虚拟解释变量回归

合集下载

虚拟变量回归模型

虚拟变量回归模型

PART 07
虚拟变量回归模型的发展 趋势和未来展望
发展趋势
模型应用范围不断扩大
随着数据科学和统计学的发展,虚拟变量回归模型的应用范围不断扩大,不仅局限于传统的回归分析,还广泛应用于 分类、聚类、预测等领域。
模型复杂度不断提高
为了更好地处理复杂的数据结构和特征,虚拟变量回归模型的复杂度不断提高,出现了多种新型的模型,如集成学习 模型、深度学习模型等。
医学领域的应用
流行病学研究
在流行病学研究中,利用虚拟变量回归模型分析疾病发病率和死亡 率的影响因素,如年龄、性别、生活习惯等。
临床医学研究
在临床医学研究中,利用虚拟变量回归模型分析治疗效果的影响因 素,如治疗方案、患者特征、疾病严重程度等。
药物研究
在药物研究中,利用虚拟变量回归模型分析药物疗效的影响因素, 如药物剂量、给药方式、患者生理特征等。
模型解释性要求更高
随着人们对数据分析和模型结果的关注度提高,虚拟变量回归模型的解释性要求也更高,需要更加清晰、 直观地解释模型结果和变量之间的关系。
未来展望
模型可解释性研究
未来将更加注重虚拟变量回归模型的可解释性研究,以提高模型结果的透明度和可信度。
新型特征选择和降维技术
随着数据规模的扩大和特征维度的增加,未来将更加关注新型的特征选择和降维技术,以提取关 键特征并降低模型复杂度。
PART 01
引言
目的和背景
探索自变量与因变量之间的关系
虚拟变量回归模型主要用于探索自变量与因变量之间的数量关系,帮助我们理 解不同类别数据对结果的影响。
处理分类变量
当自变量是分类变量时,虚拟变量回归模型能够将这些分类变量转换为一系列 二进制(0和1)的虚拟变量,从而进行回归分析。

引入虚拟解释变量的两种基本方式

引入虚拟解释变量的两种基本方式

引入虚拟解释变量的两种基本方式
在统计学分析中,引入虚拟解释变量是一种常用的方式,它可以提高统计模型的精确性,减少错误。

虚拟解释变量是一种变量,它不能显示出主要变量之间的关系,而是用于捕捉模型中其他非线性变量的影响,以抵消其他变量可能引起的误差。

使用虚拟解释变量可以更好地预测数据,并且可以消除变量之间的联系,使模型更加准确。

在引入虚拟解释变量时,有两种基本方式可以使用,即直接编码和回归编码。

在直接编码中,变量是将数据集中的每个观察点映射到一个多维统计模型,该模型包含了所有解释变量可能表示的可能效果及其影响。

直接编码将每个观察点映射到单个结果,这就可以预测出每个观察点的结果,即回归结果。

回归编码的方法更加复杂,它使用一个多变量的回归模型来模仿虚拟变量的影响。

回归编码的模型包含多个变量,其中虚拟变量和其他变量的加权和的结果来决定回归因素的影响。

例如,如果虚拟变量叫做“货币”,而另一个变量叫做“国家”,它们之间可能存在某种关系,回归编码方法可以捕捉这种关系,可以更好地预测结果。

引入虚拟解释变量可以改善模型的准确性,减少输入变量和输出变量之间的错误。

使用虚拟解释变量可以解决许多模型中出现的数据失真问题,可以显著提高模型的准确性和可靠性。

当使用虚拟解释变量时,有两种基本的编码方式可以使用,分别为直接编码和回归编码,它们都为统计模型提供了有效的正确性。

- 1 -。

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
第七章 虚拟变量
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0&#
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt

虚拟变量回归

虚拟变量回归

数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。

解释变量包含虚拟变量的回归模型

解释变量包含虚拟变量的回归模型
(3) 1=1 ,但22 ,即两个回归旳差别仅在其 斜率,称为汇合回归(Concurrent Regressions);
(4) 11,且22 ,即两个回归完全不同,称为 相异回归(Dissimilar Regressions)。
平行回归
汇合回归
相异回归
能够利用邹氏构造变化旳检验。这一问题 也可经过引入乘法形式旳虚拟变量来处理。
• 为了在模型中能够反应这些原因旳影响,并提 升模型旳精度,需要将它们“量化”。
这种“量化”一般是经过引入“虚拟变量” 来完毕旳。根据这些原因旳属性类型,构造只取 “0”或“1”旳人工变量,一般称为虚拟变量 (dummy variables),记为D。
• 例如,反应文化程度旳虚拟变量来自取为:1, 本科学历 D=
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
表 5.1.1
储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
1979~2001 年中国居民储蓄与收入数据(亿元)
GNP
90年后
储蓄
4038.2
1991
9107
4517.8
1992
11545.4
4860.3
1993
14762.4
5301.8
1994
21518.8
5957.4
1995
29662.3
7206.7
1996
38520.8
8989.1
1997
46279.8
第五章 解释变量包括虚拟变量 旳回归模型

虚拟变量虚拟解释变量的回归虚拟被解释变量的回归

虚拟变量虚拟解释变量的回归虚拟被解释变量的回归
17
显然,在研究房地产价格影响机理时,需要分 析那些不易量化的定性因素对房地产价格是否 真的有显著影响。 能否把定性的因素也引入计量经济模型中呢? 怎样才能在模型中有效地表示这些定性因素的 作用呢?
1
问题的一般性描述
在前面各章的分析中,被解释变量主要是受可以直 接度量的定量因素的影响,如收入、产出、商品需 求量、价格、成本、资金、人数等。但现实经济生 活中,影响被解释变量变动的因素,除了可以直接 观测数据的定量变量外,可能还包括一些本质上为 定性因素的影响,例如性别、种族、职业、季节、 文化程度、战争、自然灾害、政府经济政策的变动 等。
则对任一家庭都有: D1 + D2 = 1 D1 + D2 - 1 = 0 ,
即产生完全共线,陷入了“虚拟变量陷阱”。
“虚拟变量陷阱”的实质是:完全多重共线性。
15
综上可知: 1.引入虚拟变量的个数与两个因素有关;一是定性 变量的属性多少,一是有无截距项; 2.对虚拟变量的运用要谨慎,虚拟变量的使用得当 常能发挥积极的作用,但在模型中引入虚拟变量的 数量要适当,引入的虚拟变量的数量过度,则可能 带来负面的影响。
10
例如,比较收入时考察性别的作用。当研究男性收入是否 高于女性时,是将女性作为比较的基础(参照物),故有 男性为“1”,女性为“0”。
例1
(1)
D
=
1 0
男 女
(2)
D
=
1 0
改革开放以后 改革开放以前
(3)
D1
=
1 0
天气阴 (4) 其他
D2
=
1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
16

第六章 虚拟变量的回归模型

第六章   虚拟变量的回归模型
第六章 虚拟变量的回归模型
在一元回归和多元回归分析中,被解释变量主 要受一个或多个可以度量的解释变量的影响,如 收入、价格、FDI等。但在现实的经济社会中,影 响被解释变量的因素除了可度量的之外,还有可 能受一些不可度量的因素的影响,如性别、战争、 政策、学历、职称等因素。有时候这些不可度量 的因素对被解释变量的影响又不可忽略,这时我 们需要引入虚拟变量来代替不可量化的因素。
一、虚拟变量的概念

1.影响因素 定量因素——定量变量,可以直接测量的数值型因素。
定性因素——定性变量,不能直接测量的,用来说明
某种属性或状态的非数值型因素。
2.虚拟变量——(dummy variable)是人工构造的取值为0或1的、 作为定性变量的代表变量。简写为D或DUM。 3、形式 1 , 表示某种属性或状态出现或存在,是 D= 0 , 表示某种属性或状态出现或存在,否



男教授的平均收入=a+b 女教授的平均收入=a 在eviews中用OLS估计回归系数,确定a、b
wage=18+3.28sex (57.7) (7.44) R2 =0.87, F=55.34
从回归分析结果得出的结论:


1、统计检验 1)拟合优度检验 R2 =0.87,说明所建模型整体上对样本数据拟合较好,即解释 变量性别对被解释变量收入的87%的差异作出了解释。 2)t检验 t(b)=7.44, p=0.0001,则拒绝原假设,表明性别对教授收入有 显著影响。 3)F检验 F=55.34,p=0,则拒绝原假设,表明该回归方程整体显著, 通过检验。 2、经济意义
二、虚拟变量模型
1、概念:把含有虚拟变量的模型称为虚拟变量模型。 2、常见的虚拟变量模型的种类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虚拟变量回归第一节虚拟变量一、虚拟变量的基本概念在前面的分析中,被解释变量主要受到一些可以直接度量的变量影响,如收入、产出、商品需求量、价格、成本、资金、人数等。

但现实经济生活中,影响被解释变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些本质上为定性因素(或称属性因素)的影响,例如性别、种族、肤色、职业、季节、文化程度、战争、自然灾害、政府经济政策的变动等因素。

在实际经济分析中,这些定性变量有时具有不可忽视的重要影响。

例如,研究某个企业的销售水平,产业部门(制造业、零售业)、所有制(私营、非私营)、地理位置(东、中、西部)、管理者素质的高低等是值得经常考虑的影响因素,这些因素有共同的特征,即都是表示某种属性的,不能直接用数据精确描述的因素。

因此,被解释变量的变动经常是定量因素和属性因素共同作用的结果。

在计量经济模型中,应当同时包含定量和属性两种因素对被解释变量的影响作用。

定量因素是指那些可直接测度的数值型因素,如GDP、M2等。

定性因素,或称为属性因素,是不能直接测度的、说明某种属性或状态存在与否的非数值型因素,如男性或女性、城市居民或非城市居民、气候条件正常或异常、政府经济政策不变与改革等。

在计量经济学的建模中应当将定量因素和定性因素同时纳入模型之内。

为了在模型中反映定性因素,可以将定性因素转化为虚拟变量去表现。

虚拟变量(或称为属性变量、双值变量、类型变量、定性变量、二元型变量等),是人工构造的取值为0和1的作为属性变量代表的变量,一般用字母D(或DUM,英文dummy的缩写)表示。

属性因素通常具有若干类型或水平,通常虚拟变量的取值为0和1,当虚拟变量取值为0,即D=0时,表示某种属性或状态不出现或不存在,即不是某种类型;当虚拟变量取值为1,即D=1时,表示某种属性或状态出现或存在,即是某种类型。

例如,构造政府经济政策人工变量,当经济政策不变时,虚拟变量取值为0,当经济政策改变时,虚拟变量取值为1。

这种做法实际上是一种变换或映射,将不能精确计量的定性因素的水平或状态变换为用0 和 1 来定量描述。

二、虚拟变量的设置规则在计量经济学模型中引入虚拟变量,可以使我们同时兼顾定量因素和定性因素的影响和作用。

但是,在设置虚拟变量时应遵循一定的规则。

1、虚拟变量数量的设置规则虚拟变量个数的设置规则是:若定性因素有m个相互排斥的类型(或属性、水平),在有截距项的模型中只能引入m-1个虚拟变量,否则会陷入所谓“虚拟变量陷阱”,产生完全的多重共线性。

在无截距项的模型中,定性因素有m个相互排斥的类型时,引入m个虚拟变量不会导致完全多重共线性,不过这时虚拟变量参数的估计结果,实际上是D=1时的样本均值。

例如,城镇居民和农村居民住房消费支出的模型可设定为:i i i i u D Y C +++=21αβα (8.1)其中,i C 为居民的住房消费支出,i Y 为居民的可支配收入,i D 为虚拟变量,10i D ⎧=⎨⎩城镇居民其他,即当1=i D 时为城镇居民;当0=i D 时为其他(农村居民)。

这里区分城镇居民和农村居民的定性变量的类型有m=2个,按虚拟变量的设置规则应引入m -1=2-1=1个虚拟变量。

但是,如果引入了m=2个虚假变量:210i D ⎧=⎨⎩城镇居民其他 , 310i D ⎧=⎨⎩农村居民其他, 则有:i i i i i u D D Y C ++++=33221ααβα (8.2)这时,当i D 2=1时同时有i D 3=0;反之,当i D 2=0时有i D 3=1。

即对于任何被调查的居民家庭都有i D 2+i D 3=1,2D 和3D 存在完全的共线性,无法利用OLS 估计其参数,从而陷入“虚拟变量陷阱”。

由此,所谓的“虚拟变量陷阱”的实质是出现完全多重共线性。

可见,虚拟变量有其积极作用的一面,也有不良影响的一面,引入的虚拟变量适当,则发挥了积极的作用,引入的虚拟变量过度,则会带来负面的影响。

2、虚拟变量的“0”和“1”的选取原则虚拟变量取“1”或“0”的原则,应从分析问题的目的出发予以界定。

从理论上讲,虚拟变量取“0”值通常代表为比较的基础类型;而虚拟变量取“1”值通常代表为被比较的类型。

例如,引入政府经济政策的变动对被解释变量的影响时,由于此时的比较是在政府经济政策不变的基础上进行的,故虚拟变量确定为:1:0:t D ⎧=⎨⎩基础类型政府经济政策变动比较类型政府经济政策不变 三、虚拟变量的作用在计量经济模型中,虚拟变量可以发挥多方面的作用:(1)可以作为属性因素的代表,如性别、所有制等;(2)作为某些非精确计量的数量因素的代表,如受教育程度、管理者素质等;(3)作为某些偶然因素或政策因素的代表,如战争、灾害、改革前后等;(4)还可以作为时间序列分析中季节(月份)的代表;(5)可以实现分段回归,研究斜率、截距的变动,或比较两个回归模型的结构差异。

在计量经济学中,把包含有虚拟变量的模型称为虚拟变量模型。

常用的虚拟变量模型有三种类型:(1)解释变量中只包含虚拟变量,作用是在假定其他因素都不变时,只研究定性变量是否使被解释变量表现出显著差异;(2)解释变量中既含定量变量,又含虚拟变量,研究定量变量和虚拟变量同时对被解释变量的影响;(3)被解释变量本身为虚拟变量的模型,是被解释变量本身取值为0或1的模型,适于对某社会经济现象进行“是”与“否”的判断研究。

特别要注意的是,定型或属性变量,通常由1个以上的虚拟变量描述。

例如,分析考证区域这样一个定性因素的影响时,若将区域因素划分为东、中、西三种属性时,在有截距项的回归模型中,只能引人2个虚拟变量,而这两个虚拟变量只是描述了1个定性因素(区域因素),而不是2个定性因素。

当然,当定性因素为性别因素时,1个虚拟变量就描述了1个定性因素。

第二节 虚拟解释变量的回归在计量经济模型中,加入虚拟解释变量的途径有两种基本类型:一是加法类型;二是乘法类型。

不同的途径引入虚拟变量有不同的作用,加法方式引入虚拟变量改变的是截距;乘法方式引入虚拟变量改变的是斜率。

一、用虚拟变量表示不同截矩的回归——加法类型以加法类型引入虚拟解释变量的模型,如(8.3)式那样,123t t t Y X D u ααα=+++ (8.3)在(8.3)所设定的计量经济模型中,虚拟解释变量与其他解释变量是相加关系。

以加法形式引入虚拟解释变量,从计量经济模型的意义看,其作用是改变了设定模型的截距水平。

以加法方式引入虚拟变量时,分为四种情形:(1)解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量;(2)解释变量包含一个定量变量和一个分为两种类型的定性变量;(3)解释变量包含一个定量变量和一个两种以上类型的定性变量;(4)解释变量包含一个定量变量和两个定性变量。

1、解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量的回归这种情况的模型又被称为方差分析模型,例如(8.4)式i i i u D Y ++=βα(8.4)其中,i Y 为居民的年可支配收入,i D 为虚拟解释变量,i D =1代表城镇居民;i D =0代表非城镇居民。

(8.4)式的意义是,假设其他因素(包括文化程度、职业、性别等)保持不变的条件下,研究城镇居民和非城镇居民的收入是否存在差别。

当i u 满足古典假设时,由式(8.4)有:非城镇居民的年平均收入:α==)0|(i i D Y E (8.5)城镇居民的年平均收入: βα+==)1|(i i D Y E (8.6)即在(8.4)式中,截距项α给出了非城镇居民的年平均可支配收入水平,而另一系数β则表明城镇居民年平均可支配水平不同于非城镇居民年平均可支配收入的部分。

由式(8.5)和(8.6)可知,虚拟解释变量的作用是改变设定模型的截距水平。

为了检验城镇居民和非城镇居民的年均可支配收入是否有显著差别,可构造假设H 0:0=β,即城镇与非城镇居民年均可支配收入无差别。

对式(8.4)回归,依据β估计值的t 检验是否显著,可作出接受或不能接受H 0假设的判断。

2、解释变量包含一个定量变量和一个分为两种类型定性变量的回归例如 12i i i i Y D X ααβμ=+++ (8.7)1:0i Y X D ⎧=⎨⎩城镇居民其中:消费支出;:收入;农村居民模型(8.7)的意义在于描述收入和城乡差别对居民消费支出的影响。

(8.7)式由一个定量解释变量X 和一个分为两种类型的虚拟解释变量组成。

注意这里一个定性变量具有两种类型,只使用了一个虚拟变量。

当(8.7)式中的i u 服从古典假定时,有:基础类型:()1|,0i i i i E Y X D X αβ==+农村居民消费支出: (8.8) 比较类型:()12|,1i i i i E Y X D X ααβ==++城镇居民消费支出:() (8.9) 其中1α为差异截距系数。

(8.7)式可图示为8.1,表明非城镇居民与城镇居民两种类型收入函数的斜率相同(均为β),而截距水平不同。

这说明,城镇居民和非城镇居民在消费支出水平上,存在着规模为1α的差异,而由收入因素而产生的平均消费支出水平变化却是相同的。

图8.1 城镇农村居民消费支出水平的差异在0:10=αH 的假设下,对参数1α估计值的t 检验,可以进行消费支出是否存在城乡差异的检验。

3、解释变量包含一个定量变量和一个两种以上类型的定性变量的回归考虑以下模型:i i i i i u X D D Y ++++=βααα33221(8.10)其中:i Y 为年医疗保健费用支出,i X 为居民的年可支配收入,210D ⎧=⎨⎩高中及高中教育以上其他,310D ⎧=⎨⎩大专及大专以上其他 0X 1 2a显然,模型(8.9)是描述居民的年医疗保健费用支出与居民可支配收入(定量变量)和受教育程度(定性变量)间的因果关系。

这里,定性因素(受教育的程度)划分为三种类型;高中以下、高中、大专及大专以上。

注意这里的定性变量有3种类型,依据虚拟变量设置规则引入了m -1=3-1=2个虚拟变量,而且一个定性变量多种类型时,虚拟变量可同时取值为0,但不能同时取值为1,因为同一定性变量的各种类型间“非此即彼”。

当式(8.10)服从古典假定时,有:基础类型:高中以下教育:1132)0,0,|(X D D X Y E i i βα+=== (8.11) 比较类型:高中教育: i i i X D D X Y E βαα++===)()0,1,|(2132 (8.12)大专及大专以上:i i i X D D X Y E βαα++===)()1,0,|(3132 (8.13)这表明,三种不同教育程度居民的医疗保健费用年均支出的起点水平(截距)不同,差异截距系数为2α和3α。

相关文档
最新文档