学科,研究离散对象的组合与排列问题。
离散数学 第4章 代数系统(祝清顺版)

代数结构的知识体系
半群与群 环与域 格与布尔代数
分类 成分:载体及运算 公理:运算性质 产生 代数系统的构成
子集
子代数
同 种 的 同 类 型 的
等价关系
映射
代数系统的 同态与同构 代数系统间的关系
离散数学 第四章 代数系统 2007年8月20日
商代数 新代数系统
,有限域理论是差错控制编码理论的数学基础,在通讯中发 挥了重要作用。而电子线路设计、电子计算机硬件设计和通 讯系统设计更是离不开布尔代数。
离散数学 第四章 代数系统 2007年8月20日
学习本篇的方法
1、要按照数学的思维方式学习, 即观察客观世界, 抽象出模型 , 再分析、推理揭示内在规律的过程。 2、领会“抽象”性:代数的抽象性不仅体现在元素的抽象上, 还体现在相应运算的抽象上, 是在最纯粹的形式下研究代数结 构中的运算的规律与性质, 从运算的角度来考虑代数结构中的 元素。因此, 初等代数的相应概念、结论不能直接应用在抽象 代数中。如何跨越从直观到抽象是学习抽象代数的重要一步。 3、教材的基本思路是: 首先严格定义什么是代数结构, 并讨 论一般代数结构的基本性质。然后讨论代数结构研究的两个方 面:其一是通过一些基本性质来规定一类特定的代数结构, 并 对这类代数结构的性质进行研究。其二是研究代数结构之间的 各种关系, 通过对代数结构之间关系的研究 , 就可以把一个代 数结构中的某些性质推广到另一个代数结构中。
离散数学
第四章 代数系统
2007年8月20日
例题
例2 实数集R和两个二元运算: 普通加法+和普通乘法 ×, 构成一代数系统, 记作(R, +, ×).
(1) 载体是实数集R.
离散数学教程PPT课件

例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
离散结构与离散数学_概述说明以及解释

离散结构与离散数学概述说明以及解释1.引言1.1 概述:离散结构与离散数学作为计算机科学和数学的重要基础,对于计算机科学领域的研究和应用至关重要。
通过对离散结构和离散数学的深入研究,我们可以更好地理解计算机系统中的数据结构、算法、网络以及推理和证明等方面的原理。
本文旨在对离散结构与离散数学进行概述说明和解释,帮助读者全面了解这两个领域的基本概念、特点以及它们在实际应用中起到的作用。
1.2 文章结构:本文将按照以下顺序来展开对离散结构与离散数学的介绍:首先,在第2部分中,我们将概述离散结构与离散数学,并介绍它们各自的基本概念;然后,在第3部分中,我们将重点讨论离散结构中集合与子集合性质与操作方法的要点,以及图论和布尔代数在离散结构中的基本概念和应用;接着,在第4部分中,我们将深入探讨逻辑推理与命题逻辑、数理递归及其应用,以及抽象代数中群、环和域的概念及其性质;最后,在第5部分中,我们将总结福祉N,同时对离散结构与离散数学在未来发展趋势进行分析。
通过这样的文章结构安排,读者可以系统全面地了解离散结构与离散数学的核心知识点。
1.3 目的:本文的目的是为读者提供一个简洁但全面的介绍离散结构与离散数学的文章。
通过阅读本文,读者可以了解到离散结构与离散数学在计算机科学和数学领域中的重要性,并能够掌握它们各自的基本概念和关系。
希望本文能够为读者打下坚实的基础,为进一步深入学习和应用相关领域奠定基础。
2. 离散结构与离散数学概述:2.1 离散结构的定义和特点:离散结构是指由离散元素组成的集合,其中这些元素之间存在着明确的关系。
离散结构与连续结构相对,连续结构是由连续元素组成的集合,例如实数集。
而离散结构常用于描述和解决离散领域中的问题,如计算机科学、密码学等。
离散结构具有以下特点:- 离散性:离散结构中的元素个别存在且无法被进一步分割,不存在过渡状态。
- 有限性或可数性:在离散结构中,元素数量通常是有限或可数的。
离散数学第7章PPT课件

…………
初级通路 简单通路 复杂通路
第38页/共94页
例1、(2)
图(2)中过v2的回路 (从 v2 到 v2 )有:
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
第34页/共94页
一、通路,回路。 2、简单通路,简单回路。 简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
第35页/共94页
一、通路,回路。 3、初级通路,初级回路。 初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路),
但反之不真。
4、通路,回路的长度—— 中边的数目。
补图的概念, 5、图的同构的定义。
第4页/共94页
一、图的概念。 1、定义。
无序积 A & B (a,b) a A b B
无向图 G V , E
E V &V , E 中元素为无向边,简称边。
有向图 D V, E
E V V , E 中元素为有向边,简称边。
第5页/共94页
一、图的概念。 1、定义。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,
则
,vn,E m ( m为边数),
n
d (vi ) 2m
i 1
第20页/共94页
n
2、握手定理 d (vi ) 2m i 1
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V, E 为有向图,
第36页/共94页
离散数学

5.2.3 逆元
例如,设代数系统<R,+,×>,其中R是实数集, +与×是实数加与乘运算。 关于+ 0幺元,结合,任意a∈A, a的逆元a-1=-a 。 关于× 1幺元,结合,任意a∈A(a≠0),
a的逆元
a-1=
1 a
5.2.4 独异点
定义5.2.1 设<A,*>是半群,若A中有关于* 运算的幺元,则称<A,*>为独异点(monoid)。
若b∈A,使a*b=e 若b∈A,使b*a=e=a*b
ห้องสมุดไป่ตู้
5.2.3 逆元
例如,设代数系统<A,*>的运算表 * 1 1 1 2 2 3 3 4 4 2 2 4 4 3 3 3 3 4 3 4 4 1 2 1 1为幺元 1逆元为1 2右逆元4,无左逆元
3既无左逆元又无右逆元
4左逆元2与4,右逆元4
5.2.3 逆元
5.2.4 独异点
例如,<Z6,×6>的运算表 ×6 [0] [1] [2] [3] [4] [5] [0] [1] [2] [3] [4] [5] [0] [0] [0] [0] [0] [0] [0] [1] [2] [3] [4] [5] [0] [2] [4] [0] [2] [4] [0] [3] [0] [3] [0] [3] [0] [4] [2] [0] [4] [2] [0] [5] [4] [3] [2] [1]
例如,设代数系统<A, △>的运算表 △ 1 2 3 4 1 4 4 4 1 2 4 4 4 2 3 4 4 4 3 4 1 2 3 4 4为幺元 1的逆元为:1,2,3 2的逆元为:1,2,3 3的逆元为:1,2,3