高考物理电磁感应现象压轴题专项复习附答案解析
高考物理电磁感应现象压轴难题试卷含答案

高考物理电磁感应现象压轴难题试卷含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。
线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。
重力加速度大小为g ,不计空气阻力。
求: (1)线框的质量m ;(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。
【答案】22112B l gh gR ;(2)+12n n B B =;23112(1)2n B l gh - 【解析】 【分析】 【详解】(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2112v gh =,设线框所受安培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得1F mg =由安培力的表达式得11F B Il =,111=E Blv ,1E I R=联立解得 22112B l m gh gR=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得22n nB l v mg R = 22+1+1n n B l v mg R=且12n n v v +=联立解得1n n B +=(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得22nv h g=112n n v v -==2(1)L n l -联立解得2(1)122(1)n H h L h n l -=+=+-由能量守恒定律得2(1)Q mg n l =-联立解得Q =2.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。
高考物理法拉第电磁感应定律压轴题知识归纳总结含答案解析

高考物理法拉第电磁感应定律压轴题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】0i =;S =;22max P = 【解析】 【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v =刚进入磁场时产生的感应电动势:10e Bdv =导轨宽度:d =回路电阻:(2R Lr =+联立可得:0i =(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆i t umg t m v +∑∆=∑∆2i i v t umg t m v ∆+∑∆=∑∆200umgt mv +=得:S =(3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒( 产生感应电动势:E Bl v '=2212(cos60)tan 60()2E B L at at L at t =⋅︒-︒⋅=-回路的瞬时电阻:20220121[2(cos60)tan 60(cos60)(23)()2cos602R r L at L at r L at =︒-+︒-=+- 功率:22222222222422223()33()[()]24(23)()(23)(23)E B a L at t B a B a L L P at Lt a t R a a r L at r r-===-+=--++-++ 金属棒运动到D 点,所需的时间设为t ',则有: 21122L at '= 解得:Lt a'=当2Lt t a '=<时, 22max 34(23)B L a P r =+4.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)【解析】 【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量. 故本题答案是:(1)1.2V (2)(3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。
高考物理电磁感应现象压轴题专项复习及答案解析

高考物理电磁感应现象压轴题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。
已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。
将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。
导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。
高中物理电磁感应现象压轴题知识点及练习题含答案解析

高中物理电磁感应现象压轴题知识点及练习题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高考物理电磁感应现象压轴题试卷附答案

高考物理电磁感应现象压轴题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。
高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

高考物理与电磁感应现象的两类情况有关的压轴题附答案解析一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
高考物理电磁感应现象压轴题专项复习及答案

高考物理电磁感应现象压轴题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EIR r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
高考物理电磁感应现象压轴难题综合题含答案

高考物理电磁感应现象压轴难题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R =+总联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d -;(3)2B 的大小为132B ,方向沿导轨平面向上.3.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理电磁感应现象压轴题专项复习附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。
线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。
重力加速度大小为g ,不计空气阻力。
求: (1)线框的质量m ;(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。
【答案】22112B l gh gR ;(2)+12n n B B =;23112(1)2n B l gh - 【解析】 【分析】 【详解】(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2112v gh =,设线框所受安培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得1F mg =由安培力的表达式得11F B Il =,111=E Blv ,1E I R=联立解得 22112B l m gh gR=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得22n nB l v mg R = 22+1+1n n B l v mg R=且12n n v v +=联立解得12n n B B +=(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得22nv h g=112n n v v -==2(1)L n l -联立解得2(1)122(1)n H h L h n l -=+=+-由能量守恒定律得2(1)Q mg n l =-联立解得23112(1)2n B l gh Q -=2.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。
有一根质量为m 、电阻为R 的金属棒MN 平行于ab 放置,让它以初速水平向右运动在到达最高点的过程中,ab 边产生的热量为Q 。
求:(1)金属棒MN 受到的最大安培力的大小; (2)金属棒MN 刚进入磁场时,ab 边的发热功率; (3)金属棒MN 上升的最大高度。
【答案】(1)220A 2B L v F R =;(2)22208ab B L v P R=;(3)2082mv Q h mg -=【解析】 【分析】 【详解】(1)金属棒MN 刚冲上斜面时,速度最大,所受安培力最大。
此时电路中总电阻为22222R RR R R R R⋅=+=+总最大安培力2200A 2BLvB L v F BIL B L R R===总由楞次定律知,MN 棒受到的安培力方向沿导轨向下。
(2)金属棒MN 刚进入磁场时,MN 棒中的电流02BLv E I R R==总 则024ab BLv I I R==,2ab ab ab P I R = 解得22208ab B L v P R=(3)当金属棒MN 上升到最大高度的过程中,ab 边、cd 边产生的热量相等,即cd ab Q Q Q ==ab 边产生的热量2·2Q I Rt =金属棒MN 产生的热量2(2)MN Q I Rt =得2MN Q Q =ab 边、cd 边及MN 棒上产生的总热量4Q Q =总由动能定理201402mgh Q mv --=-解得2082mv Q h mg-=3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
在电磁感应现象中,感应电动势分为动生电动势和感生电动势两种。
产生感应电动势的那部分导体就相当于“电源”,在“电源”内部非静电力做功将其它形式的能转化为电能。
(1)如图1所示,固定于水平面的U 形金属框架处于竖直向下的匀强磁场中,磁感应强度为B ,金属框两平行导轨间距为l 。
金属棒MN 在外力的作用下,沿框架以速度v 向右做匀速直线运动,运动过程中金属棒始终垂直于两平行导轨并接触良好。
已知电子的电荷量为e 。
请根据电动势定义,推导金属棒MN 切割磁感线产生的感应电动势E 1;(2)英国物理学家麦克斯韦认为,变化的磁场会在空间激发感生电场,感生电场与静电场不同,如图2所示它的电场线是一系列同心圆,单个圆上的电场强度大小处处相等,我们把这样的电场称为涡旋电场。
在涡旋电场中电场力做功与路径有关,正因为如此,它是一种非静电力。
如图3所示在某均匀变化的磁场中,将一个半径为x 的金属圆环置于半径为r 的圆形磁场区域,使金属圆环与磁场边界是相同圆心的同心圆,从圆环的两端点a 、b 引出两根导线,与阻值为R 的电阻和内阻不计的电流表串接起来,金属圆环的电阻为2R ,圆环两端点a 、b 间的距离可忽略不计,除金属圆环外其他部分均在磁场外。
已知电子的电荷量为e ,若磁感应强度B 随时间t 的变化关系为B =B 0+kt (k >0且为常量)。
a .若x <r ,求金属圆环上a 、b 两点的电势差U ab ;b .若x 与r 大小关系未知,推导金属圆环中自由电子受到的感生电场力2F 与x 的函数关系式,并在图4中定性画出F 2-x 图像。
【答案】(1)见解析(2)a. 2ab 2k πU =3x ; b.22 F =2ker x;图像见解析 【解析】 【分析】 【详解】(1)金属棒MN 向右切割磁感线时,棒中的电子受到沿棒向下的洛仑兹力,是这个力充当了非静电力。
非静电力的大小1F Bev从N 到M 非静电力做功为=W Bevl 非由电动势定义可得1W E Blv q==非(2)a.由01B B kt =+可得Bk t∆=∆ 根据法拉第电磁感应定律2B SE kS t t ∆Φ∆⋅===∆∆ 因为x r <,所以2=πS x根据闭合电路欧姆定律得2/2E I R R =+ab U I R =⋅联立解得22π=3ab k x U b.在很短的时间内电子的位移为s ∆,非静电力对电子做的功为2F s ∆ 电子沿着金属圆环运动一周,非静电力做的功222πW F s F x ∆=∑=非根据电动势定义2W E e=非当x r <时,联立解得22kexF =当x r >时,磁通量有效面积为2S r π=联立解得22ker 2F x= 由自由电子受到的感生电场力2F 与x 的函数关系式 可得F 2-x 图像4.如图所示,粗糙斜面的倾角37θ︒=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,磁场的磁感应强度按21(T)B t π=-的规律变化,开始时线框静止在斜面上,T 在线框运动前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,210m/s g =,370.6sin ︒=, 370.8cos ︒=.(1)求线框静止时,回路中的电流I ;(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为214V 22B D E n n t t π∆Φ∆⎛⎫==⨯⨯= ⎪∆∆⎝⎭设小灯泡电阻为R ,由220E P I R R R R ⎛⎫== ⎪+⎝⎭可得2R =Ω解得1A I === (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得2sin 1cos mg n t ID mg θμθπ⎛⎫=-+ ⎪⎝⎭解得0.45t s π=产生的热量为2.J 83Q Pt ==(3)线框刚好开始运动时210.45T 0.1T B ππ⎛⎫=-⨯= ⎪⎝⎭根据闭合电路的欧姆定律可得000BnsE t I R R R R -∆==++ 根据电荷量的计算公式可得0.16C nBSq I t R R =⋅∆==+5.如图所示,凸字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动.在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求:(1)线框ab 边将离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍; (2)磁场上下边界间的距离H . 【答案】(1)4(2)28QH l mg=+ 【解析】 【分析】 【详解】设磁场的磁感应强度大小写为B ,cd 边刚进入磁场时,线框做匀速运动的速度为v 1,cd 边上的感应电动势为E 1,由法拉第电磁感应定律可得:设线框总电阻为R ,此时线框中电流为I 1,由闭合电路欧姆定律可得:设此时线械所受安培力为F 1,有:由于线框做匀速运动,故受力平衡,所以有:联立解得:设ab 边离开磁场之前,线框做匀速运动的速度为v 2,同理可得:故可知:(2线框自释放直到cd 边进入磁场前,由机械能守恒定律可得:线框完全穿过磁场的过程中,由能量守恒定律可得:联立解得:6.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。