2017届高三数学上学期11月月考试题文无答案

合集下载

【江西师大附中】2017届高三上学期11月月考数学(文科)试卷 -答案

【江西师大附中】2017届高三上学期11月月考数学(文科)试卷 -答案

)()min f x =(1)1()2a a -=--=+.解:)m n ⊥,(tan m A =,(,2)n b c =,0m n ∴=(tan tan )2b A B +-sin sin cos cos B c A B 又A )S又a 2(a a +-+54+++AEOB O =,.AE 的平行线交CFG 为过点DOE △∽△CFOB H 于,连结BH PO OB =,解得3311ABCE BCF PO S S GH -梯△形 2.125(1)([PA PB x x m x ==+-4江西师大附中2017届高三上学期11月月考数学试卷(文科)解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】Venn图表达集合的关系及运算.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于B且属于A的元素构成,所以用集合表示为A∩B.A={x∈N|y=}={x∈N|7x﹣x2﹣6≥0}={x∈N|1≤x≤6}={1,2,3,4,5,6},B={x∈Z|﹣1<x≤3}={0,1,2,3},∴A∩B={1,2,3},其真子集的个数为23﹣1=72.【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,3.【考点】等差数列的通项公式.【分析】利用等差数列的前n项和公式求解.【解答】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.4.【考点】空间中直线与平面之间的位置关系.【分析】在①中,m与n平行或异面;在②中,由直线与平面垂直的性质得m⊥n;在③中,m与n相交、平行或异面;在④中,由面面垂直和线面垂直的性质得m⊥n.【解答】解:由两条不同的直线m,n和两个不同的平面α,β,知:在①中,若m∥α,n∥β,且α∥β,则m与n平行或异面,故①错误;在②中,若m⊥α,n∥β,且α∥β,则由直线与平面垂直的性质得m⊥n,故②正确;在③中,若m∥α,n⊥β,且α⊥β,则m与n相交、平行或异面,故③错误;在④中,若m⊥α,n⊥β,且α⊥β,则由面面垂直和线面垂直的性质得m⊥n,故④正确.5.【考点】三角函数中的恒等变换应用.【分析】先根据二倍角公式和两角差的正弦公式化简得到f(x)=sin(2x﹣)﹣,再根据对称轴的定义即可求出.【解答】解:f(x)=sinxcosx﹣x=sin2x﹣cos2x﹣=sin(2x﹣)﹣,则其对称轴为2x﹣=kπ+,k∈Z,∴x=+,k∈Z,当k=0时,x=,∴函数f(x)图象的一条对称轴是x=,6.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】判断几何体的形状,利用三视图的数据求解即可.【解答】解:三视图复原的几何体是三棱柱截去一个三棱锥,剩余一个四棱锥的几何体,可得几何体的体积为:=2.7.【考点】异面直线及其所成的角.【分析】以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB′与BC′所成角的余弦值.【解答】解:以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,设AA′=2AB=2,则A(0,0,0),B′(,,2),B(,,0),C′(0,1,2),=(,,2),=(﹣,,2),设异面直线AB′与BC′所成角为θ,则cosθ===.∴异面直线AB′与BC′所成角的余弦值为.8.【考点】平面向量数量积的运算.【分析】利用正六边形的性质和平面向量数量积的定义,即可得出结果.【解答】解:正六边形ABCDEF的边长为1,点G是边AF的中点,∴=(+)•(+)=(+)•(+)=•+•+•+•=1×1×cos120°+1×1×cos60°+×1×1×cos60°+×1×1×cos0°=.9.【考点】函数的单调性与导数的关系;函数的图象.【分析】先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.【解答】解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x﹣sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cosx,当﹣<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.10.【考点】两点间距离公式的应用.【分析】由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).|AB|=10.当PA⊥PB时,|PA|2+|PB|2=|AB|2=100,利用|PA|+|PB|≤即可得出|PA|+|PB|的最大值.【解答】解:由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).∵|AB|==10.∴当PA⊥PB时,|PA|2+|PB|2=|AB|2=100∴|PA|+|PB|≤=10当且仅当|PA|=|PB|=5时取等号.∴|PA|+|PB|的最大值为5.11.【考点】函数单调性的性质;奇偶函数图象的对称性.【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f(x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,可把问题转化为(x﹣3)2+(y﹣4)2<4,借助于的有关知识可求【解答】解:∵函数y=f(x﹣1)的图象关于点(1,0)对称∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(﹣x)=﹣f(x)又∵f(x)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣8y)<0恒成立∴(x2﹣6x+21)<﹣f(y2﹣8y)=f(8y﹣y2 )恒成立∴x2﹣6x+21<8y﹣y2∴(x﹣3)2+(y﹣4)2<4恒成立设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,则x2+y2表示在半圆内任取一点与原点的距离的平方由图可知,最短距离为OA=,最大距离OB=OC+BC=5+2=7∴13<x2+y2<4912.【考点】利用导数研究函数的极值;函数的值.【分析】根据g(m)=f(n)=t得到m,n的关系,利用消元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e,故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;二、填空题:本大题共4小题,每小题5分,共20分.13.【考点】直线与圆相交的性质.【分析】把圆的方程化为标准方程,找出圆心坐标和圆的半径r,利用点到直线的距离公式求出圆心到已知直线的距离d,由求出的d与半径r,根据垂径定理与勾股定理求出|AB|的一半,即可得到|AB|的长.【解答】解:把圆的方程化为标准方程得:(x﹣2)2+(y+2)2=25,∴圆心坐标为(2,﹣2),半径r=5,∴圆心到直线3x+4y+17=0的距离d==3则|AB|=2=8.14.【考点】球的体积和表面积;旋转体(圆柱、圆锥、圆台).【分析】由题意求出球的体积,求出圆锥的体积,设出水的高度,求出水的圆锥的体积,利用V水+V球=V容,求出圆锥内水平面高.即可得出结论.器【解答】解:如图.在容器内注入水,并放入一个半径为r的铁球,这时水面记为AB,将球从圆锥内取出后,这时水面记为EF.三角形PAB为轴截面,是正三角形,三角形PEF也是正三角形,圆O是正三角形PAB的内切圆.由题意可知,DO=CO=r,AO=2r=OP,AC=r∴V球=,V PC==3πr3又设HP=h,则EH=h∴V水==∵V水+V球=V PC即+=3πr3,∴h3=15r3,容器中水的体积与小球的体积之比为:=5:4.15.【考点】等比数列的通项公式.【分析】由于数列{b n}为等比数列且,可得b1…•b14=•…•=a15=,代入即可得出答案.【解答】解:∵数列{b n}为等比数列且,∴b1b2…b14=•…•=a15==27=128.16.【考点】简单线性规划的应用.【分析】本题考查的知识点是简单的线性规划的应用,根据已知条件中甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,我们可以列出满足条件的约束条件,及目标函数,然后利用线性规划,求出最优解.【解答】解:设需租赁甲种设备x天,乙种设备y天,则目标函数为z=200x+300y.作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2300元.三、解答题:解答应写出文字说明,证明过程或演算步骤,本大题6小题,共70分.17.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)利用绝对值不等式的解法,去掉绝对值,求解即可.(2)利用f(x)min=min{f(﹣1),f(a)},求解即可.【解答】解:(1)当a=3时,x<﹣1,不等式可化为﹣3x+1≥6,∴x≤﹣;﹣1≤x≤3时,不等式可化为x+5≥6,∴x≥1,∴1≤x≤3;当x>3时,3x﹣1≥6,∴x≥,∴x>3,综上所述,不等式的解集为{x|x≤﹣或x≥1};(2)∵f(x)min=min{f(﹣1),f(a)},∴,∴a≤﹣5或a≥3.18.【考点】余弦定理.【分析】(1)由已知可=0,进而由同角三角函数基本关系式可得cosA=,结合A的范围,进而得到∠A的大小;(2)由已知利用三角形面积公式可求bc=12,利用余弦定理可求b2+c2=25,联立即可解得b,c的值.【解答】解:(1)∵,=(tanA+tanB,﹣tanB),=(b,2c),∴=0,可得:b(tanA+tanB)﹣2ctanB=0,∴=,可得:cosA=,又∵A∈(0,π),∴A=.(2)∵S△ABC=bcsinA==3,∴bc=12,①又∵a2=b2+c2﹣2bccosA=b2+c2﹣bc=b2+c2﹣12=13,可得:b2+c2=25,②∴联立①②解得:,或.19.【考点】数列的求和;数列递推式.【分析】(1)由a1=4,a n+1﹣a n=2n+3(n∈N*).利用“累加求和”方法、等差数列的求和公式即可得出.(2)由b n===,利用“裂项求和”方法即可得出.【解答】解:(1)∵a1=4,a n+1﹣a n=2n+3(n∈N*).∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=(2n+1)+(2n﹣1)+…+5+4==(n+1)2.(2)证明:b n===,∴T n=+++…++=<=.20.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)推导出PO⊥OB,PO⊥AE,由此能证明PO⊥平面ABCE.(2)过点C作AE的平行线交AB于点F,过点F作PA的平行线交PB于点G,连结CG,能得到所求的平面.(3)所求几何体的体积为V=V P﹣ABCD﹣V G﹣BCF,由此能求出结果.【解答】证明:(1)在图1中,AB=4,AD=2,则BD=10,又AD2=DO•BD,∴DO=2,OB=8,在图2中,PO=DO=2,PO2+OB2=22+82=68=PB2,∴PO⊥OB,又∵PO⊥AE,AE∩OB=O,∴PO⊥平面ABCE.解:(2)过点C作AE的平行线交AB于点F,过点F作PA的平行线交PB于点G,连结CG,则平面CFG为过点C与平面PAE平行的平面.(3)在图1中,∵△DOE∽△DCB,∴DE=5,∴S△ADE=5,S梯形ABCE=S ABCD﹣S△ADE=35,S△BCF=S△ADE=5,设CF∩OB于H,连结GH,则,解得GH=,∴所求几何体的体积为:V=V P﹣ABCD﹣V G﹣BCF===.21.【考点】直线与抛物线的位置关系;抛物线的标准方程.【分析】(1)由题意可知:将直线y=x+1代入抛物线方程,由△=0,即可求得p的值,求得抛物线C的方程;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)求得M坐标,|PM|2=2m2,求得直线的斜率,设直线方程为y=2x+m(m≠0),代入抛物线方程,由韦达定理及向量数量积的坐标表示可知:丨PA丨丨PB丨=•=m2,则2m2=m2λ,即可求得常数λ.【解答】解:(1)由题意可知:,整理得:x2+2(1﹣p)x+1=0,由抛物线C:y2=2px(p>0)与直线l:x﹣y+1=0相切,∴△=0,即4(1﹣p)2﹣4=0,解得:p=2或p=0(舍去),∴抛物线方程为:y2=4x;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)可知:M(1,2),则k OM=2,设直线l′方程为y=2x+m(m≠0),A(x1,y1),B(x2,y2),则P(1﹣m,2﹣m),|PM|2=2m2,则,整理得:4x2+4(m﹣1)x+m2=0,由△>0,即16(m﹣1)2﹣16m2>0,解得:m<且m≠0,由韦达定理可知:x1+x2=1﹣m,x1•x2=,由丨PA丨丨PB丨=•=5[x1•x2+(m﹣1)(x1+x2)+(m﹣1)2]=m2,整理得:2m2=m2λ,解得:λ=,∴存在常数λ=,使得|PM|2=λ|PA||PB|成立.22.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)的单调性与单调区间.(2)f(x)有极大值与极小值,由(1)可知,0<a<2或a>2,根据函数零点定理验证即可.【解答】解:(1)由题意得,f′(x)=2x﹣(a+2)+=(x>0),由f′(x)=0,得x1=1,x2=①当0<<1,即0<a<2,令f′(x)>0,又x>0,可得0<x<或x>1;令f′(x)<0,x>0,可得<x<1,∴函数f(x)的单调增区间是(0,)和(1,+∞),单调减区间是(,1);②当=1,即a=2时,f′(x)=≥0,当且仅当x=1时,f′(x)=0,∴函数f(x)在区间(0,+∞)上是单调增函数;③当>1,即a≥2时,令f′(x)>0,又x>0,可得0<x<1或x>;令f′(x)<0,x>0,可得1<x<∴函数f(x)的单调增区间是(0,1)和(,+∞),单调减区间是(1,);④当≤0,即a≤0时,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增.(2)∵f(x)有极大值与极小值,由(1)可知,0<a<2或a>2,当a>2时,函数f(x)的单调增区间是(0,1)和(,+∞),单调减区间是(1,),若x∈(0,),f(x)≤f(1)=﹣a﹣1<0,无零点,若x∈(,+∞),则f()<f(1)<0,f(a+2)=aln(a+2)>0,有一个零点,则当a>2时,f(x)有唯一的零点,当0<a<2函数f(x)的单调增区间是(0,)和(1,+∞),单调减区间是(,1);若x∈(0,1),f(x)≤f()=a(lna﹣﹣1﹣ln2),有lna<ln2<1,则lna﹣﹣1﹣ln2<0,则f(x)<0,即f(x)在(0,1)内无零点,若x∈(1,+∞),则<f(1)<0,f(a+2)=aln(a+2)>0,即f(x)在[1,+∞)有一个零点,则当0<a<2时,f(x)有唯一的零点,综上所述函数f(x)在定义域内有唯一的零点。

【江西师大附中】2017届高三上学期11月月考数学(文科)试卷 -答案

【江西师大附中】2017届高三上学期11月月考数学(文科)试卷 -答案

)()min f x =(1)1()2a a -=--=+)m n ⊥,(tan m A =,(,2)n b c =,0m n ∴=可得:(tan b A sin sin B c 又A )S又a 2(a a +-+54+++AEOB O =,.AE 的平行线交CFG 为过点CFOB H 于,连结GH BH PO OB =,解得3311ABCE BCF PO S S GH -梯△形 452. 125(1)([PA PB x x m x ==+-254m λ=,江西师大附中2017届高三上学期11月月考数学试卷(文科)解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】Venn图表达集合的关系及运算.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于B且属于A的元素构成,所以用集合表示为A∩B.A={x∈N|y=}={x∈N|7x﹣x2﹣6≥0}={x∈N|1≤x≤6}={1,2,3,4,5,6},B={x∈Z|﹣1<x≤3}={0,1,2,3},∴A∩B={1,2,3},其真子集的个数为23﹣1=72.【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,3.【考点】等差数列的通项公式.【分析】利用等差数列的前n项和公式求解.【解答】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.4.【考点】空间中直线与平面之间的位置关系.【分析】在①中,m与n平行或异面;在②中,由直线与平面垂直的性质得m⊥n;在③中,m与n相交、平行或异面;在④中,由面面垂直和线面垂直的性质得m⊥n.【解答】解:由两条不同的直线m,n和两个不同的平面α,β,知:在①中,若m∥α,n∥β,且α∥β,则m与n平行或异面,故①错误;在②中,若m⊥α,n∥β,且α∥β,则由直线与平面垂直的性质得m⊥n,故②正确;在③中,若m∥α,n⊥β,且α⊥β,则m与n相交、平行或异面,故③错误;在④中,若m⊥α,n⊥β,且α⊥β,则由面面垂直和线面垂直的性质得m⊥n,故④正确.5.【考点】三角函数中的恒等变换应用.【分析】先根据二倍角公式和两角差的正弦公式化简得到f(x)=sin(2x﹣)﹣,再根据对称轴的定义即可求出.【解答】解:f(x)=sinxcosx﹣x=sin2x﹣cos2x﹣=sin(2x﹣)﹣,则其对称轴为2x﹣=kπ+,k∈Z,∴x=+,k∈Z,当k=0时,x=,∴函数f(x)图象的一条对称轴是x=,6.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】判断几何体的形状,利用三视图的数据求解即可.【解答】解:三视图复原的几何体是三棱柱截去一个三棱锥,剩余一个四棱锥的几何体,可得几何体的体积为:=2.7.【考点】异面直线及其所成的角.【分析】以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB′与BC′所成角的余弦值.【解答】解:以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,设AA′=2AB=2,则A(0,0,0),B′(,,2),B(,,0),C′(0,1,2),=(,,2),=(﹣,,2),设异面直线AB′与BC′所成角为θ,则cosθ===.∴异面直线AB′与BC′所成角的余弦值为.8.【考点】平面向量数量积的运算.【分析】利用正六边形的性质和平面向量数量积的定义,即可得出结果.【解答】解:正六边形ABCDEF的边长为1,点G是边AF的中点,∴=(+)•(+)=(+)•(+)=•+•+•+•=1×1×cos120°+1×1×cos60°+×1×1×cos60°+×1×1×cos0°=.9.【考点】函数的单调性与导数的关系;函数的图象.【分析】先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.【解答】解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x﹣sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cosx,当﹣<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.10.【考点】两点间距离公式的应用.【分析】由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).|AB|=10.当PA ⊥PB时,|PA|2+|PB|2=|AB|2=100,利用|PA|+|PB|≤即可得出|PA|+|PB|的最大值.【解答】解:由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).∵|AB|==10.∴当PA⊥PB时,|PA|2+|PB|2=|AB|2=100∴|PA|+|PB|≤=10当且仅当|PA|=|PB|=5时取等号.∴|PA|+|PB|的最大值为5.11.【考点】函数单调性的性质;奇偶函数图象的对称性.【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f(x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,可把问题转化为(x﹣3)2+(y﹣4)2<4,借助于的有关知识可求【解答】解:∵函数y=f(x﹣1)的图象关于点(1,0)对称∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(﹣x)=﹣f(x)又∵f(x)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣8y)<0恒成立∴(x2﹣6x+21)<﹣f(y2﹣8y)=f(8y﹣y2 )恒成立∴x2﹣6x+21<8y﹣y2∴(x﹣3)2+(y﹣4)2<4恒成立设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,则x2+y2表示在半圆内任取一点与原点的距离的平方由图可知,最短距离为OA=,最大距离OB=OC+BC=5+2=7∴13<x2+y2<4912.【考点】利用导数研究函数的极值;函数的值.【分析】根据g(m)=f(n)=t得到m,n的关系,利用消元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e,故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;二、填空题:本大题共4小题,每小题5分,共20分.13.【考点】直线与圆相交的性质.【分析】把圆的方程化为标准方程,找出圆心坐标和圆的半径r,利用点到直线的距离公式求出圆心到已知直线的距离d,由求出的d与半径r,根据垂径定理与勾股定理求出|AB|的一半,即可得到|AB|的长.【解答】解:把圆的方程化为标准方程得:(x﹣2)2+(y+2)2=25,∴圆心坐标为(2,﹣2),半径r=5,∴圆心到直线3x+4y+17=0的距离d==3则|AB|=2=8.14.【考点】球的体积和表面积;旋转体(圆柱、圆锥、圆台).【分析】由题意求出球的体积,求出圆锥的体积,设出水的高度,求出水的圆锥的体积,利用V水+V球=V容,求出圆锥内水平面高.即可得出结论.器【解答】解:如图.在容器内注入水,并放入一个半径为r的铁球,这时水面记为AB,将球从圆锥内取出后,这时水面记为EF.三角形PAB为轴截面,是正三角形,三角形PEF也是正三角形,圆O是正三角形PAB的内切圆.由题意可知,DO=CO=r,AO=2r=OP,AC=r∴V球=,V PC==3πr3又设HP=h,则EH=h∴V水==∵V水+V球=V PC即+=3πr3,∴h3=15r3,容器中水的体积与小球的体积之比为:=5:4.15.【考点】等比数列的通项公式.【分析】由于数列{b n}为等比数列且,可得b1…•b14=•…•=a15=,代入即可得出答案.【解答】解:∵数列{b n}为等比数列且,∴b1b2…b14=•…•=a15==27=128.16.【考点】简单线性规划的应用.【分析】本题考查的知识点是简单的线性规划的应用,根据已知条件中甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,我们可以列出满足条件的约束条件,及目标函数,然后利用线性规划,求出最优解.【解答】解:设需租赁甲种设备x天,乙种设备y天,则目标函数为z=200x+300y.作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2300元.三、解答题:解答应写出文字说明,证明过程或演算步骤,本大题6小题,共70分.17.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)利用绝对值不等式的解法,去掉绝对值,求解即可.(2)利用f(x)min=min{f(﹣1),f(a)},求解即可.【解答】解:(1)当a=3时,x<﹣1,不等式可化为﹣3x+1≥6,∴x≤﹣;﹣1≤x≤3时,不等式可化为x+5≥6,∴x≥1,∴1≤x≤3;当x>3时,3x﹣1≥6,∴x≥,∴x>3,综上所述,不等式的解集为{x|x≤﹣或x≥1};(2)∵f(x)min=min{f(﹣1),f(a)},∴,∴a≤﹣5或a≥3.18.【考点】余弦定理.【分析】(1)由已知可=0,进而由同角三角函数基本关系式可得cosA=,结合A的范围,进而得到∠A的大小;(2)由已知利用三角形面积公式可求bc=12,利用余弦定理可求b2+c2=25,联立即可解得b,c的值.【解答】解:(1)∵,=(tanA+tanB,﹣tanB),=(b,2c),∴=0,可得:b(tanA+tanB)﹣2ctanB=0,∴=,可得:cosA=,又∵A∈(0,π),∴A=.(2)∵S△ABC=bcsinA==3,∴bc=12,①又∵a2=b2+c2﹣2bccosA=b2+c2﹣bc=b2+c2﹣12=13,可得:b2+c2=25,②∴联立①②解得:,或.19.【考点】数列的求和;数列递推式.【分析】(1)由a1=4,a n+1﹣a n=2n+3(n∈N*).利用“累加求和”方法、等差数列的求和公式即可得出.(2)由b n===,利用“裂项求和”方法即可得出.【解答】解:(1)∵a1=4,a n+1﹣a n=2n+3(n∈N*).∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=(2n+1)+(2n﹣1)+…+5+4==(n+1)2.(2)证明:b n===,∴T n=+++…++=<=.20.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)推导出PO⊥OB,PO⊥AE,由此能证明PO⊥平面ABCE.(2)过点C作AE的平行线交AB于点F,过点F作PA的平行线交PB于点G,连结CG,能得到所求的平面.(3)所求几何体的体积为V=V P﹣ABCD﹣V G﹣BCF,由此能求出结果.【解答】证明:(1)在图1中,AB=4,AD=2,则BD=10,又AD2=DO•BD,∴DO=2,OB=8,在图2中,PO=DO=2,PO2+OB2=22+82=68=PB2,∴PO⊥OB,又∵PO⊥AE,AE∩OB=O,∴PO⊥平面ABCE.解:(2)过点C作AE的平行线交AB于点F,过点F作PA的平行线交PB于点G,连结CG,则平面CFG为过点C与平面PAE平行的平面.(3)在图1中,∵△DOE∽△DCB,∴DE=5,∴S△ADE=5,S梯形ABCE=S ABCD﹣S△ADE=35,S△BCF=S△ADE=5,设CF∩OB于H,连结GH,则,解得GH=,∴所求几何体的体积为:V=V P﹣ABCD﹣V G﹣BCF===.21.【考点】直线与抛物线的位置关系;抛物线的标准方程.【分析】(1)由题意可知:将直线y=x+1代入抛物线方程,由△=0,即可求得p的值,求得抛物线C的方程;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)求得M坐标,|PM|2=2m2,求得直线的斜率,设直线方程为y=2x+m(m≠0),代入抛物线方程,由韦达定理及向量数量积的坐标表示可知:丨PA丨丨PB丨=•=m2,则2m2=m2λ,即可求得常数λ.【解答】解:(1)由题意可知:,整理得:x2+2(1﹣p)x+1=0,由抛物线C:y2=2px(p>0)与直线l:x﹣y+1=0相切,∴△=0,即4(1﹣p)2﹣4=0,解得:p=2或p=0(舍去),∴抛物线方程为:y2=4x;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)可知:M(1,2),则k OM=2,设直线l′方程为y=2x+m(m≠0),A(x1,y1),B(x2,y2),则P(1﹣m,2﹣m),|PM|2=2m2,则,整理得:4x2+4(m﹣1)x+m2=0,由△>0,即16(m﹣1)2﹣16m2>0,解得:m<且m≠0,由韦达定理可知:x1+x2=1﹣m,x1•x2=,由丨PA丨丨PB丨=•=5[x1•x2+(m﹣1)(x1+x2)+(m﹣1)2]=m2,整理得:2m2=m2λ,解得:λ=,∴存在常数λ=,使得|PM|2=λ|PA||PB|成立.22.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)的单调性与单调区间.(2)f(x)有极大值与极小值,由(1)可知,0<a<2或a>2,根据函数零点定理验证即可.【解答】解:(1)由题意得,f′(x)=2x﹣(a+2)+=(x>0),由f′(x)=0,得x1=1,x2=①当0<<1,即0<a<2,令f′(x)>0,又x>0,可得0<x<或x>1;令f′(x)<0,x>0,可得<x<1,∴函数f(x)的单调增区间是(0,)和(1,+∞),单调减区间是(,1);②当=1,即a=2时,f′(x)=≥0,当且仅当x=1时,f′(x)=0,∴函数f(x)在区间(0,+∞)上是单调增函数;③当>1,即a≥2时,令f′(x)>0,又x>0,可得0<x<1或x>;令f′(x)<0,x>0,可得1<x<∴函数f(x)的单调增区间是(0,1)和(,+∞),单调减区间是(1,);④当≤0,即a≤0时,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增.(2)∵f(x)有极大值与极小值,由(1)可知,0<a<2或a>2,当a>2时,函数f(x)的单调增区间是(0,1)和(,+∞),单调减区间是(1,),若x∈(0,),f(x)≤f(1)=﹣a﹣1<0,无零点,若x∈(,+∞),则f()<f(1)<0,f(a+2)=aln(a+2)>0,有一个零点,则当a>2时,f(x)有唯一的零点,当0<a<2函数f(x)的单调增区间是(0,)和(1,+∞),单调减区间是(,1);若x∈(0,1),f(x)≤f()=a(lna﹣﹣1﹣ln2),有lna<ln2<1,则lna﹣﹣1﹣ln2<0,则f(x)<0,即f(x)在(0,1)内无零点,若x∈(1,+∞),则<f(1)<0,f(a+2)=aln(a+2)>0,即f(x)在[1,+∞)有一个零点,则当0<a<2时,f(x)有唯一的零点,综上所述函数f(x)在定义域内有唯一的零点。

高三数学11月月考试题文3

高三数学11月月考试题文3

应城一中2017届高三11月月考试题高三数学试卷(文)考试时间:2016年11月×日下午3:00~5:00 试卷满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{2、若43i z =+,则||z z = (A )1(B )1-(C )43i 55+ (D )43i 55-3、已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC •的值为( )(A )85-(B )81 (C )41 (D )8114、已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A)0 (B)m (C) 2m (D) 4m 5、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为 (A)35 (B) 20 (C)18 (D)9学校 姓名班级6、若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355B.2C.322D.57、已知等比数列{}=-==24531),1(4,41a a a a a a n 则满足( ) A. 2 B. 1 C.21 D. 81 8、已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =,则由该观测数据算得的线性回归方程可能是( )A .y ^=+B .y ^=2x -C .y ^=-2x +D .y ^=-+9、直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C ) 23 (D )3410、如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )8111、过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=12、为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56第Ⅱ卷(非选择题)本卷包括必考题和选考题两部分。

江西师大附中2017届高三上学期11月月考数学试卷(文科)Word版含解析

江西师大附中2017届高三上学期11月月考数学试卷(文科)Word版含解析

2016-2017学年江西师大附中高三(上)11月月考数学试卷(文科)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U为整数集,集合A={x∈N|y=},B={x∈Z|﹣1<x≤3},则图中阴影部分表示的集合的真子集的个数为()A.3 B.4 C.7 D.82.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n03.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.4.已知两条不同的直线m,n和两个不同的平面α,β,以下四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m⊥α,n∥β,且α∥β,则m⊥n;③若m∥α,n⊥β,且α⊥β,则m∥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确命题的个数是()A.4 B.3 C.2 D.15.已知函数f(x)=sinxcosx﹣x,则函数f(x)图象的一条对称轴是()A.B.C.D.6.如图是某几何体的三视图,俯视图是边长为2的正三角形,则该几何体的体积是()A.4 B.6 C. D.7.如图,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,则异面直线AB′与BC′所成角的余弦值为()A.0 B.C.D.8.如图正六边形ABCDEF的边长为1,点G是边AF的中点,则=()A.1 B.C.D.9.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.10.设k∈R,动直线l1:kx﹣y+k=0过定点A,动直线l2:x+ky﹣5﹣8k=0过定点B,并且l1与l2相交于点P,则|PA|+|PB|的最大值为()A.B. C.D.11.已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是()A.(3,7)B.(9,25) C.(13,49)D.(9,49)12.已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3二、填空题:本大题共4小题,每小题5分,共20分.13.已知直线3x+4y+17=0与圆x2+y2﹣4x+4y﹣17=0相交于A,B,则|AB|=.14.已知一个正倒立的圆锥容器中装有一定的水,现放入一个小球后,水面恰好淹过小球(水面与小球相切),且圆锥的轴截面是等边三角形,则容器中水的体积与小球的体积之比为.15.已知数列{a n}的首项为1,数列{b n}为等比数列,且,则a15=.16.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为元.三、解答题:解答应写出文字说明,证明过程或演算步骤,本大题6小题,共70分. 17.已知函数f(x)=|x﹣a|+2|x+1|.(1)当a=3时,求不等式f(x)≥6的解集;(2)若f(x)≥4对于任意x∈R都恒成立,求实数a的取值范围.18.已知a,b,c分别是△ABC的内角A,B,C的对边,向量=(tanA+tanB,﹣tanB),=(b,2c),且(1)求角A的大小;(2)若,△ABC的面积为,求b,c的值.19.已知数列{a n}满足:a1=4,a n﹣a n=2n+3(n∈N*).+1(1)求数列{a n}的通项公式;(2)若,T n是数列{b n}的前n项的和,求证:.20.如图1所示,在矩形ABCD中,AB=4,AD=2,BD是对角线,过A点作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到达点P的位置(图2),且PB=2.(1)求证:PO⊥平面ABCE;(2)过点C作一平面与平面PAE平行,作出这个平面,写出作图过程;(3)在(2)的结论下,求出四棱锥P﹣ABCE介于这两平行平面间部分的体积.21.已知抛物线C:y2=2px(p>0)与直线l:x﹣y+1=0相切于点M.(1)求抛物线C的方程;(2)作直线l'与OM平行(O为原点)且与抛物线C交于A,B两点,又与直线l交于点P,是否存在常数λ,使得|PM|2=λ|PA||PB|成立?若存在,求出的值;若不存在,请说明理由.22.已知函数f(x)=x2+alnx﹣(a+2)x(a∈R).(1)讨论函数f(x)的单调性;(2)当f(x)有极大值与极小值时,求证函数f(x)在定义域内有唯一的零点.2016-2017学年江西师大附中高三(上)11月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U为整数集,集合A={x∈N|y=},B={x∈Z|﹣1<x≤3},则图中阴影部分表示的集合的真子集的个数为()A.3 B.4 C.7 D.8【考点】Venn图表达集合的关系及运算.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于B且属于A的元素构成,所以用集合表示为A∩B.A={x∈N|y=}={x∈N|7x﹣x2﹣6≥0}={x∈N|1≤x≤6}={1,2,3,4,5,6},B={x∈Z|﹣1<x≤3}={0,1,2,3},∴A∩B={1,2,3},其真子集的个数为23﹣1=7故选:C.2.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.3.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.【考点】等差数列的通项公式.【分析】利用等差数列的前n项和公式求解.【解答】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.4.已知两条不同的直线m,n和两个不同的平面α,β,以下四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m⊥α,n∥β,且α∥β,则m⊥n;③若m∥α,n⊥β,且α⊥β,则m∥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确命题的个数是()A.4 B.3 C.2 D.1【考点】空间中直线与平面之间的位置关系.【分析】在①中,m与n平行或异面;在②中,由直线与平面垂直的性质得m⊥n;在③中,m与n相交、平行或异面;在④中,由面面垂直和线面垂直的性质得m⊥n.【解答】解:由两条不同的直线m,n和两个不同的平面α,β,知:在①中,若m∥α,n∥β,且α∥β,则m与n平行或异面,故①错误;在②中,若m⊥α,n∥β,且α∥β,则由直线与平面垂直的性质得m⊥n,故②正确;在③中,若m∥α,n⊥β,且α⊥β,则m与n相交、平行或异面,故③错误;在④中,若m⊥α,n⊥β,且α⊥β,则由面面垂直和线面垂直的性质得m⊥n,故④正确.故选:C.5.已知函数f(x)=sinxcosx﹣x,则函数f(x)图象的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用.【分析】先根据二倍角公式和两角差的正弦公式化简得到f(x)=sin(2x﹣)﹣,再根据对称轴的定义即可求出.【解答】解:f(x)=sinxcosx﹣x=sin2x﹣cos2x﹣=sin(2x﹣)﹣,则其对称轴为2x﹣=kπ+,k∈Z,∴x=+,k∈Z,当k=0时,x=,∴函数f(x)图象的一条对称轴是x=,故选:A6.如图是某几何体的三视图,俯视图是边长为2的正三角形,则该几何体的体积是()A.4 B.6 C. D.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】判断几何体的形状,利用三视图的数据求解即可.【解答】解:三视图复原的几何体是三棱柱截去一个三棱锥,剩余一个四棱锥的几何体,可得几何体的体积为:=2.故选:C.7.如图,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,则异面直线AB′与BC′所成角的余弦值为()A.0 B.C.D.【考点】异面直线及其所成的角.【分析】以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB′与BC′所成角的余弦值.【解答】解:以A为原点,在平面ABC中作AC的垂线为x轴,AC为y轴,AA′为z轴,建立空间直角坐标系,设AA′=2AB=2,则A(0,0,0),B′(,,2),B(,,0),C′(0,1,2),=(,,2),=(﹣,,2),设异面直线AB′与BC′所成角为θ,则cosθ===.∴异面直线AB′与BC′所成角的余弦值为.故选:D.8.如图正六边形ABCDEF的边长为1,点G是边AF的中点,则=()A.1 B.C.D.【考点】平面向量数量积的运算.【分析】利用正六边形的性质和平面向量数量积的定义,即可得出结果.【解答】解:正六边形ABCDEF的边长为1,点G是边AF的中点,∴=(+)•(+)=(+)•(+)=•+•+•+•=1×1×cos120°+1×1×cos60°+×1×1×cos60°+×1×1×cos0°=.故选:C.9.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.【考点】函数的单调性与导数的关系;函数的图象.【分析】先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.【解答】解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x﹣sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cosx,当﹣<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.故选:A.10.设k∈R,动直线l1:kx﹣y+k=0过定点A,动直线l2:x+ky﹣5﹣8k=0过定点B,并且l1与l2相交于点P,则|PA|+|PB|的最大值为()A.B. C.D.【考点】两点间距离公式的应用.【分析】由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).|AB|=10.当PA⊥PB时,|PA|2+|PB|2=|AB|2=100,利用|PA|+|PB|≤即可得出|PA|+|PB|的最大值.【解答】解:由动直线l1:kx﹣y+k=0,令,解得A(﹣1,0),同理可得B(5,8).∵|AB|==10.∴当PA⊥PB时,|PA|2+|PB|2=|AB|2=100∴|PA|+|PB|≤=10当且仅当|PA|=|PB|=5时取等号.∴|PA|+|PB|的最大值为5.故选:A.11.已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是()A.(3,7)B.(9,25) C.(13,49)D.(9,49)【考点】函数单调性的性质;奇偶函数图象的对称性.【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f (x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2﹣6x+21)+f (y2﹣8y)<0恒成立,可把问题转化为(x﹣3)2+(y﹣4)2<4,借助于的有关知识可求【解答】解:∵函数y=f(x﹣1)的图象关于点(1,0)对称∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(﹣x)=﹣f (x)又∵f(x)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣8y)<0恒成立∴(x2﹣6x+21)<﹣f(y2﹣8y)=f(8y﹣y2 )恒成立∴x2﹣6x+21<8y﹣y2∴(x﹣3)2+(y﹣4)2<4恒成立设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,则x2+y2表示在半圆内任取一点与原点的距离的平方由图可知,最短距离为OA=,最大距离OB=OC+BC=5+2=7∴13<x2+y2<49故选C12.已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【考点】利用导数研究函数的极值;函数的值.【分析】根据g(m)=f(n)=t得到m,n的关系,利用消元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e,故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B二、填空题:本大题共4小题,每小题5分,共20分.13.已知直线3x +4y +17=0与圆x 2+y 2﹣4x +4y ﹣17=0相交于A ,B ,则|AB |= 8 . 【考点】直线与圆相交的性质.【分析】把圆的方程化为标准方程,找出圆心坐标和圆的半径r ,利用点到直线的距离公式求出圆心到已知直线的距离d ,由求出的d 与半径r ,根据垂径定理与勾股定理求出|AB |的一半,即可得到|AB |的长.【解答】解:把圆的方程化为标准方程得:(x ﹣2)2+(y +2)2=25, ∴圆心坐标为(2,﹣2),半径r=5,∴圆心到直线3x +4y +17=0的距离d==3则|AB |=2=8. 故答案为:8. 14.已知一个正倒立的圆锥容器中装有一定的水,现放入一个小球后,水面恰好淹过小球(水面与小球相切),且圆锥的轴截面是等边三角形,则容器中水的体积与小球的体积之比为 5:4 .【考点】球的体积和表面积;旋转体(圆柱、圆锥、圆台). 【分析】由题意求出球的体积,求出圆锥的体积,设出水的高度,求出水的圆锥的体积,利用V 水+V 球=V 容器,求出圆锥内水平面高.即可得出结论.【解答】解:如图.在容器内注入水,并放入一个半径为r 的铁球,这时水面记为AB , 将球从圆锥内取出后,这时水面记为EF . 三角形PAB 为轴截面,是正三角形,三角形PEF 也是正三角形,圆O 是正三角形PAB 的内切圆. 由题意可知,DO=CO=r ,AO=2r=OP ,AC=r∴V 球=,V PC ==3πr 3又设HP=h ,则EH=h∴V 水==∵V 水+V 球=V PC即+=3πr 3,∴h3=15r3,容器中水的体积与小球的体积之比为:=5:4.故答案为5:4.15.已知数列{a n}的首项为1,数列{b n}为等比数列,且,则a15=128.【考点】等比数列的通项公式.【分析】由于数列{b n}为等比数列且,可得b1…•b14=•…•=a15=,代入即可得出答案.【解答】解:∵数列{b n}为等比数列且,∴b1b2…b14=•…•=a15==27=128.故答案为:128.16.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为2300元.【考点】简单线性规划的应用.【分析】本题考查的知识点是简单的线性规划的应用,根据已知条件中甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B类产品140件,我们可以列出满足条件的约束条件,及目标函数,然后利用线性规划,求出最优解.【解答】解:设需租赁甲种设备x天,乙种设备y天,则目标函数为z=200x+300y.作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2300元.三、解答题:解答应写出文字说明,证明过程或演算步骤,本大题6小题,共70分. 17.已知函数f(x)=|x﹣a|+2|x+1|.(1)当a=3时,求不等式f(x)≥6的解集;(2)若f(x)≥4对于任意x∈R都恒成立,求实数a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)利用绝对值不等式的解法,去掉绝对值,求解即可.(2)利用f(x)min=min{f(﹣1),f(a)},求解即可.【解答】解:(1)当a=3时,x<﹣1,不等式可化为﹣3x+1≥6,∴x≤﹣;﹣1≤x≤3时,不等式可化为x+5≥6,∴x≥1,∴1≤x≤3;当x>3时,3x﹣1≥6,∴x≥,∴x>3,综上所述,不等式的解集为{x|x≤﹣或x≥1};(2)∵f(x)min=min{f(﹣1),f(a)},∴,∴a≤﹣5或a≥3.18.已知a,b,c分别是△ABC的内角A,B,C的对边,向量=(tanA+tanB,﹣tanB),=(b,2c),且(1)求角A的大小;(2)若,△ABC的面积为,求b,c的值.【考点】余弦定理.【分析】(1)由已知可=0,进而由同角三角函数基本关系式可得cosA=,结合A的范围,进而得到∠A的大小;(2)由已知利用三角形面积公式可求bc=12,利用余弦定理可求b2+c2=25,联立即可解得b,c的值.【解答】解:(1)∵, =(tanA +tanB ,﹣tanB ),=(b ,2c ),∴=0,可得:b (tanA +tanB )﹣2ctanB=0,∴=,可得:cosA=,又∵A ∈(0,π),∴A=.(2)∵S △ABC =bcsinA==3, ∴bc=12,①又∵a 2=b 2+c 2﹣2bccosA=b 2+c 2﹣bc=b 2+c 2﹣12=13,可得:b 2+c 2=25,②∴联立①②解得:,或.19.已知数列{a n }满足:a 1=4,a n +1﹣a n =2n +3(n ∈N*).(1)求数列{a n }的通项公式;(2)若,T n 是数列{b n }的前n 项的和,求证:.【考点】数列的求和;数列递推式.【分析】(1)由a 1=4,a n +1﹣a n =2n +3(n ∈N*).利用“累加求和”方法、等差数列的求和公式即可得出.(2)由b n ===,利用“裂项求和”方法即可得出.【解答】解:(1)∵a 1=4,a n +1﹣a n =2n +3(n ∈N*).∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=(2n +1)+(2n ﹣1)+…+5+4 ==(n +1)2.(2)证明:b n ===,∴T n =+++…++=<=.20.如图1所示,在矩形ABCD 中,AB=4,AD=2,BD 是对角线,过A 点作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到达点P 的位置(图2),且PB=2. (1)求证:PO ⊥平面ABCE ;(2)过点C 作一平面与平面PAE 平行,作出这个平面,写出作图过程;(3)在(2)的结论下,求出四棱锥P ﹣ABCE 介于这两平行平面间部分的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)推导出PO ⊥OB ,PO ⊥AE ,由此能证明PO ⊥平面ABCE .(2)过点C 作AE 的平行线交AB 于点F ,过点F 作PA 的平行线交PB 于点G ,连结CG ,能得到所求的平面.(3)所求几何体的体积为V=V P ﹣ABCD ﹣V G ﹣BCF ,由此能求出结果.【解答】证明:(1)在图1中,AB=4,AD=2,则BD=10,又AD 2=DO •BD ,∴DO=2,OB=8,在图2中,PO=DO=2,PO 2+OB 2=22+82=68=PB 2,∴PO ⊥OB ,又∵PO ⊥AE ,AE ∩OB=O ,∴PO ⊥平面ABCE .解:(2)过点C 作AE 的平行线交AB 于点F ,过点F 作PA 的平行线交PB 于点G , 连结CG ,则平面CFG 为过点C 与平面PAE 平行的平面.(3)在图1中,∵△DOE ∽△DCB ,∴DE=5,∴S △ADE =5,S 梯形ABCE =S ABCD ﹣S △ADE =35,S △BCF =S △ADE =5,设CF ∩OB 于H ,连结GH ,则,解得GH=,∴所求几何体的体积为:V=V P ﹣ABCD ﹣V G ﹣BCF ===.21.已知抛物线C:y2=2px(p>0)与直线l:x﹣y+1=0相切于点M.(1)求抛物线C的方程;(2)作直线l'与OM平行(O为原点)且与抛物线C交于A,B两点,又与直线l交于点P,是否存在常数λ,使得|PM|2=λ|PA||PB|成立?若存在,求出的值;若不存在,请说明理由.【考点】直线与抛物线的位置关系;抛物线的标准方程.【分析】(1)由题意可知:将直线y=x+1代入抛物线方程,由△=0,即可求得p的值,求得抛物线C的方程;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)求得M坐标,|PM|2=2m2,求得直线的斜率,设直线方程为y=2x+m(m≠0),代入抛物线方程,由韦达定理及向量数量积的坐标表示可知:丨PA丨丨PB丨=•=m2,则2m2=m2λ,即可求得常数λ.【解答】解:(1)由题意可知:,整理得:x2+2(1﹣p)x+1=0,由抛物线C:y2=2px(p>0)与直线l:x﹣y+1=0相切,∴△=0,即4(1﹣p)2﹣4=0,解得:p=2或p=0(舍去),∴抛物线方程为:y2=4x;(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)可知:M(1,2),则k OM=2,设直线l′方程为y=2x+m(m≠0),A(x1,y1),B(x2,y2),则P(1﹣m,2﹣m),|PM|2=2m2,则,整理得:4x2+4(m﹣1)x+m2=0,由△>0,即16(m﹣1)2﹣16m2>0,解得:m<且m≠0,由韦达定理可知:x1+x2=1﹣m,x1•x2=,由丨PA丨丨PB丨=•=5[x1•x2+(m﹣1)(x1+x2)+(m﹣1)2]=m2,整理得:2m2=m2λ,解得:λ=,∴存在常数λ=,使得|PM|2=λ|PA||PB|成立.22.已知函数f(x)=x2+alnx﹣(a+2)x(a∈R).(1)讨论函数f(x)的单调性;(2)当f(x)有极大值与极小值时,求证函数f(x)在定义域内有唯一的零点.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)的单调性与单调区间.(2)f(x)有极大值与极小值,由(1)可知,0<a<2或a>2,根据函数零点定理验证即可.【解答】解:(1)由题意得,f ′(x )=2x ﹣(a +2)+=(x >0),由f ′(x )=0,得x 1=1,x 2=①当0<<1,即0<a <2,令f ′(x )>0,又x >0,可得0<x <或x >1;令f ′(x )<0,x >0,可得<x <1,∴函数f (x )的单调增区间是(0,)和(1,+∞),单调减区间是(,1);②当=1,即a=2时,f ′(x )=≥0,当且仅当x=1时,f ′(x )=0, ∴函数f (x )在区间(0,+∞)上是单调增函数;③当>1,即a ≥2时,令f ′(x )>0,又x >0,可得0<x <1或x >;令f ′(x )<0,x >0,可得1<x <∴函数f (x )的单调增区间是(0,1)和(,+∞),单调减区间是(1,);④当≤0,即a ≤0时,令f ′(x )>0,解得:x >1,令f ′(x )<0,解得:0<x <1, ∴f (x )在(0,1)递减,在(1,+∞)递增.(2)∵f (x )有极大值与极小值,由(1)可知,0<a <2或a >2,当a >2时,函数f (x )的单调增区间是(0,1)和(,+∞),单调减区间是(1,), 若x ∈(0,),f (x )≤f (1)=﹣a ﹣1<0,无零点,若x ∈(,+∞),则f ()<f (1)<0,f (a +2)=aln (a +2)>0,有一个零点,则当a >2时,f (x )有唯一的零点,当0<a <2函数f (x )的单调增区间是(0,)和(1,+∞),单调减区间是(,1);若x ∈(0,1),f (x )≤f ()=a (lna ﹣﹣1﹣ln2),有lna <ln2<1,则lna ﹣﹣1﹣ln2<0,则f (x )<0,即f (x )在(0,1)内无零点, 若x ∈(1,+∞),则<f (1)<0,f (a +2)=aln (a +2)>0,即f (x )在[1,+∞)有一个零点,则当0<a <2时,f (x )有唯一的零点,综上所述函数f (x )在定义域内有唯一的零点2017年1月8日。

2017-2018学年江西省高三(上)11月月考数学试卷(理科)Word版(解析版)

2017-2018学年江西省高三(上)11月月考数学试卷(理科)Word版(解析版)

2017-2018学年江西省高三(上)11月月考试卷(理科数学)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3] C.[﹣1,2)D.(﹣1,2)2.已知i是虚数单位,复数z=i+,则复数的虚部是()A. B.C. D.23.一首小诗《数灯》,诗曰:“远望灯塔高7层,红光点点倍加增,顶层数来有4盏,塔上共有多少灯?”答曰()A.252 盏B.256盏C.508 盏D.512盏4.已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A. B.﹣C.D.﹣5.已知把函数的图象向右平移个单位,再把横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为()A.B.C.D.6.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.7.在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设=m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.某程序框图如图所示,该程序运行后输出的S的值是()A.2015 B.2016 C.3024 D.10079.函数f(x)=Asin(2x+φ)(|φ|≤,A>0)部分图象如图所示,且f(a)=f(b)=0,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=,则()A.f(x)在(﹣,)上是减函数B.f(x)在(﹣,)上是增函数C.f(x)在(,)上是减函数D.f(x)在(,)上是增函数10.已知变量x,y满足,若目标函数z=ax+y(a>0)取到最大值6,则a的值为()A.2 B.C.或2 D.﹣211.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A.7π B.19πC.πD.π12.已知函数f(x)=,关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个二、填空题(每小题5分,共20分)13.已知a=,则二项式的展开式中的常数项为.14.已知函数f(x)=a x+1﹣2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为.15.已知a>0且a≠1,若函数f(x)=loga[ax2﹣(2﹣a)x+3]在[,2]上是增函数,则a 的取值范围是.16.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若=,且≥cos2x﹣msinx(x∈R)恒成立,则实数m的取值范围为.三、解答题(第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答,本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知首项为3的数列{an }满足:=3,且bn=.(1)求证:数列{bn}是等差数列;(2)求数列{2n•bn }的前n项和Tn.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD为矩形,AB=2,BC=2,点P在底面上的射影在AC上E是AB的中点.(1)证明:DE⊥平面PAC(2)若PA=PC,且PA与面PBD所成的角的正弦值为,求二面角D﹣PA﹣B的余弦值.19.(12分)网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.20.(12分)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.21.(12分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.[选修4-4:极坐标与参数方程选讲]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l 的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.2017-2018学年江西省高三(上)11月月考试卷(理科数学)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016•大庆校级二模)已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3] C.[﹣1,2)D.(﹣1,2)【分析】化简集合A、B,求出A∩B即可.【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(2016•衡水模拟)已知i是虚数单位,复数z=i+,则复数的虚部是()A. B.C. D.2【分析】直接利用复数的代数形式的除法运算法则化简求解即可.【解答】解:复数z=i+=i+=+i.复数=﹣i.则复数的虚部:﹣.故选:C.【点评】本题考查复数的代数形式混合运算,复数的基本概念,考查计算能力.3.(2015秋•天门期末)一首小诗《数灯》,诗曰:“远望灯塔高7层,红光点点倍加增,顶层数来有4盏,塔上共有多少灯?”答曰()A.252 盏B.256盏C.508 盏D.512盏【分析】由已知可得:数列{an }为等比数列,a1=4,n=7,公比q=2.利用等比数列的前n项和公式即可得出.【解答】解:由已知可得:数列{an }为等比数列,a1=4,n=7,公比q=2.∴S7==508.故选:C.【点评】本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.4.(2016秋•榕城区校级期中)已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A. B.﹣C.D.﹣【分析】根据条件进行向量数量积的运算便可得出,从而得出向量夹角的余弦值.【解答】解:根据条件,=;∴.故选:C.【点评】考查向量数量积的运算及计算公式,向量夹角的概念.5.(2016•衡阳校级一模)已知把函数的图象向右平移个单位,再把横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为()A.B.C.D.【分析】由两角和的正弦公式可得f(x)=2sin(x+),再由相位变换、周期变换可得g(x)=2sin(x+),再令x+=kπ+,k∈Z,解方程可得对称轴方程,对照选项,即可得到答案.【解答】解:函数=2(sinx+cosx)=2sin(x+),由f(x)的图象向右平移个单位,可得对应函数的解析式为y=2sin(x﹣+),即y=2sin(x+),再把横坐标扩大到原来的2倍,得到函数g(x)=2sin(x+),由x+=kπ+,k∈Z,可得x=2kπ+,k∈Z,当k=0时,x=,故选:B.【点评】本题主要考查三角函数的图象变换:相位变换和周期变换,考查两角和的正弦公式及正弦函数的对称轴方程,属于中档题.6.(2016•福安市校级模拟)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底边长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的边长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.7.(2016•河北模拟)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设=m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】经过点E作EH⊥AD,垂足为H,可得EH⊥平面ABCD,利用三棱锥条件计算公式可得:VC﹣ABE=≥1,即EH,又PA=3,可得=m≤1,即可判断出结论.【解答】解:经过点E作EH⊥AD,垂足为H,∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD.则EH⊥平面ABCD,∵VC﹣ABE =VE﹣ABC,∴VC﹣ABE==×EH=≥1,则EH,又PA=3,,∴,∴=m≤2﹣1=1,∴“0<m<2”是三棱锥C﹣ABE的体积不小于1的必要不充分条件.故选:B.【点评】本题考查了空间位置关系的判定、体积的计算、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.8.(2016秋•赫山区校级月考)某程序框图如图所示,该程序运行后输出的S的值是()A.2015 B.2016 C.3024 D.1007【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S是求数列的和,且数列的每4项的和是定值,由此求出S的值.【解答】解:模拟程序框图的运行过程,得出该程序运行后输出的算式:S=a1+a2+a3+a4+…+a2013+a2014+a2015+a2016=(0+1)+(﹣2+1)+(0+1)+(4+1)+…+(0+1)+(﹣2014+1)+(0+1)+(2016+1)=6+…+6=6×=3024;所以该程序运行后输出的S值是3024.故选:C.【点评】本题考查了程序框图的应用问题,解题的关键是模拟程序运行的过程,得出程序运行后输出的算式的特征,是基础题目.9.(2016秋•榕城区校级期中)函数f(x)=Asin(2x+φ)(|φ|≤,A>0)部分图象如图所示,且f(a)=f(b)=0,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=,则()A.f(x)在(﹣,)上是减函数B.f(x)在(﹣,)上是增函数C.f(x)在(,)上是减函数D.f(x)在(,)上是增函数【分析】根据题意,得出函数f(x)的最小正周期,且b﹣a为半周期,再根据f(x1)=f(x2)时f(x1+x2)的值求出φ的值,从而写出f(x)的解析式,判断f(x)的单调性.【解答】解:∵f(x)=Asin(2x+φ),∴函数最小正周期为T=π;由图象得A=2,且f(a)=f(b)=0,∴•=b﹣a,解得b﹣a=;又x1,x2∈[a,b],且f(x1)=f(x2)时,有f(x1+x2)=,∴sin[2(x1+x2)+φ]=,即2(x1+x2)+φ=,且sin(2•+φ)=1,即2•+φ=,解得φ=,∴f(x)=2sin(2x+);令﹣+2kπ≤2x+≤+2kπ,k∈Z,∴﹣+2kπ≤2x≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(x)在区间[﹣+kπ,+kπ],k∈Z上是单调增函数,∴f(x)在区间(﹣,)上是单调增函数.故选:B.【点评】本题考查了正弦型三角函数的图象与性质的应用问题,是综合性题目.10.(2016秋•历下区校级期末)已知变量x,y满足,若目标函数z=ax+y(a>0)取到最大值6,则a的值为()A.2 B.C.或2 D.﹣2【分析】画出满足条件的平面区域,求出A,B的坐标,由z=ax+y得:y=﹣ax+z,结合函数的图象显然直线y=﹣ax+z过A,B时,z最大,求出a的值即可.【解答】解:画出满足条件的平面区域,如图示:由,解得:,由z=ax+y得:y=﹣ax+z,当直线y=﹣ax+z过A(1,4)时,B(4,1),z最大,此时,6=a+4,或6=4a+1,解得:a=2或a=,故选:C.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.11.(2015•江西模拟)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A.7π B.19πC.πD.π【分析】三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.【解答】解:根据题意可知三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面△BDC,BD=CD=1,BC=,∴∠BDC=120°,∴△BDC的外接圆的半径为=1由题意可得:球心到底面的距离为,∴球的半径为r==.外接球的表面积为:4πr2=7π故选:A.【点评】本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.12.(2015•安徽模拟)已知函数f(x)=,关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个【分析】由基本不等式可得x+﹣2≥0或x+﹣2≤﹣4,再作出函数f(x)=的图象,从而由图象分类讨论,从而由此分析关于x的方程f(x+﹣2)=a的实根个数.【解答】解:由基本不等式可得,x+﹣2≥0或x+﹣2≤﹣4;作函数f(x)=的图象如下,①当a>2时,x+﹣2<﹣24或<x+﹣2<1,故方程f(x+﹣2)=a的实根个数为4;②当a=2时,x+﹣2=﹣24或x+﹣2=或x+﹣2=2,故方程f(x+﹣2)=a的实根个数为6;③当1<a<2时,﹣24<x+﹣2<﹣4或<x+﹣2<或1<x+﹣2<2或2<x+﹣2<3,故方程f(x+﹣2)=a的实根个数为8;④当a=1时,x+﹣2=﹣4或0<x+﹣2<1或1=x+﹣2或x+﹣2=3,故方程f(x+﹣2)=a的实根个数为7;⑤当0<a<1时,﹣4<x+﹣2<0或3<x+﹣2<4或0<x+﹣2<1,故方程f(x+﹣2)=a的实根个数为4;⑥当a=0时,x+﹣2=0或3<x+﹣2<4,故方程f(x+﹣2)=a的实根个数为3;⑦当a<0时,x+﹣2>3,故方程f(x+﹣2)=a的实根个数为2.故选A.【点评】本题考查了函数的图象的作法及基本不等式的应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(每小题5分,共20分)13.(2015秋•天门期末)已知a=,则二项式的展开式中的常数项为15 .【分析】运用积分公式得出a=1,二项式的展开式中项为:Tr+1=C6r•(﹣1)r•,利用常数项特征求解即可.【解答】解:∵a==sinx=1,∴二项式的展开式中项为:Tr+1=C6r•(﹣1)r•,当6﹣r=0时,r=4,常数项为:C64•(﹣1)4=15.故答案为:15.【点评】本题考查积分与二项展开式定理,属于难度较小的综合题,关键是记住公式.14.(2016秋•赫山区校级月考)已知函数f(x)=a x+1﹣2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为.【分析】求出A的坐标,利用抛物线的定义,可得当F、A、M三点共线时,d+|MA|取得最小值为|AF|,即可得出结论.【解答】解:当x+1=0,解得x=﹣1,此时y=1﹣2=﹣1,故A(﹣1,﹣1),由题意得F(1,0),准线方程为x=﹣1,利用抛物线的定义,可得当F、A、M三点共线时,d+|MA|取得最小值为|AF|==.故答案为:.【点评】本题考查抛物线的定义和性质的应用,解答的关键利用是抛物线定义,体现了转化的数学思想.[ax2﹣(2﹣a)x+3]在[,2] 15.(2016•河北模拟)已知a>0且a≠1,若函数f(x)=loga上是增函数,则a的取值范围是{a|<a≤或a≥} .【分析】利用复合函数的单调性,二次函数、对数函数的性质,分类讨论,求得a的范围.【解答】解:∵a>0且a≠1,若函数f(x)=log[ax2﹣(2﹣a)x+3]在[,2]上是增函数,a设g(x)=ax2﹣(2﹣a)x+3,当a∈(0,1)时,则=﹣>,∴,求得<a≤.当a>1时,则,求得a≥.综上可得,a的范围为{a|<a≤或a≥},故答案为:{a|<a≤或a≥}.【点评】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.16.(2016秋•赫山区校级月考)已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若=,且≥cos2x﹣msinx(x∈R)恒成立,则实数m的取值范围为[﹣4﹣2,4+2] .【分析】由题意知G是△ABC的重心,++=,代入+(a+b)+2c=求出a、b、c 的关系;,由+≥cos2x﹣msinx恒成立,得出≥(cos2x﹣msinx)max利用基本不等式求出+的最小值,构造函数g(x)=cos2x﹣msinx(x∈R),用换元法和分类讨论思想求出g(x)的最小值,再列出不等式求出m的取值范围.【解答】解:由题意知,G是△ABC的重心,则++=,即=﹣(+),代入+(a+b)+2c=,得:(1﹣2c)+(a+b﹣2c)=,则,解得;又+≥cos2x﹣msinx恒成立,即≥(cos2x﹣msinx),max且+=(+)•1=(+)•(a+b)=3+(+)≥3+2=3+2,当且仅当时“=”成立;令g(x)=cos2x﹣msinx(x∈R),则g(x)=﹣2sin2x﹣msinx+1,设t=sinx,t∈[﹣1,1];则g(t)=﹣2t2﹣mt+1,对称轴是t=﹣;①若﹣<﹣1,即m>4,=g(﹣1)=﹣1+m,令3+2≥﹣1+m,则g(t)max解得m≤4+2,即4<m≤4+2;②若﹣>1,即m<﹣4,=g(1)=﹣1﹣m,令3+2≥﹣1﹣m,则g(t)max解得﹣4﹣2≤m<﹣4;③若﹣1≤﹣≤1,即﹣4≤m≤4,则g(t)=g(﹣)=1+,max由3+2≥1+解得﹣4≤m≤4,故﹣4≤m≤4;综上,实数m的取值范围是[﹣4﹣2,4+2].故答案为:[﹣4﹣2,4+2].【点评】本题考查了三角函数、平面向量以及函数的综合应用问题,也考查了综合处理数学问题的能力.三、解答题(第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答,本大题共70分.解答应写出文字说明、证明过程或演算步骤.)}满足:=3,17.(12分)(2016秋•冀州市校级月考)已知首项为3的数列{an且b=.n(1)求证:数列{bn}是等差数列;(2)求数列{2n•bn }的前n项和Tn.【分析】(1)计算bn+1﹣bn==;(2)求出bn 的通项公式,得出Tn,使用错位相减法求和.【解答】解:(1)∵=3,∴=,∴bn+1﹣bn=﹣==.∴数列{bn}是等差数列.(2)b1==,∴bn=+(n﹣1)=n+.∴Tn=2•+22•+23•+24•+…+2n•,①①×2得:2Tn=22•+23•+24•+25•+…+2n+1•,②①﹣②得:﹣Tn=1++++…+•2n﹣2n+1•=1﹣2n+1•+•=1﹣2n+1•+•(2n+1﹣4)=﹣﹣•2n+1.∴Tn=+•2n+1.【点评】本题考查了数列等差关系的判断,数列求和,属于中档题.18.(12分)(2016秋•赫山区校级月考)如图,四棱锥P﹣ABCD的底面ABCD为矩形,AB=2,BC=2,点P在底面上的射影在AC上E是AB的中点.(1)证明:DE⊥平面PAC(2)若PA=PC,且PA与面PBD所成的角的正弦值为,求二面角D﹣PA﹣B的余弦值.【分析】(1)先证明AC⊥DE由题可知面PAC⊥面ABCD,且交线为AC,可得DE⊥面PAC(2取BC中点F,连接OE,OF,因为底面ABCD为矩形,所以OE⊥OF.建立如图所示的空间直角标系:A(1,﹣,0),B(1,,0),D(﹣1,﹣,0),P(0,0,a),,由PA与面PBD所成的角的正弦值为,得||=||×||×,⇒a,再求出两个面的法向量即可.【解答】解:(1)在矩形ABCD中,AB:BC=,且E是AB的中点,∴tan∠ADE=tan∠CAB=,…(1分)∴∠ADE=∠CAB,∵∠CAB+∠DAC=90°,∴∠ADE+∠DAC=90°,即AC⊥DE.…(3分)由题可知面PAC⊥面ABCD,且交线为AC,∴DE⊥面PAC.∴…(2):令AC与BD交于点O,∵PA=PC,且O是AC的中点,∴PO⊥AC.∵面PAC⊥面ABCD,∴PO⊥面ABCD.取BC中点F,连接OE,OF,因为底面ABCD为矩形,所以OE⊥OF.建立如图所示的空间直角标系:A (1,﹣,0),B (1,,0),D (﹣1,﹣,0),P (0,0,a ),…(6分)设面PDB 的法向量为,由,令,∴面PDB 的法向量为由∵PA 与面PBD 所成的角的正弦值为,∴||=||×||×,⇒a=1设平面PAD 的法向量为,,由 令y 2=1∴设平面PAB 的法向量为,由,令x 3=1∴ …(10分)cos θ=∴二面角D ﹣PA ﹣B 的余弦值为﹣ …(12分)【点评】本题考查了空间线面垂直的判定,利用向量处理线面角、二面角问题,属于中档题.19.(12分)(2016•南通模拟)网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.【分析】(Ⅰ)依题意,这4个人中,每个人去淘宝网购物的概率为,去京东网购物的概率为,设“这4个人中恰有i个人去淘宝网购物”为事件Ai,则,(i=0,1,2,3,4),由此能求出这4个人中恰有1人去淘宝网购物的概率.(Ⅱ)由已知得X的所有可能取值为0,3,4,P(X=0)=P(A0)+P(A4),P(X=3)=P(A1)+P(A3),P(X=4)=P(A2),由此能求出X的分布列和EX.【解答】解:(Ⅰ)依题意,这4个人中,每个人去淘宝网购物的概率为,去京东网购物的概率为,设“这4个人中恰有i个人去淘宝网购物”为事件Ai(i=0,1,2,3,4),则,(i=0,1,2,3,4),这4个人中恰有1人去淘宝网购物的概率=.(Ⅱ)由已知得X的所有可能取值为0,3,4,P(X=0)=P(A0)+P(A4)==,P(X=3)=P(A1)+P(A3)=+=,P(X=4)=P(A2)==,∴X的分布列为:∴EX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.20.(12分)(2014•天津模拟)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.【分析】(1)利用椭圆的定义求出a的值,进而可求b的值,即可得到椭圆的标准方程;(2)先利用特殊位置,猜想点Q的坐标,再证明一般性也成立即可.【解答】解:(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2) 直线方程代入椭圆方程,整理可得(t 2+2)y 2+2ty ﹣1=0,∴y 1+y 2=﹣,y 1y 2=﹣∴=(x 1﹣,y 1)•(x 2﹣,y 2)=(ty 1﹣)(ty 2﹣)+y 1y 2=(t 2+1)y 1y 2﹣t (y 1+y 2)+=+=﹣综上,x 轴上存在点Q (,0),使得恒成立.【点评】本题考查椭圆的标准方程,考查存在性问题,解题的关键的先猜后证,有一定的难度.21.(12分)(2017•江西二模)已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1). (1)求函数f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.【分析】(1)先求函数的导函数f′(x ),再求所求切线的斜率即f′(0),由于切点为(0,0),故由点斜式即可得所求切线的方程;(2)先求原函数的导数得:f'(x )=a x lna+2x ﹣lna=2x+(a x ﹣1)lna ,再对a 进行讨论,得到f'(x )>0,从而函数f (x )在(0,+∞)上单调递增.(3)f (x )的最大值减去f (x )的最小值大于或等于e ﹣1,由单调性知,f (x )的最大值是f (1)或f (﹣1),最小值f (0)=1,由f (1)﹣f (﹣1)的单调性,判断f (1)与f (﹣1)的大小关系,再由f (x )的最大值减去最小值f (0)大于或等于e ﹣1求出a 的取值范围. 【解答】解:(1)∵f (x )=a x +x 2﹣xlna , ∴f′(x )=a x lna+2x ﹣lna , ∴f′(0)=0,f (0)=1即函数f (x )图象在点(0,1)处的切线斜率为0, ∴图象在点(0,f (0))处的切线方程为y=1;(3分) (2)由于f'(x )=a x lna+2x ﹣lna=2x+(a x ﹣1)lna >0①当a >1,y=2x 单调递增,lna >0,所以y=(a x ﹣1)lna 单调递增,故y=2x+(a x ﹣1)lna 单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max ﹣(f(x))min|=(f(x))max ﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)【点评】本题考查了基本函数导数公式,导数的几何意义,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.[选修4-4:极坐标与参数方程选讲]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l 的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.【分析】(1)利用极坐标与直角坐标的对于关系即可得出曲线C的方程;对直线l的参数方程消参数可得直线l的普通方程;(2)把直线l的参数方程代入曲线C的直角坐标方程得出关于参数t的一元二次方程,利用参数的几何意义和根与系数的关系计算|PQ|.【解答】解:(1)∵ρ=4cosθ.∴ρ2=4ρcosθ,∵ρ2=x2+y2,ρcosθ=x,∴x2+y2=4x,所以曲线C的直角坐标方程为(x﹣2)2+y2=4,由(t为参数)消去t得:.所以直线l的普通方程为.(2)把代入x2+y2=4x得:t2﹣3t+5=0.设其两根分别为t1,t2,则t1+t2=3,t1t2=5.所以|PQ|=|t1﹣t2|==.【点评】本题考查了参数方程,极坐标方程与直角坐标方程的转化,参数的几何意义,属于中档题.[选修4-5:不等式选讲]23.(2017•宝鸡一模)已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【分析】(1)利用||x﹣1|+2|<5,转化为﹣7<|x﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.【解答】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…(10分)【点评】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.。

湖南省2017届高三上学期月考三数学文试题Word版含答案

湖南省2017届高三上学期月考三数学文试题Word版含答案

炎德·英才大联考湖南师大附中2017届高三月考试卷(三)数 学(文科)命题人:贺忠良 洪利民 黄钢 审题人:高三文科数学备课组本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集合M ={x |log 2(1-x )<0},集合N ={x |-1≤x ≤1},则M ∩N 等于(D)(A)1-1,1) (B)10,1) (C)1-1,1] (D)(0,1)(2)若复数z 满足(3+3i)z =3i(i 为虚数单位),则z 的共轭复数为(C) (A)32-32i (B)32+32i (C)34-34i (D)34+34i (3)在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=(C) (A)12 (B)18 (C)24 (D)30(4)设a =20.3,b =0.32,c =log x ()x 2+0.3(x >1),则a ,b ,c 的大小关系是(B)(A)a <b <c (B)b <a <c (C)c <b <a (D)b <c <a(5)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为(A)(A)13 (B)14 (C)15 (D)16(6)右图是函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,A >0,ω>0,0<φ<π2在区间⎣⎢⎡⎦⎥⎤-π6,5π6上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上所有的点(D)(A)向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(B)向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变(C)向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(D)向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变(7)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5(x ≤1)a x (x >1)是R 上的增函数,则a 的取值范围是(C)(A)-3≤a <0 (B)a ≤-2 (C)-3≤a ≤-2 (D)a <0(8)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于(C)(A)5 (B)4 (C)3 (D)2 (9)函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是(B)【解析】由题意得,f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x =1-e x1+e x ·cos x ,所以f (-x )=1-e -x1+e -x ·cos(-x )=e x-11+e x ·cosx =-f (x ),所以函数f ()x 为奇函数,图象关于原点对称,排除选项A ,C ;令x =1,则f ()1=⎝⎛⎭⎪⎫21+e 1-1cos 1=⎝ ⎛⎭⎪⎫1-e 1+e cos 1<0,故选B.(10)执行如图所示的程序框图,输入p =10,则输出的A 为(C)(A)-12 (B)10 (C)16 (D)32【解析】第1次执行循环体:S =S -2n +10=0-2+10=8>A =0,是,A =S =8,n =1≥p =10,否,n =2n =2;第2次执行循环体:S =S -2n +10=8-4+10=14>A =8,是,A =S =14,n =2≥p =10,否,n =2n =4;第3次执行循环体:S =S -2n +10=14-8+10=16>A =14,是,A =S =16,n =4≥p =10,否, n =2n =8;第4次执行循环体:S =S -2n +10=16-16+10=10>A =16,否,n =8≥p =10,否, n=2n =16;第5次执行循环体:S =S -2n +10=10-32+10=-12>A =16,否,n =16≥p =10,是,输出A =16,故选C.(11)在体积为43的三棱锥S -ABC 中,AB =BC =2,∠ABC =90°,SA =SC ,且平面SAC ⊥平面ABC ,若该三棱锥的四个顶点都在同一球面上,则该球的体积是(B)(A)823π (B)92π (C)272π (D)12π【解析】△ABC 外接圆圆心为AC 中点D ,连接SD ,则由平面SAC ⊥平面ABC 及SA =SC ,知SD ⊥平面ABC ,且球心O 在SD 上,则13S △ABC ×SD =43,解得SD =2.设三棱锥S -ABC 外接球半径为R ,则R =OS =OB ,所以在Rt △ODB 中,OB 2=BD 2+OD 2,即R 2=(2)2+(2-R )2,解得R =32,故所求球的体积为V =43πR 3=92π,故选B.(12)设x ,y 满足⎩⎪⎨⎪⎧y ≥0ax +y -1≤03x -2y -2≤0,若z =x 2-10x +y 2的最小值为-12,则实数a 的取值范围是(D)(A)a <32 (B)a <-32(C)a ≥12 (D)a ≤-12【解析】由题意作平面区域如下,∵z =x 2-10x +y 2=(x -5)2+y 2-25的最小值为-12,∴(x -5)2+y 2的最小值为13,直线ax +y -1=0恒过点A (0,1), 直线y =32x -1与圆(x -5)2+y 2=13相切于点B (2,2);∵ax +y -1=0可化为y =-ax +1,故-a ≥k AB =12,故a ≤-12,故选D.选择题答题卡题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)答案DC C B AD C C B C B D第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.(13)若|a |=1,||b =2,c =a +b ,且c ⊥a ,那么a 与b 的夹角为__120°__. (14)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是__-1__.【解析】圆的半径是4,△ABC 是直角三角形,则圆心C 到直线AB 的距离为22, 所以||a +a -2a 2+1=22,解得a =-1.(15)如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为__4+2π3__.【解析】相当于一个圆锥和一个长方体,故体积为13π·2+2·2·1=4+2π3.(16)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是__⎣⎢⎡⎭⎪⎫32e ,1__.【解析】f (x )<0⇔e x(2x -1)<ax -a ,记g (x )=e x(2x -1),则题意说明存在唯一的整数x 0,使g (x )的图象在直线y =ax -a 下方,g ′(x )=e x(2x +1),当x <-12时,g ′(x )<0;当x >-12时,g ′(x )>0,因此当x =-12时,g (x )取得极小值也是最小值g ⎝ ⎛⎭⎪⎫-12=-2e -12,又g (0)=-1,g (1)=e>0,直线y =ax -a 过点(1,0)且斜率为a ,故⎩⎪⎨⎪⎧-a >g (0)=-1g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m·n.(Ⅰ)若f (x )=1,求cos ⎝⎛⎭⎪⎫x +π3的值;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足 (2a -c )cos B =b cos C ,求f (2A )的取值范围.【解析】(Ⅰ)f (x )=m·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12, 由f (x )=1,得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,所以cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12.(5分)(Ⅱ)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0,所以cos B =12,又0<B <π2,所以B =π3,则A +C =23π,A =23π-C ,又0<C <π2,0<A <π2,则π6<A <π2,得π3<A +π6<2π3,所以32<sin ⎝ ⎛⎭⎪⎫A +π6≤1,又因为f (2A )=sin ⎝⎛⎭⎪⎫A +π6+12,故函数f (2A )的取值范围是⎝ ⎛⎭⎪⎫3+12,32.(12分) (18)(本小题满分12分)如图1,在Rt △ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 将△ABC 折成60°的二面角B -AD -C ,如图2.(Ⅰ)证明:平面ABD ⊥平面BCD ;(Ⅱ)设E 为BC 的中点,求异面直线AE 与BD 所成的角.【解析】(Ⅰ)因为折起前AD 是BC 边上的高,则当△ABD 折起后,AD ⊥CD ,AD ⊥BD .(2分)又CD ∩BD =D ,则AD ⊥平面BCD .(3分)因为AD ⊂平面ABD ,所以平面ABD ⊥平面BCD .(4分)(Ⅱ)取CD 的中点F ,连结EF ,则EF ∥BD , 所以∠AEF 为异面直线AE 与BD 所成的角.(6分)连结AF 、DE .设BD =2,则EF =1,AD =23,CD =6,DF =3.在Rt △ADF 中,AF =AD 2+DF 2=21.(8分) 在△BCD 中,由题设∠BDC =60°,则BC 2=BD 2+CD 2-2BD ·CD cos ∠BDC =28,即BC =27, 从而BE =12BC =7,cos ∠CBD =BD 2+BC 2-CD 22BD ·BC =-127.在△BDE 中,DE 2=BD 2+BE 2-2BD ·BE cos ∠CBD =13. 在Rt △ADE 中,AE =AD 2+DE 2=5.(11分)在△AEF 中,cos ∠AEF =AE 2+EF 2-AF 22AE ·EF =12.所以异面直线AE 与BD 所成的角为60°.(12分) (19) (本小题满分12分)设数列{a n }的前n 项和为S n ,已知S n =32(a n -1).(Ⅰ)求a 1的值,并求数列{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且b 3+b 5=-8,2b 1+b 4=0.设c n =a n ·b n ,数列{c n }的前n 项和为T n ,证明:对任意n ∈N *,T n +⎝⎛⎭⎪⎫n -52·3n +1是一个与n 无关的常数.【解析】(Ⅰ)当n =1时,S 1=32(a 1-1),即2a 1=3a 1-3,所以a 1=3.(1分)因为S n =32(a n -1),则S n -1=32(a n -1-1)(n ≥2).两式相减,得a n =32(a n -a n -1),即a n =3a n -1(n ≥2).(4分)所以数列{a n }是首项为3,公比为3的等比数列,故a n =a 1·qn -1=3·3n -1=3n.(5分)(Ⅱ)因为b 3+b 5=2b 4=-8,则b 4=-4.又2b 1+b 4=0,则b 1=2.(7分)设{b n }的公差为d ,则b 4-b 1=3d ,所以d =-2,所以b n =2+(n -1)×(-2)=4-2n .(8分)由题设,c n =(4-2n )·3n ,则T n =2·31+0·32+(-2)·33+…+(4-2n )·3n. 3T n =2·32+0·33+…+(6-2n )·3n +(4-2n )·3n +1.(9分)两式相减,得-2T n =2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n )·3n +1=6-2(32+33+…+3n )-(4-2n )·3n +1.所以T n =-3+9(1-3n -1)1-3+(2-n )·3n +1=-152+⎝ ⎛⎭⎪⎫52-n ·3n +1.(11分)故T n +⎝ ⎛⎭⎪⎫n -52·3n +1=-152为常数.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M 、N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线l 的方程;若不存在,说明理由.【解析】(Ⅰ)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =||AF 1+||AF 2=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1.(5分)(Ⅱ)椭圆C 上不存在这样的点Q ,证明如下:设直线l 的方程为y =2x +t , 设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t x 22+y 2=1消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t 9且-3<t <3,(8分)由PM →=NQ →知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159,又-3<t <3,所以-73<y 4<-1,因此点Q 不在椭圆上.(12分)(21)(本小题满分12分)已知函数f (x )=12x 2,g ()x =a ln x .(Ⅰ)若曲线y =f (x )-g (x )在x =1处的切线的方程为6x -2y -5=0,求实数a 的值; (Ⅱ)设h (x )=f (x )+g (x ),若对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>2恒成立,求实数a 的取值范围;(Ⅲ)若在[]1,e 上存在一点x 0,使得f ′(x 0)+1f ′(x 0)<g (x 0)-g ′(x 0)成立,求实数a 的取值范围.【解析】(Ⅰ)由y =f ()x -g ()x =12x 2-a ln x ,得y ′=x -ax ,由题意,1-a =3,所以a =-2.(2分) (Ⅱ)h (x )=f (x )+g (x )=12x 2+a ln x ,因为对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>2,设x 1>x 2,则h (x 1)-h (x 2)>2(x 1-x 2),即h (x 1)-2x 1>h (x 2)-2x 2恒成立,问题等价于函数F (x )=h (x )-2x ,即F (x )=12x 2+a ln x -2x 在(0,+∞)为增函数.(4分)所以F ′(x )=x +ax-2≥0在(0,+∞)上恒成立,即a ≥2x -x 2在(0,+∞)上恒成立, 所以a ≥(2x -x 2)max =1,即实数a 的取值范围是[)1,+∞.(6分)(Ⅲ)不等式f ′(x 0)+1f ′(x 0)<g (x 0)-g ′(x 0)等价于x 0+1x 0<a ln x 0-ax 0,整理得x 0-a ln x 0+1+ax 0<0.设m (x )=x -a ln x +1+a x,由题意知,在[]1,e 上存在一点x 0,使得m ()x 0<0.(8分)由m ′(x )=1-a x -1+a x 2=x 2-ax -(1+a )x 2=(x -1-a )(x +1)x 2.因为x >0,所以x +1>0,令m ′(x )=0,得x =1+a . ① 当1+a ≤1,即a ≤0时,m (x )在11,e]上单调递增, 只需m (1)=2+a <0,解得a <-2.(10分)② 当1<1+a ≤e ,即0<a ≤e -1时,m (x )在x =1+a 处取最小值. 令m (1+a )=1+a -a ln(1+a )+1<0,即a +1+1<a ln(a +1),可得a +1+1a<ln(a +1). 考查式子t +1t -1<ln t ,因为1<t ≤e ,可得左端大于1,而右端小于1,所以不等式不能成立.(11分)③ 当1+a >e ,即a >e -1时,m (x )在11,e]上单调递减, 只需m (e)=e -a +1+a e <0,解得a >e 2+1e -1.综上所述,实数a 的取值范围是(-∞,-2)∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.(12分)请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4 (ρ∈R ),曲线C 的参数方程为⎩⎨⎧x =2cos θy =sin θ.(Ⅰ)写出直线l 及曲线C 的直角坐标方程;(Ⅱ)过点M 平行于直线l 的直线与曲线C 交于A 、B 两点,若||MA ·||MB =83,求点M轨迹的直角坐标方程.【解析】(Ⅰ)直线l :y =x ,曲线C 的直角坐标方程为x 22+y 2=1,(4分)(Ⅱ)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎪⎨⎪⎧x =x 0+22t y =y 0+22t (t 为参数)由直线l 1与曲线C 相交可得32t 2+2(x 0+2y 0)t +x 20+2y 20-2=0,由||MA ·||MB =83得⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 206+y 203=1表示椭圆.取y =x +m 代入x 22+y 2=1得3x 2+4mx +2m 2-2=0,由Δ>0⇒-3<m <3,故点M 的轨迹是椭圆x 26+y 23=1夹在平行直线y =x ±3之间的两段椭圆弧.(10分)(23)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +1|+2|x -1|-a . (Ⅰ)若a =1,求不等式f (x )>x +2的解集;(Ⅱ)若不等式f (x )≤a (x +2)的解集为非空集合,求a 的取值范围.【解析】(Ⅰ)当a =1,不等式|x +1|+2|x -1|-1>x +2,即为|x +1|+2|x -1|>x +3,不等式等价于⎩⎪⎨⎪⎧x <-11-3x >x +3,或⎩⎪⎨⎪⎧-1≤x ≤13-x >x +3或⎩⎪⎨⎪⎧x >13x -1>x +3⇒x <-1或-1≤x <0或x >2, 所以所求不等式的解集为{x |x <0或x >2}.(5分)(Ⅱ)由f (x )≤a (x +2)⇒|x +1|+2|x -1|-a ≤a (x +2),即|x +1|+2|x -1|≤a (x +3).百度文库- 让每个人平等地提升自我11 设g (x )=|x +1|+2|x -1|=⎩⎪⎨⎪⎧1-3x ,x <-1,3-x ,-1≤x ≤1,3x -1,x >1.如图,P (-3,0),k PA =12,k PD =k BC =-3.故由题可知a <-3或a ≥12,即a 的取值范围为(-∞,-3)∪⎣⎢⎡⎭⎪⎫12,+∞.(10分)。

重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题(含解析)

注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题符合题目要求的.1. 已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ( )A. ()4,3-B. ()0,3C. ()3,0-D. ()4,0-【答案】B 【解析】【分析】先分别求出集合A B ,,再进行集合的交集运算【详解】由12816x <<解得43x -<<,∴{}43A x x =-<<,由250x x +>解得0x >或5x <-,所以{0B x =>或5}x <-,所以A B = (0,3)故选:B.2. 已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】利用向量共线的坐标表示即可得解.【详解】因为()()()1,2,1,4,,1A B C x -,所以()()2,2,1,1AB AC x =-=--,因为A ,B ,C 三点共线,则,AB AC共线,则()212(1)x -⨯-=⨯-,解得2x =.故选:B.3. “1x >”是“11x-<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】将11x -<化简,再根据充分必要条件关系判断.【详解】()1110101x x x x x x+-<⇔>⇔+>⇔<-或0x >,由1x >成立可以推出1x <-或0x >,但1x <-或0x >成立不能推出1x >,所以1x >是11x-<的充分不必要条件.故选:A.4. 若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为( )A. a c b << B. c a b<< C. b c a<< D. c b a<<【答案】D 【解析】【分析】首先化解,a b ,再根据中间值1,以及幂函数的单调性比较大小,即可判断.【详解】00.1.11331a -⎛⎫= ⎪=⎭>⎝,01.10.51225b -⎛⎫=> ⎪⎝⎭⎛⎫= ⎪⎝⎭,()35log 0,12c =∈,0.1y x =在()0,∞+上单调递增,532>,所以a b >,所以a b c >>.故选:D5. 设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是( )A. 若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B. 若,//,//n m n m αβα= ,则//m β.C. 若,,//,//m n m n ααββÌÌ,则//αβ.D. 若//,,m n m n αβ⊥⊥,则//αβ.【答案】D 【解析】【分析】根据空间直线、平面间的位置关系判断.【详解】对于A ,直线m 与平面α可能平行、相交或直线m 在平面α内,故错误;对于B ,//m β或m β⊂,故错误;对于C ,平面α与平面β平行或相交,故错误;对于D ,//,,m n m α⊥则n α⊥,又n β⊥,所以//αβ,D 正确;故选:D .6. 若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-( )A. 1712-B. 56-C. 175-D. 【答案】A 【解析】【分析】根据导数的几何意义先求出函数()f x 在2x =处的导数值,即可得到在2x =处切线的斜率,进而得到倾斜角α的正切值,再根据tan α求出题中式子的值.【详解】由题意得,211()f x x x'=-,所以411(2)241f '=-=,于是()f x 在2x =处切线的斜率为14,即1tan 4α=.又()22sin cos sin cos cos 1sin2cos (sin 2sin cos cos )ααααααααααα--=--+2sin cos 1cos (sin cos )cos (sin cos )αααααααα-==--222sin cos sin cos cos ααααα+=-,将原式分子分母同时除以2cos α得,2222sin cos tan 1sin cos cos tan 1ααααααα++=--,代入1tan 4α=可得最终答案为1712-.故选:A.7. 已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =( )A.12025B.12024C.11012D.11013【答案】C 【解析】【分析】根据2n n S n a =得到211(1)n n S n a --=-,两式相减得到221(1)n n n a n a n a -=--,求出n a 即可求解.【详解】因为2n n S n a =,所以211(1)(2)n n S n a n --=-≥,两式相减得221(1)n n n a n a n a -=--,所以11(2)1n n a n n a n --=≥+,所以1321221123121213121(1)n n n n a a a n n a a a n a n a n n -------⋅⋅⋅⋅=⋅⋅⋅⋅=++++L L ,所以12(2)(1)n a n a n n =≥+,所以4050(2)(1)n a n n n =≥+,所以202411012a =.故选:C.8. 已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是( )A. )3,-+∞B. 253,8⎫-⎪⎭C. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D. 7125,568⎫⎛-⎪⎝⎭【答案】B 【解析】【分析】利用导数研究函数的单调性可证明函数()f x 存在唯一零点,即12x =,可得()g x 在511,44⎛⎫ ⎪⎝⎭有零点,利用参变分离可求解.【详解】由()()2ln 1f x x x =---,1x >,可得()12111x x f x x --=-'-=,当12x <<时,()0f x '<,此时()f x 在()1,2单调递减;当2x >时,()0f x '>,此时()f x 在()2,+∞单调递增;又因为()20f =,所以函数()f x 存在唯一的零点,即12x =.因为122324x x x -=-<,解得2511,44x ⎛⎫∈ ⎪⎝⎭.即()2266g x x ax a =+--在511,44⎛⎫⎪⎝⎭上有零点,故方程2623x a x -=-在511,44⎛⎫⎪⎝⎭上有解,而263336(3)333x x x x x x -⎡⎤=---=-+-+⎢⎥---⎣⎦,因为511,44x ⎛⎫∈⎪⎝⎭,故713,44x ⎛⎫-∈ ⎪⎝⎭,故349(3)34x x ≤-+<-,所以25624a ≤<2538a -≤<故选:B.【点睛】方法点睛:对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间(),m n 上的题型,一般采取列不等式组(主要考虑判别式、对称轴、()(),f m f n 的符号)的方法解答.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是( )A. ()cos f x x= B. ()1πsin 23f x x ⎛⎫=-⎪⎝⎭C. ()22cos sin f x x x=- D. ()πtan 4f x x ⎫⎛=-⎪⎝⎭【答案】ACD【解析】【分析】根据三角函数图象与性质,以及复合函数的单调性判断方法逐项判断即可.【详解】对于A ,()cos f x x =的最小正周期为π,当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()cos cos f x x x ==,根据余弦函数的单调性可知,此时函数单调递减,故A 正确;对于B ,()1πsin 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期2πT=4π12=,故B 不正确;对于C ,()22cos sin f x x x =-cos 2x =,所以最小正周期2πT=π2=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,根据余弦函数的单调性可知,此时函数单调递减,故C 正确;对于D ,最小正周期πT=π1=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,πππ,444x ⎛⎫-∈- ⎪⎝⎭,由复合函数单调性判断方法可知,此时()πtan 4f x x ⎛⎫=- ⎪⎝⎭单调递减,故D 正确.故选:ACD.10. ABC V中,BC =BC 边上的中线2AD =,则下列说法正确的有( )A. 4AB AC +=B. AB AC ⋅为定值C. 2220AC AB +=D.BAD ∠的最大值为45︒【答案】ABD 【解析】【分析】由中线的性质结合向量的线性运算判断A 选项;由中线的性质和向量数量积的运算有22AB AC AD DB ⋅=- ,求值判断B 选项;C 选项,由πADB ADC ∠+∠=,结合余弦定理求22AC AB +的值;D 选项,ABD △中,余弦定理得22cos 4AB BAD AB+∠= ,结合均值不等式求解.【详解】A .24AB AC AD +==,故A 正确;的B .22()()()()422AB AC AD DB AD DC AD DB AD DB AD DB ⋅=+⋅+=+⋅-=-=-= ,故B 正确;C .πADB ADC ∠+∠= ,cos cos 0ADB ADC ∴∠+∠=,由余弦定理知,222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅0=,化简得2212AC AB +=,故C 错误;D .22cos 4AB BAD AB +∠==≥=AB =时等号成立,由于090BAD <∠< ,所以BAD ∠的最大值为45 ,故D 正确;故选:ABD .11. 在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有( )A. 直线1BD ⊥平面11AC DB. 异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C. 过点,,B P Q的截面周长为+D. 当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为【答案】ACD 【解析】【分析】利用线面垂直的判定定理,结合正方体的性质可判断A 正确;由11A D B C 转化异面直线所成的角,在等边1AB C △中分析可知选项B 错误;找出截面图形,利用几何特征计算周长可得选项C 正确;确定三棱锥体积最大时点N 的位置,利用公式可求外接球的半径和体积,得到选项D 正确.【详解】A.∵11111111111,,AC B D AC B B B D B B B ⊥⊥= ,11B D ⊂平面11BDD B ,1BB ⊂平面11BDD B ,∴11A C ⊥平面11BDD B ,∵1BD ⊂平面11BDD B ,∴111A C BD ⊥,同理可证,11DC BD ⊥,∵1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,选项A 正确.B. 如图,连接1,AB AC ,由题意得,11A D B C ,11AB AC B C ===直线AM 与1A D 所成的角等于直线AM 与1B C 所成的角,在等边1AB C △中,当点M 与1,B C 两点重合时,直线AM 与1B C 所成的角为3π,当点M 与1B C 中点重合时,1AM BC ⊥,此时直线AM 与1B C 所成的角为2π,故直线AM 与1A D 所成角的取值范围是[,]32ππ,选项B 错误.C. 如图,作直线PQ 分别与直线1,CC CD 交于点,S T ,连接BS 与11B C 交于点E ,连接BT 与AD 交于点F ,则五边形BEPQF 即是截面.由题意得,1SPC △为等腰直角三角形,113PC SC ==,由1BB CS ∥得,1112BB B EC S CE==,∴114,2B E C E ==,∴BE =PE =,同理可得,BF QF ==,∵,P Q 分别为11C D 和1DD 的中点,∴PQ =,∴截面周长为+C 正确.D.当AN BN ⊥时,点N 的轨迹为以AB 为直径的球,球心为AB 中点,半径为3,三棱锥A NBC -的体积即为三棱锥N ABC -的体积,点N 到平面ABC 距离的最大值为球的半径,此时点N 在正方形11ABB A 的中心处,三棱锥A NBC -体积有最大值.由题意得,平面NAB ^平面ABC ,NAB △,ABC V 均为等腰直角三角形,NAB △的外接圆半径为132AB r ==,ABC V 的外接圆半径为22ACr ==,∴三棱锥A NBC -的外接球半径R ==,∴外接球体积为3344ππ33R =´=,选项D 正确.故选:ACD.【点睛】方法点睛:本题为立体几何综合问题,求三棱锥外接球半径方法为:(1)在三棱锥A BCD -中若有AB ⊥平面BCD ,设三棱锥外接球半径为R ,则2224h R r =+,其中r为底面BCD △的外接圆半径,h 为三棱锥的高即AB 的长.(2)在三棱锥A BCD -中若有平面ABC ⊥平面BCD ,设三棱锥外接球半径为R ,则2222124l R r r =+-,其中12,r r 分别为,ABC BCD 的外接圆半径,l 为,ABC BCD 公共边BC 的长.三、填空题:本题共3小题,每小题5分,共15分.12. 复数221iz =--(i 是虚数单位),则复数z 的模为________.【解析】【分析】利用复数除法运算化简,再由复数模的计算公式求解.【详解】()()()()21i 22221i 1i 1i 1i 1i z +=-=-=-+=---+,z ∴==.13. 在数列{a n }中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.【答案】427【解析】【分析】利用构造法分析得数列{}2n a +是等比数列,进而求得2n a +,从而将问题转化为353nn k -≥恒成立,令()()*253nn f n n -=∈N ,分析数列(){}f n 的最值,从而得解.【详解】由134n n a a +=+,得()1232n n a a ++=+,又12123a +=+=,故数列{}2n a +为首项为3,公比为3的等比数列,所以12333n n n a -+=⨯=,则不等式()235n k a n +≥-可化为353nn k -≥,令()()*353n n f n n -=∈N ,当1n =时,()0f n <;当2n ≥时,()0f n >;又()()1132351361333n n n n n nf n f n ++---+-=-=,则当2n =时,()()32f f >,当3n ≥时,()()1f n f n +<,所以()()333543327f n f ⨯-≤==,则427k ≥,即实数k的最小值为427.故答案为:427.14. 若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.【答案】612【解析】【分析】由条件等式变形为()()()()222333f x y x y f x x f y y +-+=-+-,再构造函数()()23g x f x x =-,得到()()()g x y g x g y +=+,并迭代得到()()13g n n f =-⎡⎤⎣⎦,由此得到()()23133f n n f n n =+-≥⎡⎤⎣⎦,,并求和,利用放缩法,即可求解最小值.【详解】因为()()()6f x y f x f y xy +=++,所以()()()()222333f x y x y f x x f y y +-+=-+-,设()()23g x f x x =-,则()()()g x y g x g y +=+,因此()()()()()()()()11211221g n g n g g n g g g n g =-+=-++=-+()()()()()211321g n g ng n f ==+-==-⎡⎤⎣⎦ ,所以()()23133f n n f n n =+-≥⎡⎤⎣⎦,取1n =,得()13f ≥,所以()8111188822()3133612i i i i f i ii i f =====+-≥=⎡⎤⎣⎦∑∑∑∑,所以81()i f i =∑的最小值为612.故答案:612.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形ABCD中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.【答案】(1(2)60︒【解析】【分析】(1)由已知,设BC x =,则4AB x =,由余弦定理,可得1x =,利用三角形的面积公式即可求得ABC V 的面积;(2)在ABC V中,由正弦定理,可求得sin ACB ∠=,进而求得cos ACB ∠=,进而求得sin ACD ∠=ACD中,由正弦定理,求得sin ADC ∠=ADC ∠的大小.【小问1详解】由已知,设BC x =,则4AB x =,在ABC V 中,由余弦定理,2222cos AC AB BC AB BC ABC =+-⋅∠,为因为120,ABC AC ∠=︒=,所以22222116421x x x x =++=,解得1x =,所以1BC =,4AB =,所以11sin 4122ABC S AB BC ABC =⋅∠=⨯⨯= .【小问2详解】在ABC V 中,由正弦定理,sin sin ACB ABCAB AC ∠∠=,因为120,ABC AC ∠=︒=,4AB =,所以sin sin 4ABC ACB AB AC ∠∠=⋅==,又在ABC V 中,120ABC ∠=︒,则060ACB ︒<∠<︒,所以cos ACB ∠==,因为150BCD ∠=︒,所以()sin sin 150ACD ACB ∠=︒-∠sin150cos cos150sin ACB ACB=︒∠-︒∠12⎛== ⎝,在ACD 中,由正弦定理,sin sin ADC ACDAC AD∠∠=,又AD ==解得sin ADC ∠=>,所以60ACD ∠>︒,因为0180ADC ︒<∠<︒,则60ADC ∠=︒.16. 如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.【答案】(1)证明见解析(2).【解析】【分析】(1)先证明1,,,M N C A 四点共面,再证明1MA BP ,由线面平行的判定定理可证;(2)以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,结合空间向量的坐标运算以及二面角公式,带入求解即可.【小问1详解】证明:连接1A M ,因为,M N 分别为,AB BC 的中点,则MN AC ∥,在三棱柱111ABC A B C -中,11ACA C ,则11MN A C ∥,则11,,,M N A C 四点共面,11AB A B = ,且11AB AB ∥,,M P 分别为11,AB A B 的中点,则1BM PA 且1BM PA =,则四边形1BMA P 为平行四边形,则1MA BP ,BP ⊄ 平面1C MN ,1MA ⊂平面1C MN ,则//BP 平面1C MN .【小问2详解】在直棱柱111ABC A B C -中,11,,AA AB AA AC AB AC ⊥⊥⊥,则以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系:则有13(0,0,0),(4,0,0),(0,3,0),(2,0,0),(2,,0),(2,0,4),(0,3,4)2A B C M N P C ,13(2,3,4),(0,,0),(0,0,4)2MC MN MP =-== ,设平面1MPC 的一个法向量为(,,)m x y z = ,平面1MNC 的一个法向量为(,,)n a b c =,则1234040m MC x y z m MP z ⎧⋅=-++=⎪⎨⋅==⎪⎩及12340302n MC a b c n MN b ⎧⋅=-++=⎪⎨⋅==⎪⎩,令3,1x c ==,则有(3,2,0),(2,0,1)m n ==,则cos ,m n m n m n ⋅===,因为二面角1P MC N --为钝角,则所求二面角的余弦值为.17. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.【答案】(1)22143x y -=; (2)存在,29(,0)8Q -,58564.【解析】【分析】(1)根据题意由双曲线的渐近线方程得到ba的值,再根据(4,3)P 在双曲线上,将坐标代入双曲线方程即可解得,a b 的值.(2)设出直线l 方程与M ,N 点坐标1122(,),(,)x y x y ,联立直线与双曲线方程,结合韦达定理可表示出12x x +、21x x 、12y y +、12y y ,再设出Q 坐标(,0)t ,则可以表示出,QM QN 坐标,即可用坐标表示出QM QN⋅的值,再结合具体代数式分析当QM QN ⋅为常数时t 的值.【小问1详解】由题意得,因为双曲线渐近线方程为y x =,所以b b a =⇒=,又点(4,3)P 在双曲线上,所以将坐标代入双曲线标准方程得:221691a b-=,联立两式解得21612a a -=⇒=,b =,所以双曲线的标准方程为:22143x y -=.【小问2详解】如图所示,点(1,0)E -,直线l 与双曲线交于,M N 两点,由题意得,设直线l 的方程为1x my =-,Q 点坐标为(,0)t ,联立221431x y x my ⎧-=⎪⎨⎪=-⎩得,22(34)690m y my ---=,设11(,)M x y ,22(,)N x y ,则122634m y y m +=-,122934y y m -=-,21212122268(1)(1)()223434m x x my my m y y m m +=-+-=+-=-=--,22121212122124(1)(1)()134m x x my my m y y m y y m --=--=-++=-,11)(,t y QM x =- ,22,)(Q x t y N =-,所以21212121212()()()Q t x t y y x x t x x t y M N y Q x +⋅--=-++=+2222212489343434m t t m m m ---=-⋅++---222222121384(34)8293434m t m t t tm m -------=+=+--22829434t t m +=--+-,所以若要使得上式为常数,则8290t +=,即298t =-,此时58564QM QN ⋅= ,所以存在定点29(,0)8Q -,使得QM QN ⋅ 为常数58564.【点睛】关键点点睛:本题(2)问解题关键首先在用适当的形式设出直线l 的方程,当已知直线过x 轴上的定点(,0)n 时,可设直线方程为x my n =+,这样可简化运算,其次在于化简QM QN ⋅时计算要仔细,最后判断何时为常数时要抓住“消掉m ”这个关键,即最后的代数式中没有我们设出的m.18. 已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.【答案】(1)220x y π+-= (2)证明见解析 (3)1πa <-【解析】分析】(1)根据解析式求出切点,再根据导函数求出斜率,点斜式可得到切线方程;(2)先分析函数的单调性,需要二次求导,再结合函数值的情况进行判断;(3)对于函数图象的位置关系问题,可先特值探路求出参数的取值范围,再证明在该条件不等式恒成立即可.【小问1详解】()2sin cos f x x x x x =--,当πx =时,()π2sin ππcos ππ0f =--=,所以切点为()π,0,因为()2cos cos sin 1cos sin 1f x x x x x x x x =-+-=+-',【所以斜线方程的斜率()πcos ππsin π12k f ==+-=-',根据点斜式可得()02πy x -=--可得220x y π+-=,所以()f x 在πx =处的切线方程为220x y π+-=;【小问2详解】由(1)可得()cos sin 1f x x x x =+-',令()()cos sin 1g x f x x x x ==+-',所以()sin sin cos cos g x x x x x x x '=-++=,当π0,2x ⎛⎫∈ ⎪⎝⎭和3π,2π2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()0g x '>,()g x 单调递增;当π3π,22x ⎛⎫∈⎪⎝⎭时,cos 0x <,()0g x '<,()g x 单调递减;()πππππ0cos00sin010,cos sin 11022222g g ⎛⎫=+⨯-==+⨯-=-> ⎪⎝⎭,()πcos ππsin π1=2<0g =+--,3π3π3π3π3πcos cos 11022222g ⎛⎫=+-=--< ⎪⎝⎭,()2πcos 2π2πsin 2π10g =+-=,存在0π,π2x ⎛⎫∈⎪⎝⎭使得g (x 0)=0,所以()f x 在()00,x 上单调递增,在()0,2πx 单调递减,又()()02sin 00cos 00,π2sin ππcos ππ0f f =-⨯==-⨯-=,()2π2sin 2π2πcos 2π2π=4πf =---,所以()f x 在()0,2π上有且仅有一个零点;【小问3详解】因为()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,即2sin x ax x >+恒成立,等价于2sin x xa x -<恒成立,当πx =时,有2sin 1ππa ππ-<=-,下证:2sin 1πx x x -≥-即证21sin πx x x -≥-,()0,x ∞∈+恒成立,令()21sin πs x x x x =-+,当2πx ≥时,2sin 2π4π>01sin πx x x x --++>,当()0,2πx ∈时,()2cos 1πs x x x -+'=,设()2cos 1πt x x x =-+,则()2sin πt x x -'=+,此时()0t x '=在()0,2π有两个不同解1212π,,0π2x x x x <<<<,且当10x x <<或22πx x <<时,()0t x '>,当12x x x <<时,()0t x '<,故()t x 在()12,x x 上为减函数,在()10,x ,()2,2πx 上为增函数,而()()()π0π0,2π402t t t t ⎛⎫====> ⎪⎝⎭,故当π02x <<时,()0t x >,当ππ2x <<时,()0t x <,当π2πx <<时,()0t x >,故()s x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,在π,π2⎛⎫ ⎪⎝⎭为减函数,在()π,2π为增函数,而()()0π0s s ==,故()0,2πx ∈时,()0s x ≥恒成立,综上1πa <-.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数y =g (x )的图象的交点问题.19. 数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 前n 项和为n T ,等差数列{}n a 满足的的1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N*∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =【解析】【分析】(1)先利用数列通项与前n 项和的关系求出12n n b -=,然后得到12n n b -=为等差数列,求得n T ,再求得14,a a ,计算数列{a n }的通项公式即可;(2)先求出区间()21,1m m T T ++的端点值,然后明确{a n }的项为奇数,得到()21,1m m T T ++中奇数的个数,得到()m c m N*∈通项公式,然后求和即可;(3)先假设存在,由(1)求得2n S n =,21nn T =-,令3m m m mS T L S T ++=+,然后判断L 的取值,最后验证,不同取值时,m 的值即可.【小问1详解】由题可知,当1n =时,11b =;当2n ≥时,得3121221222n n b b b b n --++++=- 因为32121222n n b b b b n -++++= 两式相减得11122n n n n bb --=⇒=经检验,当*N n ∈时,12n n b -=显然,{b n }是以1为首项,2为公比的等比数列,所以122112nn n T -==--所以1143,17a b a T ====等差数列{a n }的公差71241d -==-所以21n a n =-【小问2详解】由(1)可知,2212,12m m m m T T +=+=因为21n a n =-,所以21n a n =-为奇数;故()m c m N *∈为区间()21,1m m TT ++的奇数个数显然2212,12m m m m T T +=+=为偶数所以21224222m m mm m c --==-所以()2121444412222m mm m m H ---++++=-++++ ()214141122122141233m mm m +--=⨯-=-+--【小问3详解】由(1)可知2n S n =,21nn T =-所以23322121m m m m m m S T m S T m ++++-=++-若3m m m mS T S T +++是{a n }或{b n }中的项不妨令3m m m mS T L S T ++=+,则L *∈N 则有()()()232221118221m m m m L L m L m ++-=⇒--=-+-因为210,20m m -≥>所以18L ≤≤因为L 为数列{a n }或{b n }中的项所以L 的所有可能取值为1,2,3,4,5,7,8当1L =时,得20m =无解,所以不存在;当18L <≤时得28112m L m L --=-令()2*1,2m m g m m -=∈N 得()22ln 2ln 22mm m g m +='-令()22ln 2ln 2h m m m =-+显然()22ln 2ln 2h m m m =-+为二次函数,开口向下,对称轴为()11,2ln 2m =∈()()()120,368ln 20,4815ln 20h h h =>=->=-<所以当3m ≤时,()0g m '>,()2*1,2m m g m m N -=∈单调递增;当3m ≥时,()0g m '<,()2*1,2m m g m m N -=∈单调递减得()()1531,416g g ==因为28112m L m L --=-所以89112L L L -≤⇒≥-所以L 的可能取值有5,7,8我们来验证,当5L =时,得21324m m -=,可得存在正整数解2m =或5m =,故5L =满足;当7L =时,得21126m m -=,当m 为整数时,212m m -分子为整数,分母不能被3整除;所以21126m m -=无正整数解,故7L =不满足;当8L =时,得2102m m -=,得存在正整数解1m =,故8L =满足;综上所诉,1m =,2m =或5m =.【点睛】关键点点睛:(1)需要构造数列,然后合理利用数列通项与前n 项和的关系求解即可;(2)需要明确两个数之间奇数的个数即可;(3)先假设存在,然后确定数列{a n }或{b n }中的项是哪些,最后再反过来求m 的值即可.。

2017届高三上学期第三次月考(11月月考)数学(文科)试卷-答案

21.
两边平方得 ,
又由(1)知 ,设 ,即 ,
所以 ,即 ,当且仅当 时取等号.
又 ,
故而当且仅当 时, 取到最大值 .
20.解(1)任取 ,
则 ,

又 ,
,即函数 在区间 上是增函数.
(2) 函数 是定义在区间 上的奇函数,且在区间 上是增函数,
则不等式可转化为
根据题意,则有 ,解得 .
即不等式的解集为 .
18.解:
(1)设两类产品的收益与投资额的函数关系分别为:

(2)设:投资债券产品 万元,则股票类投资为 万元
另 ,则
所以,当 ,即 万元时,收益最大, 万元
19.解:(1)因为 ,
由正弦定理得: ,
即: ,
,又由C为 的内角,故而
所以 ,又由B为 的内角,故而
(2)因为点D为AC边的中点,故而 ,
15.【解析】试题分析:原式

16.
三、解答题
17.
18.【解析】试题分析:(1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设设投资债券类产品 万元,则股票类投资为 万元.这时可以构造出一个关于收益 的函数,然后利用求函数最大值的方法进行求解.

故 .
若 ,使 成立,由已知,有 ,解得 ,所以m的取值范围为 .
22.解:(1) 的定义域为 , ,
令 ,得 ,
当 ,即 时, 在 内单调递增,
当 ,即 时,由 解得
, ,且 ,
在区间 及 内, ,在 内, ,
在区间 及 内单调递增,在 内单调递减.

江西省南昌市2024-2025学年高三上学期11月月考数学试题(无答案)

2024-2025学年第一学期高三年级11月月考数学试题命题人:高三数学备课组 审题人:高三数学备课组一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,,则集合的子集的个数为( )A.3B.7C.8D.152.已知为实数,若复数为纯虚数,则复数的虚部为( )A.1 B.-1 C.i D.3.已知向量,不共线,,,其中,,若,,三点共线,则的最小值为( )A.5B.4C.3D.24.已知,,则( )A. B. C. D.5.,则圆锥内切球半径为( )A.B. C. D.6.定义在上的函数满足:对,,且,都有成立,且,则不等式的解集为( )A. B. C. D.7.已知,则下列选项中正确的是( )A. B.是奇函数C.关于直线对称D.的值域为8.已知函数的定义域为R ,且对任意,满足,{}0,1A ={},,B z z x y x A y A ==+∈∈B a ()()211i z a a =-++2024i 1i a ++i-a b AB a b λ=+ AC a b μ=+ 0λ>0μ>A B C 4λμ+()1cos 4αβ+=tan tan 2αβ=()cos αβ-=112112-3434-32-6-4-()0,+∞()f x 1x ∀()20,x ∈+∞12x x ≠()()2112120x f x x f x x x ->-()36f =()2f x x >()3,+∞()0,3()0,2()2,+∞()()cos sin f x x =()2f x f x π⎛⎫=+ ⎪⎝⎭()f x ()f x x π=()f x []1,1-()f x x ∈R ()()11f x f x x +-≥-,且,则( )A.651B.676C.1226D.1275二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A.已知随机变量服从正态分布,越小,表示随机变量分布越集中B.数据1,9,4,5,16,7,11,3的第75百分位数为9C.线性回归分析中,若线性相关系数越大,则两个变量的线性相关性越弱D.已知随机变量,则10.用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线,也即圆锥曲线.探究发现:当圆锥轴截面的顶角为时,若截面与轴所成的角为,则截口曲线的离心率.例如,当时,,由此知截口曲线是抛物线.如图,圆锥SO 中,M 、N 分别为SD 、SO 的中点,AB 、CD 为底面的两条直径,且、,.现用平面(不过圆锥顶点)截该圆锥,则( )A.若,则截口曲线为圆B.若与SO 所成的角为,则截口曲线为椭圆或椭圆的一部分C.若、、,则截口曲线为抛物线的一部分D.的双曲线的一部分,则11.已知实数,满足(e 为自然对数的底数,,则( )A.当时, B.当时,C.当时, D.当时,三、填空题:本题共3小题,每小题5分,共15分.()()33f x f x x +-≤()10f =()52f =X ()2,N μσσX r 1~7,2X B ⎛⎫ ⎪⎝⎭()72E X =2αβcos cos e βα=αβ=1e =AB CD ⊥4AB =2SO =γMN γ⊂γ60︒M A B γ∈O γ∉x y e0x y y x ++=e 2.71828= 0y <0x y +=0x <0x y +=0x y +≠2y x ->0x y +≠10xy -<<12.已知的展开式中各项系数的和为4,则______13.“白日依山尽,黄河入海流”是唐代诗人王之涣形容美景的一首诗词.某数学爱好者用两个函数图象描绘了这两句诗词:,的图象犹如两座高低不一的大山,太阳从两山之间落下(如图1),,的图象如滚滚波涛,奔腾入海流(如图2).若存在一点,使在处的切线与在处的切线平行,则的值为______.图1 图214.用表示不超过的最大整数,例如,,.已知数列满足,,则______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)在中,角,,的对边分别为,,c ,的面积为S ,且(1)求角A ;(2)若V ABC 为锐角三角形,且,求的取值范围.16.(本小题15分)如图,在六面体中,,且底面ABCD 为菱形.(1)证明:四边形为平行四边形.(2)若平面ABCD ,,,,,求平面与平面ABCD 所成二面角的正弦值.()622a x x x x ⎛⎫+- ⎪⎝⎭a =()3sin sin f x x x =+[]0,2x π∈()1sin 22g x x =[]0,2x π∈0x π≠()f x ()()00,x f x ()g x ()()0,n x g x 0cos x []x x []33=[]1.21=[]1.32-=-{}n a 11a =2117n n n a a a +=+202412122024222a a a a a a ⎡⎤++⋯+=⎢⎥+++⎣⎦V ABC A B C a b VABC ()22a b c +=+4b c +=a 1111ABCD A B C D -1111AA BB CC DD ∥∥∥1111A B C D 1AA ⊥11AA CC =60BAD ∠=︒15DD =12AB BB ==1111A B C D17.(本小题15分)已知椭圆的离心率为,左、右顶点分别为、,左、右焦点分别为,.过右焦点的直线交椭圆于点、,且的周长为16.(1)求椭圆的标准方程;(2)记直线AM 、BN 的斜率分别为,,证明:为定值.18.(本小题17分)已知函数.(其中,).(1)当,时,证明:是增函数;(2)证明:曲线是中心对称图形;(3)已知,设函数,若对任意的恒成立,求的最小值.19.(本小题17分)如图:一张的棋盘,横行编号1,2,3:紧排编号,,.一颗棋子目前位于棋盘的处,它的移动规则是:每次移动到与自身所在格不相邻的异色格中.例如该棋子第一次移动可以从移动到或.棋子每次移动到不同目的地间的概率均为.(1)①列举两次移动后,该棋子所有可能的位置.②假设棋子两次移动后,最终停留到第1,2,3行时,分别能获得1,2,3分,设得分为,求的分布列和数学期望.(2)现在于棋盘左下角处加入一颗棋子,他们运动规则相同,并且每次移动同时行动.移动次()2222:10x y C a b a b+=>>12A B 1F 2F 2F l M N 1F MN △C 1k 2k 12k k ()()312121x x f x ax b x -=++-+a b ∈R 0a >0b =()f x ()y f x =0a ≠()()()()312e 1121x x x g x f x b x b -=+-+-+-+()0g x ≥x ∈R b a a-33⨯a b c (),1c (),1c (),2a (),3b 12X X (),3a n后,两棋子位于同一格的概率为,求的通项公式.n P n P。

广东省深圳市2017届高三上学期11月月考数学试卷b卷 含

2016-2017学年广东省深圳市圆梦教育高三(上)11月月考数学试卷(B卷)一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.已知全集U=R,A=,B={x|lnx<0},则A∪B=()A.{x|﹣1≤x≤2}B.{x|﹣1≤x<2}C.{x|x<﹣1或x≥2}D.{x|0<x<2}2.函数的定义域是()A.[﹣2,0]B.(﹣2,0)C.(﹣∞,﹣2)D.(﹣∞,﹣2)∪(0,+∞)3.计算sin5°cos55°﹣cos175°sin55°的结果是()A.B.C.D.4.已知,则sin2x的值是()A.B.C.D.5.已知tanα=﹣,则=()A.2 B.﹣2 C.3 D.﹣36.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.函数y=2x+1的反函数是()A.y=log x2+1,x>0且x≠1 B.y=log2x+1,x>0C.y=log2x﹣1,x>0 D.y=log2(x﹣1),x>18.在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2 C.2 D.49.在△ABC中,内角A,B,C的对边分别为a,b,c,且B=2C,2bcosC﹣2ccosB=a,则角A的大小为()A.B.C.D.10.曲线y=xsinx在点P(π,0)处的切线方程是()A.y=﹣πx+π2B.y=πx+π2C.y=﹣πx﹣π2D.y=πx﹣π211.函数y=2sin2x图象的一条对称轴方程可以为()A.B.C.D.x=π12.函数f(x)=的值域是()A.[﹣,]B.[﹣,0]C.[0,]D.[0,1]二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)13.曲线y=2sinx(0≤x≤π)与直线y=1围成的封闭图形的面积为.14.若f(x)=(m﹣2)x2+mx+4 (x∈R)是偶函数,则f(x)的单调递减区间为.15.已知函数f(x)=2sinxcosx+2cos2x﹣,则函数f(x)的最小正周期为.16.已知,那么tanβ的值为.17.函数f(x)=x3﹣4x2+4x的极小值是.18.对于△ABC,有如下命题:(1)若sin2A=sin2B,则△ABC一定为等腰三角形.(2)若sinA=sinB,则△ABC一定为等腰三角形.(3)若sin2A+sin2B+cos2C<1,则△ABC一定为钝角三角形.(4)若tanA+tanB+tanC>0,则△ABC一定为锐角三角形.则其中正确命题的序号是.(把所有正确的命题序号都填上)三、解答题(本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤)19.已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.20.在△ABC中,内角A,B,C的所对的边分别是a,b,c,已知cosC=,a2=b2+c2(Ⅰ)求sin(A﹣B)的值;(Ⅱ)c=,求a和b.21.已知x满足不等式≥,函数.(Ⅰ)求出x的取值范围;(Ⅱ)求f(x)的值域.22.已知函数f(x)=xlnx﹣ax2+a(a∈R),其导函数为f′(x).(Ⅰ)求函数g(x)=f′(x)+(2a﹣1)x的极值;(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.2016-2017学年广东省深圳市圆梦教育高三(上)11月月考数学试卷(B卷)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.已知全集U=R,A=,B={x|lnx<0},则A∪B=()A.{x|﹣1≤x≤2}B.{x|﹣1≤x<2}C.{x|x<﹣1或x≥2}D.{x|0<x<2}【考点】并集及其运算.【分析】求出A与B中不等式的解集,分别确定出A与B,找出两集合的并集即可.【解答】解:由A中不等式变形得:≤0,即(x+1)(x﹣2)<0,且x﹣2≠0,解得:﹣1≤x<2,即A={x|﹣1≤x<2},由B中不等式变形得:lnx<0=ln1,得到0<x<1,即B={x|0<x<1},则A∪B={x|﹣1≤x<2},故选:B.2.函数的定义域是()A.[﹣2,0]B.(﹣2,0)C.(﹣∞,﹣2)D.(﹣∞,﹣2)∪(0,+∞)【考点】函数的定义域及其求法.【分析】直接由对数函数的真数大于0,然后求解一元二次不等式得答案.【解答】解:由函数,可得﹣x2﹣2x>0,解得:﹣2<x<0.∴函数的定义域是:(﹣2,0).故选:B.3.计算sin5°cos55°﹣cos175°sin55°的结果是()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式,两角和的正弦函数公式,特殊角的三角函数值即可化简求值得解.【解答】解:sin5°cos55°﹣cos175°sin55°=sin5°cos55°+cos5°sin55°=sin(5°+55°)=sin60°=.故选:D.4.已知,则sin2x的值是()A.B.C.D.【考点】二倍角的正弦.【分析】根据倍角公式cos2(﹣x)=2cos2(﹣x)﹣1,根据诱导公式得sin2x=cos(﹣2x)得出答案.【解答】解:∵cos2(﹣x)=2cos2(﹣x)﹣1=﹣,∴cos(﹣2x)=﹣即sin2x=﹣.故选:C.5.已知tanα=﹣,则=()A.2 B.﹣2 C.3 D.﹣3【考点】同角三角函数基本关系的运用.【分析】原式分母利用平方差公式化简,约分后再利用同角三角函数间基本关系弦化切后,将tanα的值代入计算即可求出值.【解答】解:∵tanα=﹣,∴原式======3.故选:C.6.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出不等式成立的等价条件,然后利用充分条件和必要条件的定义进行判断.【解答】解:当b=﹣1,a=1时,满足,但不成立.若,则,∴,∴成立.∴“”是“”成立的必要不充分条件.故选:B.7.函数y=2x+1的反函数是()A.y=log x2+1,x>0且x≠1 B.y=log2x+1,x>0C.y=log2x﹣1,x>0 D.y=log2(x﹣1),x>1【考点】反函数.【分析】将y=2x+1作为方程利用指数式和对数式的互化解出x,然后确定原函数的值域即得反函数的定义域,从而求出所求.【解答】解:由y=2x+1得x=log2(y﹣1)且y>1即:y=log2(x﹣1),x>1所以函数y=2x+1的反函数是y=log2(x﹣1)(x>1)故选D.8.在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2 C.2 D.4【考点】正弦定理.【分析】由条件求得c=2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解答】解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sinA=c•,∴c=2=b,故B==30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.9.在△ABC中,内角A,B,C的对边分别为a,b,c,且B=2C,2bcosC﹣2ccosB=a,则角A的大小为()A.B.C.D.【考点】正弦定理.【分析】由正弦定理,三角函数恒等变换的应用化简已知等式可得sinBcosC=3cosBsinC,又利用二倍角的正弦函数公式,可得2sinCcos2C=3cosBsinC,结合sinC>0,化简解得:cos2C=,结合C的范围可求C,进而可求B,利用三角形内角和定理即可求A的值.【解答】解:∵2bcosC﹣2ccosB=a,∴2sinBcosC﹣2sinCcosB=sinA=sin(B+C)=sinBcosC+cosBsinC,∴sinBcosC=3cosBsinC,又∵B=2C,可得:sinB=2sinCcosC,∴2sinCcos2C=3cosBsinC,∴由sinC>0,可得:2cos2C=3cosB,∴1+cos2C=3cos2C,解得:cos2C=,∵C∈(0,),2C∈(0,π),∴2C=,C=,B=2C=,A=π﹣(B+C)=.故选:A.10.曲线y=xsinx在点P(π,0)处的切线方程是()A.y=﹣πx+π2B.y=πx+π2C.y=﹣πx﹣π2D.y=πx﹣π2【考点】利用导数研究曲线上某点切线方程.【分析】求得曲线对应的函数的导数,可得切线的斜率,由直线的点斜式方程,可得切线的方程.【解答】解:y=xsinx的导数为y′=sinx+xcosx,在点P(π,0)处的切线斜率为k=sinπ+πcosπ=﹣π,即有在点P(π,0)处的切线方程为y﹣0=﹣π(x﹣π),即为y=﹣πx+π2.故选:A.11.函数y=2sin2x图象的一条对称轴方程可以为()A.B.C.D.x=π【考点】二倍角的余弦;余弦函数的图象.【分析】由于函数y=2sin2x=1﹣cos2x,故由2x=kπ,k∈z,求得x的值,可得函数的图象的对称轴方程.【解答】解:∵函数y=2sin2x=2×=1﹣cos2x,故由2x=kπ,k∈z,函数的图象的对称轴方程为x=,k∈z.故选:D.12.函数f(x)=的值域是()A.[﹣,]B.[﹣,0]C.[0,]D.[0,1]【考点】函数的值域.【分析】先求出函数的定义域,利用换元法转化为两点间的斜率关系,利用数形结合进行求解即可.【解答】解:由得,则﹣1≤x≤1,即函数的定义域为[﹣1,1],设x=sinα,则函数f(x)等价为y==,设P(sinα,|cosα|),则点P在单位圆x2+y2=1的上半部分,则的几何意义是圆上点到点A(2,1)的斜率,由图象知AB的斜率最小,此时k=0,AC的斜率最大,此时k==1,故0≤k≤1,故函数f(x)的值域是[0,1],故选:D二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)13.曲线y=2sinx(0≤x≤π)与直线y=1围成的封闭图形的面积为.【考点】定积分.【分析】作出的图象,求出它们的交点分别为A(,1)和B(,1),由此可得所求面积为函数2sinx﹣1在区间[,]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.【解答】解:令2sinx=1(0≤x≤π),即sinx=,可得x=或.∴曲线y=2sinx(0≤x≤π)与直线y=1交于点A(,1)和B(,1),因此,围成的封闭图形的面积为S=(2sinx﹣1)dx=(﹣2cosx﹣x)=(﹣2cos﹣)﹣(﹣2cos﹣)=2﹣.故答案为:2﹣.14.若f(x)=(m﹣2)x2+mx+4 (x∈R)是偶函数,则f(x)的单调递减区间为[0,+∞).【考点】奇偶性与单调性的综合;二次函数的性质.【分析】利用偶函数的定义可求得m值,由二次函数的性质可得减区间.【解答】解:∵f(x)是偶函数,∴f(﹣x)=f(x),即(m﹣2)x2﹣mx+4=(m﹣2)x2+mx+4,整理得2mx=0,∴m=0,则f(x)=﹣2x2+4,∴f(x)的递减区间为[0,+∞),故答案为:[0,+∞).15.已知函数f(x)=2sinxcosx+2cos2x﹣,则函数f(x)的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】利用三角恒等变换化简函数的解析式,在老鹰正弦函数的周期性,求得函数f(x)的最小正周期.【解答】解:∵函数f(x)=2sinxcosx+2cos2x﹣=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),∴该函数的最小正周期为=π,故答案为:π.16.已知,那么tanβ的值为3.【考点】两角和与差的正切函数.【分析】由已知,利用同角三角函数基本关系式可求cosα,tanα的值,利用两角和的正切函数公式即可化简求值.【解答】解:∵,∴cosα=﹣=﹣,tanα==﹣2,∴tan(α+β)===,整理可得:tanβ=3.故答案为:3.17.函数f(x)=x3﹣4x2+4x的极小值是0.【考点】利用导数研究函数的极值.【分析】求导,令f′(x)=0,解方程,分析导函数的变化,从而可知函数的极值.【解答】解:由已知得f′(x)=3x2﹣8x+4,f′(x)=0⇒x1=,x2=2,当<x<2时,f′(x)<0函数f(x)是减函数,当x<或x>2时,f′(x)>0函数f(x)是增函数,∴当x=2时,函数f(x)取得极小值为0.故答案为:0.18.对于△ABC,有如下命题:(1)若sin2A=sin2B,则△ABC一定为等腰三角形.(2)若sinA=sinB,则△ABC一定为等腰三角形.(3)若sin2A+sin2B+cos2C<1,则△ABC一定为钝角三角形.(4)若tanA+tanB+tanC>0,则△ABC一定为锐角三角形.则其中正确命题的序号是(2),(3),(4).(把所有正确的命题序号都填上)【考点】四种命题的真假关系.【分析】三角形中首先想到内角和为π,每个内角都在(0,π)内.【解答】解:(1)2A=2B或2A+2B=π,∴△ABC为等腰或直角三角形(2)正确;(3)由sin2A+sin2B+cos2C<1可得sin2A+sin2B<sin2C由正弦定理可得a2+b2<c2再由余弦定理可得cosC<0,C为钝角,命题(3)正确.(4)∵tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)∴tanA+tanB+tanC=tanAtanBtanC>0∴ABC全为锐角,命题(4)正确.答案:(2)、(3)、(4)三、解答题(本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤)19.已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.【分析】通过二倍角与两角差的正弦函数,化简函数的表达式,(1)直接求出函数的定义域和最小正周期.(2)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可.【解答】解:=sin2x﹣1﹣cos2x=sin(2x﹣)﹣1 k∈Z,{x|x≠kπ,k∈Z}(1)原函数的定义域为{x|x≠kπ,k∈Z},最小正周期为π.(2)由,k∈Z,解得,k∈Z,又{x|x≠kπ,k∈Z},原函数的单调递增区间为,k∈Z,,k∈Z20.在△ABC中,内角A,B,C的所对的边分别是a,b,c,已知cosC=,a2=b2+ c2(Ⅰ)求sin(A﹣B)的值;(Ⅱ)c=,求a和b.【考点】余弦定理.【分析】(Ⅰ)由已知式子和余弦定理b=,c=,由余弦定理可得cosA和cosB,再由同角三角函数基本关系可得sinA和sinB,由和差角的三角函数可得sin(A﹣B)=sinAcosB﹣cosAsinB,代值计算可得;(Ⅱ)由c==可得a值,代入b=可得b值.【解答】解:(Ⅰ)∵在△ABC中cosC=,a2=b2+c2,∴c2=2a2﹣2b2,由余弦定理可得c2=a2+b2﹣ab,∴2a2﹣2b2=a2+b2﹣ab,整理可得2a2+ab﹣6b2=0,分解因式可得(a+2b)(2a﹣3b)=0,解得b=,代入c2=2a2﹣2b2可解得c=,由余弦定理可得cosA==,∴sinA==,同理可得cosB=,sinB=∴sin(A﹣B)=sinAcosB﹣cosAsinB=×﹣×=;(Ⅱ)由c==可得a=3,代入b=可得b=221.已知x满足不等式≥,函数.(Ⅰ)求出x的取值范围;(Ⅱ)求f(x)的值域.【考点】函数的最值及其几何意义;函数单调性的性质.【分析】(Ⅰ)根据对数函数的单调性和对数的定义即可得到关于x的不不等式组,解得即可,(Ⅱ)根据对数的运算性质得到f(x)=log22x﹣3log2x+2,再利用换元法,和二次函数的性质即可求出.【解答】解:(Ⅰ)不等式≥,∴,解得1≤x≤2,(Ⅱ)=(log2x﹣2)(log2x﹣1)=log22x﹣3log2x+2,设log2x=t,则0≤t≤1,∴f(t)=t2﹣3t+2,其对称轴为x=,∴f(t)在[0,1]上单调递减,∴f(t)max=f(0)=2,f(t)min=f(1)=1﹣3+2=0,∴f(x)的值域为[0,2].22.已知函数f(x)=xlnx﹣ax2+a(a∈R),其导函数为f′(x).(Ⅰ)求函数g(x)=f′(x)+(2a﹣1)x的极值;(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出满足条件的a的范围即可.【解答】解:(Ⅰ)由题知x>0,f'(x)=lnx﹣2ax+1,则g(x)=f'(x)+2a(x﹣1)=lnx﹣x+1,,当0<x<1时,,g(x)为增函数;当x>1时,,g(x)为减函数.所以当x=1时,g(x)有极大值g(1)=0,g(x)无极小值.(Ⅱ)由题意,f'(x)=lnx﹣2ax+1,(ⅰ)当a≤0时,f'(x)=lnx﹣2ax+1>0在x>1时恒成立,则f(x)在(1,+∞)上单调递增,所以f(x)>f(1)=0在(1,+∞)上恒成立,与已知矛盾,故a≤0不符合题意.(ⅱ)当a>0时,令φ(x)=f'(x)=lnx﹣2ax+1,则,且.①当2a≥1,即时,,于是φ(x)在x∈(1,+∞)上单调递减,所以φ(x)<φ(1)=1﹣2a≤0,即f'(x)<0在x∈(1,+∞)上成立.则f(x)在x∈(1,+∞)上单调递减,所以f(x)<f(1)=0在x∈(1,+∞)上成立,符合题意.②当0<2a<1,即时,>1,,若,则φ'(x)>0,φ(x)在上单调递增;若,则φ'(x)<0,φ(x)在上单调递减.又φ(1)=1﹣2a>0,所以φ(x)>0在上恒成立,即f'(x)>0在上恒成立,所以f(x)在上单调递增,则f(x)>f(1)=0在上恒成立,所以不符合题意.综上所述,a的取值范围.2017年4月12日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学(文科)试卷
注意事项:
1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;
2.答卷前,考生务必将自己的姓名、准考证号填写在本试题卷相应的位置;
3.全部答案在答题卷上完成,答在本试题卷上无效;
4.考试结束后,将答题卷交回。

一、选择题 :本大题共12小题,每小题5分,共60分
1.设集合2{|430}A x x x =-+≥,{|230}B x x =-≤,则A B =( )
A .(1][3)-∞,,+∞
B . [13],
C .3(][3)2-∞,,+∞
D .3[3]2,
2.复数i i -+1)1(4
+2等于 ( )
A .2-2i
B .-2i
C .1-i
D .2i
3.下列命题中正确的是( )
A .命题“x R ∃∈,使得210x -<”的否定是“x R ∀∈,均有2
10x ->”;
B .命题“若cos cos x y =,则x=y”的逆否命题是真命题:
C .命题“存在四边相等的四边形不是正方形”是假命题
D .命题”若x=3,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠”; 4.已知1
3
2a -=,31log 2b =,121log 3c =,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>
5.已知平面直角坐标系xOy 上的区域D 由不等式组
给定.若M (x ,y )为D 上的动点,点A 的坐标为
,则z=•的最大值为( )
A. 4
B. 3
C.3
D.4 6.若,2παπ⎛⎫∈ ⎪⎝⎭,则3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( )
A .118
B .118-
C . 1718-
D . 1718
7.某四面体的三视图如图所示,该四面体的六条棱的长度中,最大的是( )
A.
C.
D.
8.已知等差数列}{}{n n b a ,的前项和为,,若对于任意的自然数,都有1432--=n n T S n
n ,则102393153)(2b b a b b a a ++++= ( ) A. 5027 B.4017 C.209 D. 19
43
9.在等比数列}{n a 中,b a a a a a a =+≠=+161565),0(,则2625a a +的值是( )
A .a b
B . a b 2
C . 22a b
D .2a b
10..已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )
A.(7,5)
B.(5,7)
C.(2,10)
D.(10,1)
11.《算数书》竹简于上世纪八十年代在湖北省江××县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式21.36v L h ≈
它实际上是将圆锥体积公式中的圆周率近似取为 3.那么近似公式2275v L h ≈
相当于将圆锥体积公式中的近似取为( ) A.258 B. 355113 C.15750 D. 227
12..函数1)3(log -+=x y a )1,0(≠>a a 且的图象恒过定点,若点在直线
02=++ny mx 上,其中0,0m n >>,则21m n +的最小值为( )
A
..4 C .52 D .9
2
二.填空题:本大题共4小题,每小题5分,共20分.。

相关文档
最新文档