2024学年安徽省合肥市第一中学数学高三上期末质量检测试题含解析

合集下载

数学名校-安徽省合肥市第一中学2024-2025学年高三上学期教学质量检测(11月)数学试题

数学名校-安徽省合肥市第一中学2024-2025学年高三上学期教学质量检测(11月)数学试题
A. B. 的最大值为
C. 的最小值为 D. 的最小值为
10.如图是函数 的部分图象,A是图象的一个最高点,D是图象与y轴的交点,B,C是图象与x轴的交点,且 的面积等于 ,则下列说法正确的是()
A.函数 的最小正周期为
B.函数 图象关于直线 对称
C.函数 图象可由 的图象向右平移 个单位长度得到
D.函数 与 在 上有2个交点
11.已知函数 及其导函数 的定义域均为R,若 ,且 是奇函数,令 ,则下列说法正确的是()
A.函数 是奇函数B.
C D.
三、填空题:本题共3小题,每小题5分,共15分.
12.已知幂函数 在 上单调递减,则 ______.
13.已知 ,且 ,则 ________.
14.设函数 ,下列说法正确的有________.
7.已知函数 , ,若 ,使得 ,则实数a的取值范围是()
A. B.
C. D.
8.已知正数x,y满足 ,则 的最小值为()
A.1B.2C.3D.4
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知关于x的不等式 的解集为 ,则下列结论正确的是()
18.记 的内角A,B,C的对边分别为a,b,c,已知 .
(1)求A取值的范围;
(2)若 ,求 周长的最ຫໍສະໝຸດ 值;(3)若 ,求 的面积.
19.已知函数 ,其中 .
(1)当 时,求曲线 在点 处的切线方程;
(2)判断函数 是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;
(3)讨论函数 在 上零点的个数.
第一学期高三年级教学质量检测

安徽省合肥市第一中学2023-2024学年高一上学期期末考试数学试题

安徽省合肥市第一中学2023-2024学年高一上学期期末考试数学试题

A.{x∣0 x 1} C.{x∣1 x 5}
B.{x∣1 x 0} D.{x∣0 x 4}
2.已知函数 f x 2x 3x 7 ,则该函数零点所在区间为( )
A. 0,1
B. 1, 2
C. 2, 3
3.函数 f x x sin x 的图象大致为( )
cos x 2
D.3, 4
4
10.已知 f x, g x 是定义在 R 上的奇函数和偶函数,且 f x g x ex,e 2.71828 ,
试卷第 2 页,共 5 页
下列选项正确的是( )
A. g x 的最小值为 1
B. f 2x 2 f x g x
C. g x]2 f x]2 1
D. xR ,恒有 f 2x 1 f ax2 2x 的充分不必要条件为 a 4
(1)求函数 f x 在 R 上的解析式;
(2)若对任意的 x 1, ,都有不等式 f x2 m f 2x2 mx 1 0 恒成立,求实数 m
的取值范围. 20.近年来,合肥市地铁轨道交通高质量发展,成为中国内地轨道交通新星,便捷的交 通为市民出行带来极大便利,刷新了市民幸福指数.春节将至,为了提升人们的乘车体 验感,合肥某地铁线路准备通过调整发车时间间隔优化交通出行,已知地铁的发车时间 间隔 t (单位:分钟)满足 3 t 18,t N* ,通过调研,在某一时段,地铁载客量与发 车时间间隔 t 相关,当10 t 18时地铁可达到满载状态,载客量为 1250 人,当 3 t 10
(1)求 f x 的解析式及对称中心;
(2)先将 f x 的图象横坐标缩短为原来的 1 倍,再向右平移 π 个单位后得到 g x 的图
2
12
象,求函数
y
g

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题(含答案)

安徽省合肥市第一中学2025届高三上学期教学质量检测(11月月考)数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={x|y=log3(x2−1)},集合B={y|y=3−x},则A∩B=( )A. (0,1)B. (1,2)C. (1,+∞)D. (2,+∞)2.若sinθ(sinθ+cosθ)=25,则tanθ=( )A. 2或−13B. −2或13C. 2D. −23.已知函数f(x)=a−e x1+ae x⋅cos x,则“a=1”是“函数f(x)的是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)={ax2+e x,x≥0x3−ax2+a,x<0在R上单调,则a的取值范围是( )A. (0,1)B. (0,1]C. [0,1)D. [0,1]5.在▵ABC中,内角A,B,C的对边分别为a,b,c,已知▵ABC的外接圆半径为1,且a2+c2−b2=2ac,1+2sin A 1−2cos A =sin2C1+cos2C,则▵ABC的面积是( )A. 22B. 32C. 1D. 26.已知一个正整数N=a×1010(1≤a<10),且N的15次方根仍是一个整数,则这个数15次方根为().(参考数据:lg2≈0.3,lg3≈0.48,lg5≈0.7)A. 3B. 4C. 5D. 67.已知函数f(x)=x ln x,g(x)=e x−x2+a,若∃x1,x2∈[1,2],使得f(x1)=g(x2),则实数a的取值范围是( )A. (4−e2,ln4+1−e)B. [4−e2,ln4+1−e]C. (ln4+4−e2,1−e)D. [ln4+4−e2,1−e]8.已知正数x,y满足9x2−1+9y2−1=9xy,则4x2+y2的最小值为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

安徽省合肥市第一中学2024届高三最后一卷数学试题(解析版)

安徽省合肥市第一中学2024届高三最后一卷数学试题(解析版)

合肥一中2024届高三最后一卷数学试题(考试时间:150分钟满分:120分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量()()2,3,1,3a b ==-,则2a b -=()A.2 B.3C.4D.5【答案】D 【解析】【分析】根据向量坐标进行线性运算,再由模长公式即可求解.【详解】()()()22,32,64,3,25a b a b -=--=--== ,故选:D.2.已知复数z 满足()1i 2i z ⋅+=-,则z =()A.13i 22+B.13i 22-C.13i22-- D.13i22-+【答案】A 【解析】【分析】根据题设求出z ,从而求出z 的值.【详解】由题知,()()()()2i 1i 2i 13i 13i 1i 1i 1i 222z ----====-++-,所以13i 22z =+.故选:A.3.已知焦点在x轴上的椭圆的离心率为3,焦距为,则该椭圆的方程为()A.2213x y += B.2219x y +=C.22197x y += D.2213628x y +=【答案】C 【解析】【分析】根据离心率和焦距可得3a c =⎧⎪⎨=⎪⎩,进而可得2b ,即可得方程.【详解】由题意可知:232c a c ⎧=⎪⎨⎪=⎩,可得3a c =⎧⎪⎨=⎪⎩,则2927b =-=,所以该椭圆的方程为22197x y +=.故选:C.4.已知等比数列{}n a 的前n 项和为n S ,且3314,2S a ==,则4a =()A.1B.23或-1 C.23-D.23-或1【答案】D 【解析】【分析】根据等比数列基本量的计算即可求解公比,进而可求解.【详解】依题意,10a ≠,因为314,S =2312a a q ==,12112(1),a a a q ∴+==+故2610q q --=,故12q =或1,3q =-当12q =时,431a a q ==;当1,3q =-4323a a q ==-;423a ∴=-或1.故选:D5.已知α为三角形的内角,且15cos 4α-=,则sin 2α=()A.14-+ B.14 C.38- D.354-【答案】B 【解析】【分析】利用降幂公式得到答案.【详解】因为α为三角形的内角,15cos 4α=,所以sin 2α==154+===.故选:B6.甲乙丙丁戊5名同学坐成一排参加高考调研,若甲不在两端且甲乙不相邻的不同排列方式的个数为()A.36种B.48种C.54种D.64种【答案】A 【解析】【分析】利用间接法,先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,结合排列数运算求解.【详解】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为3211334233A A A A A 36-=种,故选:A.7.已知四棱锥P ABCD -的各顶点在同一球面上,若2224AD AB BC CD ====,PAB 为正三角形,且面PAB ⊥面ABCD ,则该球的表面积为()A.13π3B.16πC.52π3D.20π【答案】C 【解析】【分析】作辅助线,找到球心的位置,证明O 到四棱锥所有顶点距离相等;根据勾股定理,求出球的半径,进而求出球的表面积.【详解】如图,取AD 的中点E ,取AB 的中点G ,连接EG 、PG ,在线段PG 上取一点F ,使13FG PG =,过点E 作平面ABCD 的垂线OE ,使OE FG =,连接OF ,易知四边形ABCD 是等腰梯形,ABE 、BCE 、CDE 均为等边三角形,所以2AE BE CE DE ====,因为OE ⊥平面ABCD ,所以90OEA OEB OEC OED ∠=∠=∠=∠=︒,所以OA OB OC OD ===,因为PAB 为正三角形,G 为AB 的中点,所以PG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PG ⊂平面PAB ,所以PG ⊥平面ABCD ,因为OE ⊥平面ABCD ,所以//PG OE ,即//FG OE又因为OE FG =,所以四边形OEGF 为平行四边形,所以//OF EG ,因为ABE 为正三角形,G 为AB 的中点,所以EG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,EG ⊂平面ABCD ,所以EG ⊥平面PAB ,所以OF ⊥平面PAB ,又因为F 是ABP 的外心,所以FA FB FP ==,所以OA OB OP ==,所以O 即为四棱锥外接球的球心,因为1333OE FG PG ===,2AE =,所以393R OA ====所以2239524π4π)π33S R ==⋅=,故选:C.8.过()0,M p 且倾斜角为π,π2αα⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭的直线l 与曲线2:2C x py =交于,A B 两点,分别过,A B 作曲线C 的两条切线12,l l ,若12,l l 交于N ,若直线MN 的倾斜角为β.则()tan αβ-的最小值为()A.2B.C. D.【答案】C 【解析】【分析】首先画出平面图形,求出tan tan 2k k αβ'⋅=⋅=-的结论,再利用两角和与差的正切公式以及前面的结论将()tan αβ-化简为()2k k ⎛⎫-+-⎪⎝⎭的形式,由基本不等式即可求得最值.【详解】如图,设()00,N x y ,1122(,),(,)A x y B x y ,由于曲线2:2x C y p=,则x y p '=,所以在A 点的切线方程为111()x y y x x p-=-,同理在B 点的切线方程为222()x y y x x p-=-,由于N 点是两切线的交点,所以1010120202()()x y y x x px y y x x p⎧-=-⎪⎪⎨⎪-=-⎪⎩,则AB l 为()000000()2xx xy y x x y y y x x p y y p p-=-⇒-=-⇒=+,且过()0,M p ,0y p ∴=-且0tan x k p α==,设2tan ,2p k k k x β''==-∴⋅=-,()tan tan tan 1tan tan αβαβαβ-∴-=+()21k k k k k k -⎛⎫==-+-≥ ⎪+⋅⎝⎭''当且仅当k =时“=”成立,故选:C.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下表是某人上班的年收入(单位:万元)与上班年份的一组数据:年份x 1234567收入y2.93.33.64.44.85.25.9则下列命题正确的有()A.年收入的均值为4.3B.年收入的方差为1.2C.年收入的上四分位数为5D.若y 与x 可用回归直线方程0.5ˆˆyx a =+来模拟,则ˆ 2.3a =【答案】AD 【解析】【分析】对于A :根据平均数定义运算求解;对于B :根据方差公式分析求解;对于C :根据百分位数的定义分析求解;对于D :根据线性回归方程必过样本中心点分析求解.【详解】对于选项A :由题意可得:年收入的均值 2.9 3.3 3.6 4.4 4.8 5.2 5.94.37y ++++++==,故A正确;对于选项B :由题意可得:年份x 1234567收入y2.93.3 3.64.4 4.85.2 5.9()2y y - 1.9610.490.010.250.812.56所以年收入的方差21.9610.490.010.250.812.567.081.277s ++++++==≠,故В错误;对于选项C :因为70.75 5.25⨯=,所以年收入的上四分位数为第6个数据,是5.2,故C 错误;对于选项D :因为年份的平均数123456747++++++==x ,即样本中心点为()4,4.3,所以0.5 4.30.523ˆ4.ay x =-=-⨯=,故D 正确;故选:AD.10.已知函数()2cos sin f x x x x ωωω=-(0)>ω,则下列命题正确的有()A.当2ω=时,5π24x =是()y f x =的一条对称轴B.若()()122f x f x -=,且12minπx x -=,则12ω=C.存在()0,1ω∈,使得()f x 的图象向左平移π6个单位得到的函数为偶函数D.若()f x 在[]0,π上恰有5个零点,则ω的范围为72,3⎡⎫⎪⎢⎣⎭【答案】BD 【解析】【分析】首先对函数表达式进行化简,A 选项,将2ω=,5π24x =代入发现此处有对称中心,没有对称轴;B 选项,由题设知,π为半个周期;C 选项,对函数进行平移变换,再判断奇偶性;D 选项,求出π26x ω+的范围,再确定区间右端点π2π6ω+的范围,从而求出ω的范围.【详解】()31cos 2311π1sin2=cos 2=sin 22222262x f x x x x x ωωωωω-⎛⎫=-+-+-⎪⎝⎭对于A ,当2ω=时,()π1sin 462f x x ⎛⎫=+- ⎪⎝⎭,所以55ππ11πsin 246622f ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以5π24x =不是()y f x =的一条对称轴,故A 错误;对于B ,由题意知,2πT =,所以22π2πω=,又因为0ω>,所以12ω=,故B 正确;对于C ,()f x 向左平移π6个单位后,得到()ππ1ππ1sin 2sin 2662362g x x x ωωω⎡⎤⎛⎫⎛⎫=++-=++- ⎪ ⎢⎝⎭⎝⎭⎣⎦,假设()g x 为偶函数,则ππππ362k ω+=+,Z k ∈,解得13k ω=+,Zk ∈而(0,1)ω∈,所以假设不成立,故C 错误;对于D ,[]0,πx ∈时,πππ2,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦,令()π1=sin 2062f x x ω⎛⎫+-= ⎪⎝⎭,则π1sin 262x ω⎛⎫+= ⎪⎝⎭,因为()f x 在[]0,π上恰有5个零点,所以π25π29π2π,666ω⎡⎫+∈⎪⎢⎣⎭,解得72,3ω⎡⎫∈⎪⎢⎣⎭,故D 正确.故选:BD.11.已知函数()()e ,ln xf xg x x ==-,则下列命题正确的有()A.若()g x ax ≥恒成立,则1a e≤-B.若()y f x =与1y ax =-相切,则2ea =C.存在实数a 使得()y f x ax =-和()y g x ax =+有相同的最小值D.存在实数a 使得方程()f x x a -=与()x g x a +=有相同的根且所有的根构成等差数列【答案】ACD 【解析】【分析】对于A :原题意等价于ln xa x ≤-在()0,∞+内恒成立,令()ln ,0x h x x x=->,利用导数求其最值,结合恒成立问题分析求解;对于B :对()y f x =求得,结合导数的几何意义列式分析可得()1ln 1a a -=-,代入2e a =检验即可;对于C :取1a =,利用导数求最值,进而分析判断;对于D :结合选项C 可知:()(),h x x ϕ的图象,设交点为()(),M m h m ,结合图象分析可知从左到右的三个交点的横坐标依次为ln ,,e m m m ,进而可得结果.【详解】对于选项A ,若()g x ax ≥,则ln x ax -≥,且0x >,可得ln xa x≤-,可知原题意等价于ln xa x≤-在()0,∞+内恒成立,令()ln ,0x h x x x =->,则()2ln 1x h x x ='-,令()0h x '>,解得0e x <<;令()0h x '<,解得e x >;可知()y h x =在()0,e 内单调递减,在()e,∞+内单调递增,则()()1e eh x h ≤=-,所以1a e≤-,故A 正确;对于选项B :因为()e xf x =,则()e xf x '=,设切点为()00,ex P x ,则切线斜率()0=ex k f x '=,可得切线方程为()000ee x x y x x -=-,即()000e e 1x x y x x =+-,由题意可得()000e e 11xx a x ⎧=⎪⎨-=-⎪⎩,整理得()1ln 1a a -=-,显然2e a =不满足上式,故B 错误;对于选项C :例如1a =,构建()()e xh x f x x x =-=-,则()e 1xh x '=-,令()0h x '>,解得0x >;令()0h x '<,解得0x <;可知()y h x =在(),0∞-内单调递减,在()0,∞+内单调递增,可知()y h x =的最小值为()01h =;构建()()ln ,0x g x x x x x ϕ=+=-+>,则()111x x x xϕ-=-+=',令()0x ϕ'>,解得1x >;令()0x ϕ'<,解得01x <<;可知()y x ϕ=在()0,1内单调递减,在()1,∞+内单调递增,可知()y x ϕ=的最小值为()11G =,可知()y f x ax =-和()y g x ax =+有相同的最小值1,故C 正确;对于选项D :结合选项C 可知:()(),h x x ϕ的图象大致如下:设交点为()(),M m h m ,易知01m <<,由图象可知:当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点()(),M m h m ,即()a h m =.因为()()h m m ϕ=,所以e ln m m m m -=-,即e 2ln 0m m m -+=.令()()()h x x a h m ϕ===,得e ln e x m x x x m -=-=-,解得x m =或e m x =,由01m <<得1e m m <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时,从左到右的三个交点的横坐标依次为ln ,,e m m m .因为e 2ln 0m m m -+=,即e ln 2m m m +=,所以ln ,,e m m m 成等差数列,故D 正确;故选:ACD.【点睛】关键点点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}220A x x x =∈--≤N∣,集合(){}22210B x x a x a a =-+++=∣,若B A ⊆,则=a __________.【答案】0或1【解析】【分析】根据题意先求集合,A B ,结合包含关系分析求解.【详解】由题意可知:{}{}{}220120,1,2A x x x x x =∈--≤=∈-≤≤=NN ∣∣,(){}{}22210,1B x x a x a a a a =-+++==+∣,因为B A ⊆,可知{}0,1B =或{}1,2B =,可得0a =或1a =.故答案为:0或1.13.过()1,2P 的直线l 被曲线2240x x y -+=所截得的线段长度为l 的方程为__________.【答案】1x =或34110x y +-=【解析】【分析】根据曲线的方程确定曲线为圆,再根据直线与圆的位置,分2种情况讨论:①当直线的斜率不存在,②当直线的斜率存在时,每种情况下先设出直线的方程,利用直线被圆所截得的线段长度,求解直线的方程可得出答案.【详解】由曲线2240x x y -+=知,该曲线为圆()2224x y -+=且圆心为()2,0,半径为2r =.当直线斜率不存在时,直线方程为1x =,此时圆心到直线的距离为1d =.根据垂径定理,直线截圆所得线段长为:l ==,满足题意.当直线的斜率存在时,设直线方程为:()12y k x =-+,即20kx y k --+=圆心到直线的距离为d =,当直线截圆所得线段长度l =根据垂径定理2222l d r ⎛⎫+= ⎪⎝⎭可得,22222⎛⎫+= ⎪ ⎪⎝⎭,解得34k =-此时直线方程为34110x y +-=.故答案为:1x =或34110x y +-=.14.在ABC 中,设,,A B C 所对的边分别为,,a b c ,且,tan sin sin b c A B C ≠=+,则以下结论正确的有__________.①20,11a b c ⎛⎫ ⎪∈ ⎪ ⎪+⎝⎭;②211a b c ⎛⎫∈ +⎝⎭;③2b c a +⎫∈⎪⎭;④2b c a ⎛+∈ ⎝;⑤a ∞⎫∈+⎪⎪⎭.【答案】⑤【解析】【分析】依题意可得sin sin sin cos A B C A =+,利用正弦定理将角化边得到cos ab c A=+,将上式两边平方,再由余弦定理得到2220cos a b c A+-=,最后由余弦定理及基本不等式计算可得.【详解】因为tan sin sin A B C =+,即sin sin sin cos AB C A=+,由正弦定理可得cos ab c A=+,所以22222cos a b c bc A=++,又2222cos bc A b c a +-=,所以()()22222222cos 2cos cos cos a b c A bc A b c A b c a A=++=+++-,所以()2221cos 0cos a b c A A ⎛⎫+-+= ⎪⎝⎭,因为()0,πA ∈,所以()cos 1,1A ∈-,则1cos 0A +≠,所以2220cos a b c A+-=,()222cos a b c A =+,又b c ≠,所以222b c bc +>,所以()222222cos 2cos a b cA bc A bc a =+>=+-,所以2222b c a +>,则a >a ∞⎫∈+⎪⎪⎭.故答案为:⑤【点睛】关键点点睛:本题关键是余弦定理的灵活应用,第一次得到2220cos a b c A+-=,再由基本不等式得到()222222cos 2cos a b cA bc A bc a =+>=+-.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.正方体1111ABCD A B C D -的棱长为2,P 是线段1AB 上的动点.(1)求证:平面11BDD B ⊥平面11A BC ;(2)1PB 与平面11A BC 所成的角的正弦值为3,求PB 的长.【答案】(1)证明见解析(2)PB =【解析】【分析】(1)根据题意可得111A C DD ⊥,1111AC B D ⊥,进而可证11A C ⊥平面11BDD B ,即可得结果;(2)设1B 在平面11A BC 上的射影点为E ,连接1,EP EB ,利用等体积法可得13EB =,结合线面夹角可得13EB =,进而可得结果.【小问1详解】因为1DD ⊥平面1111D C B A ,且11AC ⊂平面1111D C B A ,可得111AC DD ⊥,四边形1111D C B A 为正方形,则1111AC B D ⊥,且111111,B D DD D B D ⋂=,1DD ⊂平面11BDD B ,可得11A C ⊥平面11BDD B ,且11AC ⊂平面11A BC ,所以平面11BDD B ⊥平面11A BC .【小问2详解】设1B 在平面11A BC 上的射影点为E ,连接1,EP EB,可知11A BC V是以边长为1134A BC S =⨯=V ,因为111111B A BC B A B C V V --=,即1111222332EB ⨯=⨯⨯⨯⨯,解得1233EB =,设1PB 与平面11A BC 所成的角的大小为θ,则111233sin 3EB PB PB θ===,可得1PB =,在1BPB △中,由余弦定理得,222111π2cos 4PB BB PB BB PB =+-⨯⨯,即224PB =+-,解得PB =.16.甲和乙进行中国象棋比赛,每局甲赢的概率为0.8,甲输的概率为0.2,且每局比赛相互独立.(1)若比赛采取三局两胜制,且乙已经赢得比赛,则比赛需要的局数X 的数学期望()E X 为多少?(保留小数点后一位)(2)由于甲、乙实力悬殊,乙提出“甲赢5局之前乙赢2局,则乙胜”,求乙胜的概率.【答案】(1)2.6(2)0.34464【解析】【分析】(1)分析可知X 的可能取值为2,3,结合条件概率求()()2,3P X P X ==,进而可得期望;(2)根据题意分析乙胜的情况,结合独立事件概率乘法公式分析求解.【小问1详解】记“乙已经赢得比赛”为事件A ,则()120.20.2C 0.20.80.20.104P A =⨯+⨯⨯⨯=,由题意可知:X 的可能取值为2,3,则有:()()12C 0.20.20.80.20.2582,30.104130.10413P X P X ⨯⨯⨯⨯======,所以X 的数学期望()583423 2.6131313E X =⨯+⨯=≈.【小问2详解】由题意可知:每局乙赢的概率00.2p =,则()()()()2321110200030004000C 1C 1C 1P A p p p p p p p p p p ⎡⎤⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦⎣⎦()415000C 1p p p ⎡⎤+-⎣⎦()()()()234200000121314151p p p p p ⎡⎤=+-+-+-+-⎣⎦()()()()()22340.21210.2310.2410.2510.2⎡⎤=+-+-+-+-⎣⎦0.048.6160.34464=⨯=,所以乙胜的概率0.34464.17.()()ex af x a -=∈R .(1)若()f x 的图象在点()()00,A x f x 处的切线经过原点,求0x ;(2)对任意的[)0,x ∈+∞,有()sin f x x ≥,求a 的取值范围.【答案】(1)1(2)πln2,42∞⎛⎤-+ ⎥⎝⎦【解析】【分析】(1)求得()ex af x -'=,得到()00ex af x -='且()00ex af x -=,根据题意,列出方程,即可求解;(2)根据题意,转化为e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()e sin x ag x x -=-,当0a ≤时,符合题意;若0a >,求得()ecos x ag x x --'=,令()()h x g x '=,利用导数求得()g x '的单调性,结合()π00,02g g ⎛⎫<> '⎪⎝⎭',得到存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,得出()g x 的单调性和极小值,进而求得a 的取值范围.【小问1详解】由函数()e x af x -=,可得()e x af x -'=,所以()00ex af x -='且()00ex af x -=,即切线的斜率为0e x a -,切点为()00e,x aA x -因为()f x 的图象在点()()00,A x f x 处的切线经过原点,可得000e 0ex a x ax ---=-,解得01x =.【小问2详解】任意的[)0,x ∈+∞,有()sin f x x ≥,即e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()[)esi ,0,n x ag x x x -=∈-+∞,若0a ≤,则0x a -≥,可得e 1x a -≥,所以()e sin 1sin 0x ag x x x -=-≥-≥,符合题意;若0a >,可得()ecos x ag x x --'=,令()()h x g x '=,则()e sin x a h x x -+'=,当0πx ≤≤时,()0h x '>,()g x '在[]0,π递增,而()π2π0e 10,e02a ag g --⎛⎫=-<=> ⎪⎝⎭'',所以,存在唯一的[]0π0,0,π2x ⎛⎫∈⊆ ⎪⎝⎭,使得()000e cos 0x ag x x --'==,所以,当00x x <<时,()0g x '<,()g x 在()00,x 递减,当0πx x <<时,()0g x '>,()g x 在区间()0,πx 递增,故当0x x =,函数()g x 取得极小值()00000e sin cos sin 0x ag x x x x -=-=-≥,所以0π04x <≤,此时,00lncos x a x -=,可得00πlncos ln 42a x x =-≤-,即πln2042a <≤+;当πx >时,()πln 2142e sin e1e1e 10x x ax ag x x ---=-≥-≥-≥->,因而πln2042a <≤+,符合题意,综上所述,实数a 的取值范围是求πln2,42∞⎛⎤-+ ⎥⎝⎦.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.18.已知双曲线2222:1(0,0)y x C a b a b-=>>的上焦点为(,下顶点为A,渐近线方程是y =,过20,3B ⎛⎫ ⎪⎝⎭点的直线交双曲线上支于,P Q 两点,,AP AQ 分别交直线23y =于,M N 两点,O 为坐标原点.(1)求C 的方程;(2)求证:,,,M N O A 四点共圆;(3)求(2)中的圆的半径r 的取值范围.【答案】(1)22142-=y x (2)证明见解析(3)5.3⎛ ⎝【解析】【分析】(1)根据题意得到关于,,a b c 的方程组,解出即可;(2)方法一:设直线2:3PQ y kx =+,联立双曲线方程得到韦达定理式,求出11836M x x y =+,22836N x x y =+,最后计算并证明出BO BA BM BN =即可;方法二:转化为证明出1OM AN k k =,同法一设线联立得到韦达定理式,再整体代入计算出1OM AN k k =即可;(3)设圆心为T ,计算出(),1T k -,根据r =k 的范围即可.【小问1详解】由题,222ac a b c b==+=,解得224,2a b ==,所以C 的方程为22142-=y x .【小问2详解】(方法一)设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩,解得21629k <<,且()()1212222243243239,223292k k x x x x k k kk -+====----,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,()()1212121288643636922x x x x BM BN y y y y =⨯=++++()()()121221212126464864922939x x x x y y k x x k x x ==+++++()()()22223292641632846499399232k k k k k k -==⋅+⋅+--,22162339BO BA ⎛⎫=⨯+= ⎪⎝⎭,则BO BA BM BN =,所以,,,M N O A 四点共圆.(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆πAOM ANM ∠∠⇔+=,ππ2αβ⎛⎫⇔++= ⎪⎝⎭ππ,,0,22αβαβ⎛⎫⇔+=∈ ⎪⎝⎭tan tan 1αβ⇔=1OM AN k k ⇔=设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420,990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩解得21629k <<,()()121222324,9232kx x x x k k =-+=---,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,121222,4OM AN AQ y y k k k x x ++===()21212121212121288864223339444OM ANkx kx k x x k x x y y k k x x x x x x ⎛⎫⎛⎫+++++ ⎪⎪++⎝⎭⎝⎭=⋅==()()()2222328464399232132492kk k k k k ⎡⎤⎡⎤⎢⎥⎢⎥-+-+--⎢⎥⎢⎥⎣⎦⎣⎦=⎡⎤⎢⎥--⎢⎥⎣⎦所以,,,M N O A 四点共圆.【小问3详解】设圆心为T ,则1T y =-,121212124448823636333M N T x x x x x x x y y kx kx ⎛⎫⎪+==+=+ ⎪++ ⎪++⎝⎭()()()()()()221212221212223284822392324438643284643339399232kk kx x x x k k k k k x x k x x k k k k⋅+⋅++--==⋅=+++⋅+⋅+--,(),1T k ∴-,因为21629k <<,则5.3r ⎛= ⎝【点睛】关键点点睛:本题第二问的关键是采用设线法得到韦达定理式,然后利用四点共圆的充要条件代入计算证明即可,第三问的关键是得到圆心坐标,从而得到r =19.给定自然数n 且2n ≥,设12,,,n x x x 均为正数,1ni i x T ==∑(T 为常数),11n i ni i nx x T x T x -==--∑.如果函数()f x 在区间I 上恒有()0f x ''>,则称函数()f x 为凸函数.凸函数()f x 具有性质:()1111n n i i i i f x f x n n ==⎛⎫≥ ⎪⎝⎭∑∑.(1)判断()1xf x x=-,()0,1x ∈是否为凸函数,并证明;(2)设()1,2,,ii x y i n T == ,证明:111111n ny y n -≤---;(3)求nnx T x -的最小值.【答案】(1)()f x 在()0,1上为凸函数,证明见解析(2)证明见解析(3)()5128221nn --.【解析】【分析】(1)对()f x 求导之后,再求二阶导数,证明()0f x ''>即可得出结论;(2)根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑;将11n i n i i nx x T x T x -==--∑中的分子、分母同时除以T ,得到()111n ni i n y f y y -==-∑;加上1111n ni i n n i i y y y y -===-=-∑∑,利用以上条件得到一个关于n y 与n 的不等式,变形后即可得出结论.(3)设i i x y T=,将n n x T x -转化为1n n y y -,判断其单调性,将问题转化为求n y 的最小值;利用(2)的结论,求出n y 的最小值,代入1n ny y -即可得出答案.【小问1详解】()f x 在()0,1上为凸函数.证明:由题知,()22(1(1)())(11)x f x x x x ==-'----,所以()43(1)(11)2()2f x x x x =-'=--',因为()0,1x ∈,所以10x ->,()0f x ''>,所以()f x 在()0,1上为凸函数.【小问2详解】证明:因为i i x y T =()1,2,,i n = ,所以11111n n n i i i i i i x T y x TT T =======∑∑∑,由题知11n i n i i n x x T x T x -==--∑,分子分母同时除以T ,得1111i n n i n i x x TT x x T T -==--∑,所以1111n i n i i n y y y y -==--∑,即()111n n i i n y f y y -==-∑,根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑,所以111111111111n i n i n n i i y y n n y y n -=-=-⋅≥----∑∑,又因为1111n n i i n n i i y y yy -===-=-∑∑,所以1(11111))111(11(11)n n n n n n y y y n n y n y y n ⋅---⋅≥=------⋅--,两边同时乘以n 1-,得(1)(111()1)n n n n y n y y n y --≥----,因为()1,2,,i x n T i <= ,所以(0,1)i i x y T =∈,又因为2n ≥,所以(1)(1011(1))n n n n y n y y n y --≥>----,两边同时取倒数,得11(11(1))1)(111n n n n n y n y y n y y n ----≤=-----,所以111111n n y y n -≤---,即111111n n y y n -≤---.【小问3详解】设i i x y T =()1,2,,i n = ,则n n x y T =,且()0,1n y ∈,所以11111n n n n n n n x x y T x T x y y T ===-----,随n y 增大而增大,由(2)知,111111n n y y n -≤---,所以()2111n n n n y y y n n y -⋅--≤--,所以()2(34)210n n y n n y n --+-≤-,当2n =时,120n y -+≤,12n y ≥,所以1111n n n x T x y =-≥--,当且仅当1212y y ==时,等号成立,当3n ≥时,()()3451283451282222n n n y n n ---+≤≤--,所以1n n n n x y T x y =≥--22(5128)(34)(24)4128n n n n nn n--++-+-=-+()22288(22412821n n n nn n n-+-+--==-+-,当且仅当()()121151281221nny ny y yn n n--=====---时,等号成立,当2n=时,最小值为1,满足上式,所以nnxT x-的最小值是()5128221nn--.【点睛】关键点点睛:第2问的关键是将条件中x转化为y,紧紧围绕凸函数的性质来做文章;第3问关键是将nnxT x-转化为1nnyy-,利用第2问的结论,求出ny的最小值.。

安徽省合肥市第一中学高三最后一卷数学答案和解析

安徽省合肥市第一中学高三最后一卷数学答案和解析

合肥一中2023届高三最后一卷数学参考答案1.解析:因为][0,2,2,0A B ⎡⎤==-⎣⎦所以{}(){}0,0R A B A B x Rx ⋂=⋂=∈≠∣ð.故选:C .2.解析:因为1z =+,所以1z =,故z 的虚部是.故选:A .3.解析:5x =,故0.155 5.75 6.5y =⨯+=,经计算可得被污损的数据为6.4,答案选B .4.解析:曲线1:sin 2cos22C y x x π⎛⎫=+=⎪⎝⎭,把1:cos2C y x =上各点的横坐标缩短到原来的23,纵坐标不变,可得cos3y x =的图象;再把得到的曲线向左平移18π个单位长度,可以得到曲线25:cos 3cos 366C y x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象,故选:C.5.解析:设直线1y =与y 轴交点为M ,由对称性,易知MFA 为直角三角形,且1602AFM AFB ∠∠== ,2AF FM ∴=,即1212p +=,去绝对值,解得23p =或6,p =∴抛物线的准线方程为13y =-或3y =-.故选:C.6.解析:一方面,考虑{}Ω,,,a b c d =含有等可能的样本点,{}{}{},,,,,A a b B a c C a d ===.则()()()()()()11,24P A P B P C P AB P BC P AC ======,故,,A B C 两两独立,但()1148P ABC =≠,故此时,()()()()P ABC P A P B P C =不成立.另一方面,考虑{}Ω1,2,3,4,5,6,7,8=含有等可能的样本点,{}{}{}1,2,3,4,3,4,5,6,4,6,7,8A B C ===.则()()()()11,28P A P B P C P ABC ====()111822P AC =≠⨯,故,A C 不独立,也即,,A B C 两两独立不成立.综上,“,,A B C 两两独立”是“()()()()P ABC P A P B P C =”的既不充分也不必要条件.故选D.7.解析:作AQ 垂直下半平面于,作AH x ⊥轴于H ,连接,HQ QB .设11,,,(0)A m B m m m m ⎛⎫⎛⎫--> ⎪ ⎪⎝⎭⎝⎭由题可知60AHQ ∠= ,则11,,22AH QH AQ m m m ===,两点间距离公式可得222144QB m m =+.22222144AB AQ QB m m =+=+≥,当且仅当22m =时,AB 取最小值2.故选A.8.解析:因为()1f x +为偶函数,所以()()11f x f x +=-+①,所以()f x 的图象关于直线1x =轴对称,因为()()11f x g x --=等价于()()11f x g x --=②,又()()31f x g x -+=③,②+③得()()132f x f x -+-=④,即()()132f x f x +++=,即()()22f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,又()()13g x f x =--,所以()g x 的周期也为4,故选项B 正确,①代入④得()()132f x f x ++-=,故()f x 的图象关于点()2,1中心对称,且()21f =,故选项A 正确,易得()()01,41f f ==,且()()132f f +=,故()()()()12344f f f f ++==,故20221()5054(1)(2)2021(1)i f i f f f ==⨯++=+∑,因为()1f 与()3f 值不确定,故选项C 错误,因为()()31f x g x -+=,所以()()()()()()10,30,013,211g g g f g f ===-=-,所以()()()()022130g g f f ⎡⎤+=-+=⎣⎦,故()()()()01230g g g g +++=,故2023()50600i g i ==⨯=∑,所以选项D 正确,故选C .9.解析:A.()()22AD AF AB AF ED =+=+,故A 错误;B.因为()()2,22||AB EA AB EA FA AB FA AB EB AB ⊥⋅+=⋅=⋅= ,故B 正确;C.()()11,22BC CD FE BC BC CD FE FE ⋅=⋅= ,又BC FE =,所以()()BC CD FE BC CD FE ⋅=⋅ ,故C正确;D.AE 在CB方向上的投影向量为()3322AE CB CB AE CB CB CB e CB CB⋅=⋅=-=,故D 错误.故选BC .10.解析:由切线长定理易得12l r r =+,A 正确.由勾股定理知()()222121212(2)4R r r r r r r =+--=,解得R =,B 正确.()()()222122222221212121212124422S R R R S r r r r r r r r l r r r r ππππ===+++++++.()()33212222222121212121212442331233R R V R R V r r r r r r r r h r r r r ππππ===++++++.所以1122,C S V S V =正确.1122212212122122231S r r r r S r r r r r r ==≤++++,当且仅当12r r =时等号成立,这与圆台的定义矛盾,故D 错误.综上,答案为ABC .11.解析:以BC 为x 轴,DA 为y 轴建系,则()(0,0,D A 可以求得动点M 的轨迹方程:22302x y y +-=.这是一个圆心在点0,4P ⎛⎫ ⎪ ⎪⎝⎭,半径为34的圆(不含原点)D A 项:()1,0B -,所以max 193||4BM BP r =+=.故A 错误B项:2222||1||11424CB MB MC MD MD ⎛⎫⋅=-=-≤-=- ⎪ ⎪⎝⎭ .故B 正确C 项:易知直线:10AB x y -+=,故1328ABM M AB S AB d -=≤.故C 错误D 项:易知cos MBC ∠取最小值,当且仅当MBC ∠取最大值,也即BM 与P 相切时.此时3tan 24MBC ∠=,故221tan 132cos 191tan2MBCMBC MBC ∠∠∠-==+.故D 正确.故选:BD.12.解析:由sin 0,cos 0x x >>得()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,2x πππ⎛⎫+∈ ⎪⎝⎭不在定义域内,故()()f x f x π+=不成立,易知()f x 的最小正周期为2π,故选项A 错误,又()22222cos log cos 2sin log sin 2f x x x x x f x π⎛⎫-=⋅+⋅=⎪⎝⎭,所以()f x 的图象关于直线4x π=对称,所以选项B 正确,因为()222222sin log sin cos log cos f x x x x x =⋅+⋅,设2sin t x =,所以函数转化为()()()()()()2222log 1log 1,0,1,log log 1g t t t t t t g t t t =⋅+-⋅-∈='--,所以()0g t '>得,()0g t '<得102t <<,所以()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,故min 1()12g t g ⎛⎫==- ⎪⎝⎭,即min ()1f x =-,故选项C 正确,因为()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,由2sin t x =,令210sin 2x <<得20sin 2x <<,又()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,解得22,4k x k k Z πππ<<+∈,因为2sin t x =在2,24k k πππ⎛⎫+ ⎪⎝⎭上单调递增,所以()f x 的单调递减区间为2,2,4k k k Z πππ⎛⎫+∈ ⎪⎝⎭,同理函数的递增区间为2,2,42k k k Z ππππ⎛⎫++∈⎪⎝⎭,所以选项D 正确,故选BCD.13.解析:因为22(1)y x =-',所以曲线11xy x+=-在点()2,3-处的切线斜率为2,所以切线方程为()322y x +=-,即27y x =-,即270x y --=.14.解析:法1:()tan tan tan 1,tan tan tan tan 11tan tan αβαβαβαβαβ++==-∴+=-- .()()()cos sin 1tan tan tan tan 2cos cos βααβαβαβαβ--+∴=-++=.法2:(特殊值法)令38παβ==,易得答案.15.解析:0.255205.2550.250.0025510.0199=+++=+=- .16.解析:设双曲线的右焦点为2F ,根据双曲线方程知,2c =.直线过原点,由对称性,原点O 平分线段原点AB ,又原点O 平分线段2,FF ∴四边形2AFBF 为平行四边形.ABF 和2ABF 中,分别有中位线,,OP BF OQ AF ∥∥,,,OP OQ AF BF ⊥∴⊥∴ 四边形2AFBF 为矩形,2BFF ∴ 为直角三角形.不妨设B 在第一象限,设直线AB 倾斜角为2θ,则2,32ππθ⎡⎫∈⎪⎢⎣⎭,且OFB OBF ∠∠θ==,在Rt 2BFF中可得:22124cos 4sin ,2cos 2sin 4c a BF BF e a θθπθθθ∴=-=-∴===-⎛⎫- ⎪⎝⎭,2,,,3264ππππθθ⎡⎫⎡⎫∈∴∈⎪⎪⎢⎢⎣⎭⎣⎭ ,易知()14f θπθ=⎛⎫- ⎪⎝⎭在,64ππθ⎡⎫∈⎪⎢⎣⎭上为增函数,)11,4e ∞πθ∴=∈+⎛⎫- ⎪⎝⎭17.解析:(1)因为1cos 3B =,所以2222sin 1cos 2costan 222cos 2A CB AC B A C ++++=++()()1cos 1cos 21cos A C B A C -++=+++1cos 1cos 821cos 3B B B ++=+=-.(2)因为ABC S =1122sin 223ac B ac =⋅=,所以6ac =再由余弦定理知,2222cos b a c ac B =+-,即222614263c c ⎛⎫=+-⨯⨯ ⎪⎝⎭,也即4220360c c -+=,解得c =c =.18.解析:(1)因为21342n n n n S S S a +++=-,所以()21132n n n n n S S S S a +++-=--,即2132n n na a a ++=-所以()()()()()()21111111223222220n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++---=----=---=(为常数)所以数列{}12n n a a +-是等差数列.(2)由(1)知121221n n a a a a +-=-=,即121n n a a +=+.也即()1121n n a a ++=+,又112a +=,所以11222n n n a -+=⋅=..所以()()()()1222112122121n n n n n n n b n n n n n n a +⎡⎤++===-⎢+⋅+⋅++⎢⎥⎣⎦.∴数列{}n b 的前n 项和()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=-=-⎢⎥⋅+⋅+⋅⎢⎥⎣⎦19.(1)补全四面体PQRS 如图,即证:PQ SR ⊥取SR 的中点M ,正四面体中各个面均为正三角形,故,PM SR QM SR ⊥⊥,又PM QM M ⋂=,所以SR ⊥面PQM .又PQ ⊂面PQM ,所以PQ SR ⊥.(2)在QSR 的中心建系如图:则()(33,,,0,,02222S P R Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,0,,,33623A C ⎛⎛- ⎪ ⎪⎝⎭⎝⎭,31,,022K ⎛⎫-- ⎪ ⎪⎝⎭,.设面ACK 的法向量为(),,n x y z = ,则00n AC n AK ⎧⋅=⎪⎨⋅=⎪⎩,解得()n =- ,又33,,22PQ ⎛=- ⎝ ,所以22sin cos ,11n PQ θ== .20.解析:(1)设事件A 为“小周在这三个月集齐三款模型”,则()3333111034500A P A ⎛⎫== ⎪⎝⎭.(2)1,2,,12X = ,由题意得()()1911,2,,111010k P X k k -⎛⎫=== ⎪⎝⎭ ,()1191210P X ⎛⎫== ⎪⎝⎭11111199()12101010k k k E X -=⎛⎫⎛⎫=+⋅ ⎪⎪⎝⎭⎝⎭∑,错位相减求得最后结果为()11910910E X ⎛⎫=-⋅ ⎪⎝⎭.21.解析:(1)将()1,1M 代入,可以求得243b =.联立22314410x y x y ⎧+=⎪⎨⎪+-=⎩,得24610x x --=.设()()1122,,,A x y B x y ,则12262AB x =-=,又易知点M 到直线l的距离为2,故ABM的面积4ABM S = ..(2)设()()1122,,,A x y B x y ,联立22314410x y x ty ⎧+=⎪⎨⎪+-=⎩得()223230t y ty +--=,则1221222333t y y t y y t ⎧+=⎪⎪+⎨-⎪=⎪+⎩,11sin ,sin 22ABM PQM S AM BM AMB S PM QM PMQ ∠∠== ,又sin sin PMQ AMB∠∠=所以5PQM ABM S S = 等价于5PM QM AM BM =,也即5QM AM BMPM=5QM AMBMPM =即1251313x x -=-,也即129115x x --=,也即1295ty ty --=,也即223935t t =+,解得322t =±.22.解析:(1)()ln f x x ax =-'在()0,∞+上有两个变号零点,即ln xa x=有两个不等实根,设()()2ln 1ln ,x x g x g x x x-'==,故()g x 在()0,e 上单调递增,在(),e ∞+上单调递减,所以max 1()g x e=,且()10g =,又(),0x g x ∞+→+→,故10a e<<,且121x e x <<<,所以()2111111ln 12f x x x ax x =--+,又11ln x a x =,所以()21111111111ln 11ln 1ln 122x f x x x x x x x x x =-⋅⋅-+=-+,设()()1ln 1,1,2h x x x x x e =-+∈,所以()()1ln 102h x x =-<',所以()h x 在()1,e 上单调递减,所以()1,02e h x ⎛⎫∈-⎪⎝⎭,所以()11,02e f x ⎛⎫∈- ⎪⎝⎭.(2)法一:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以()2121ln ln x x a x x -=-,得:2121ln ln x x a x x -=-,设21x t x =,又1202x x <<,所以2t >,要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:123ln22ax ax +<,即证:()2123ln2a x x ->,即证:()212121ln ln 23ln2x x x x x x -->-,即证:2211212ln 3ln2x x xx x x -⋅>-,即证:22121121ln 3ln21x x x x x x -⋅>-,即证:21ln 3ln21t t t -⋅>-,设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法二:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以2211ln ln x x x x =,设21x t x =,又1202x x <<,所以2t >,.由2211ln ln x x x x =可得:12ln ln ln ,ln 11t t tx x t t ==--,.要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:ln 2ln 3ln211t t t t t +<--,即证:21ln 3ln21t t t -⋅>-设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法三:由(1)知:10a e<<,且121x e x <<<,()ln xg x x=在()0,e 上单调递增,在(),e ∞+上单调递减,又1122x x x <<,且()()12g x g x a ==,所以()()()2112g x g x g x =<,所以1111ln ln22x x x x <,所以211ln ln2x x <,所以2112x x <,所以112x <<,又()ln222g =,所以ln202a <<,又ln2ln424=,即()()24g g =,所以24x >,因为122x x <,所以212284x x x <<,故2128x x <.。

安徽省合肥市第一中学2023-2024学年高三上学期第一次教学质量检测地理试题

安徽省合肥市第一中学2023-2024学年高三上学期第一次教学质量检测地理试题

合肥一中2024届高三第一次教学质量检测卷地理考生注意:1.本试卷分选择题和非选择题两部分。

满分100分,考试时间75分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:高考范围。

一、选择题:本大题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

珠三角地区人口年龄结构的变化给城乡空间与服务设施的发展带来新的需求,结合2010 年与2020年人口普查数据,根据少儿人口比例增幅和老年人口比例增幅,将珠三角地区划分为四类人口年龄结构演变类型,如下图所示。

据此完成1~3题。

肇庆珠海惠州少儿人口比例加速提高型老年人口比例加速提高型少儿和老年人口比例双提高型年龄结构相对稳定型1.形成珠三角地区四类人口年龄结构演变类型的主要影响因素是A.产业结构B. 生态环境C.生育政策D.城市规划2.未来珠三角地区老龄化程度最严重的城市最可能是A. 珠海B.惠州C. 广州D. 江门高三第一次教学质量检测卷·地理第1页(共6页) 省十联考243060D 3.结合珠三角地区人口年龄结构的演变情况可知A.惠州市东部应超前完善康养设施B.佛山市应增设少儿和老年活动场所C.肇庆市北部应大力增加文教设施D.深圳市应重点规划适老型社区建设2020年德国成为净电力出口国,可再生能源发电功不可没,其发电量占总发电量近半数,其中,光伏发电占9.7%,增长最快,以太阳能屋顶形式为主。

目前,德国政府采取高额补贴和向民众征收可再生能源附加税等措施,将在未来几年内淘汰常规能源。

下图示意2001~2019 年德国光伏电力消费量及增长情况统计。

2025届合肥市第一中学高三六校第一次联考数学试卷含解析

2025届合肥市第一中学高三六校第一次联考数学试卷含解析

2025届合肥市第一中学高三六校第一次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知b a bc a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 3.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件4.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=,则“//a α”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.给出下列三个命题:①“2000,210x x x ∃∈-+≤R ”的否定;②在ABC 中,“30B ︒>”是“3cos B <的充要条件; ③将函数2cos2y x =的图象向左平移6π个单位长度,得到函数π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象. 其中假命题的个数是( )A .0B .1C .2D .36.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③7.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C .22D .249.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .10.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,122CC =,则异面直线1AC 与11A B 所成的角为( ) A .30︒B .45︒C .60︒D .90︒11.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) A .3B .2C .5D .612.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A .17B .4C .2D .117+二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市第一中学2023-2024学年高三上学期期末考试语文试题含答案

安徽省合肥市第一中学2023-2024学年高三上学期期末考试语文试题含答案

合肥一中2024届高三上学期期末质量检测卷语文考生注意:1.本试卷满分150分,考试时间150分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:高考范围。

一、现代文阅读(35分)(一)现代文阅读工(本题共5小题,18分)阅读下面的文字,完成1-5题。

科学成为一种独立的、占主导地位的精神范型,是从希腊开始的。

希腊人最早对世界形成一种不同于神话而又系统的理性看法,而且创造了一套数学语言来把握自然界的规律。

希腊第一个哲学家泰勒斯提出万物源于水的命题,奠定了西方哲学追究本源的形上精神。

泰勒斯学生的学生阿那克西米尼指出,万物由气所构成,不同的物质由气的浓密稀疏所致,这开辟了把握世界的实体构成主义传统。

这一传统主张唯有找到自然现象背后的实体,并且通过这一实体将自然现象重新组合构造出来,才算是认识了自然。

古代希腊的原子论实际是第一个比较成熟的实体构成主义的模型:原子论者找到了原子作为基础,并将大千世界的多样性和复杂性还原为原子的不同排列组合。

与构成主义传统相对照的是由毕达哥拉斯学派开辟的形式主义传统。

在他们看来,理解世界的关键不在于找出构成实体,而在于找出构成方式。

他们认为,数是万物构成的基本形式,因此,数有着至高无上的本体论地位。

柏拉图学派后来进一步精致化了这些主张,从哲学的高度强化了形式的重要性。

实体构成主义和形式主义这两大传统后来被近代科学所综合继承。

希腊科学真正的大发展不在希腊古典时期,而在希腊化时期。

有三个杰出的人物代表了这一时期最高的科学成就,他们是欧几里得、阿基米德和托勒密。

欧几里得因为《几何原本》阿基米德因为杠杆原理和浮力原理,托勒密因为《至大论》而彪炳史册。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024学年安徽省合肥市第一中学数学高三上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B 的真子集个数为( )A .1个B .2个C .3个D .4个2.某几何体的三视图如图所示,则该几何体的体积为( )A .83B .3C .113D .43.设(1)1i z i +⋅=-,则复数z 的模等于( ) A .2B .2C .1D .34.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( )A .2223S S ,且B .2223S S ,且C .2223S S ,且D .2223S S ∈∈,且 5.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .6.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形7.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21B .22C .11D .128.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919B .1009C .1189D .12799.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( ) A .P 1•P 2=14B .P 1=P 2=13C .P 1+P 2=56D .P 1<P 210.如图所示,已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||2||BF AF =,则双曲线C 的离心率是( ).A .33B .72C .3D .711.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30B .312C .152D .6212.已知3ln 3a =,1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b c a >>D .b a c >>二、填空题:本题共4小题,每小题5分,共20分。

13.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论: ①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________. 14.已知实数满足则的最大值为________.15.已知()sin[(1)3(1)]33f x x x ππ=++,则(1)(2)(3)...(2020)f f f f ++++=_____ 16.在平面五边形ABCDE 中,60A ∠=︒,63AB AE ==BC CD ⊥,且6BC DE ==.将五边形ABCDE 沿对角线BE 折起,使平面ABE 与平面BCDE 所成的二面角为120︒,则沿对角线BE 折起后所得几何体的外接球的表面积是______.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(12分)在直角坐标平面中,已知ABC ∆的顶点(2,0)A -,(2,0)B ,C 为平面内的动点,且sin sin 3cos 0A B C +=. (1)求动点C 的轨迹Q 的方程;(2)设过点(1,0)F 且不垂直于x 轴的直线l 与Q 交于P ,R 两点,点P 关于x 轴的对称点为S ,证明:直线RS 过x 轴上的定点.18.(12分)已知函数1()()ln f x x x x =-,()k g x x x=-. (1)证明:函数()f x 的极小值点为1;(2)若函数()()y f x g x =-在[)1,+∞有两个零点,证明:1718k <≤. 19.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在[20,40)内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表 质量指标 [15,20)[20,25)[25,30)[30,35)[35,40)[40,45]合计 频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率; (2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的22⨯列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好? 甲生产线 乙生产线 合计 合格品 不合格品 合计附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥ 0.150 0.100 0.050 0.025 0.010 0.0050k2.072 2.7063.841 5.024 6.635 7.87920.(12分)已知()21f x x =+,()3g x x =-. (1)解()()f x g x ≥;(2)若21a b -≤,证明:()()4f a g b +≥.21.(12分)在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长.22.(10分)已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为12,F F ,直线:l y kx m =+与椭圆C 相交于,P Q两点;当直线l 经过椭圆C 的下顶点A 和右焦点2F 时,1F PQ ∆的周长为,且l 与椭圆C 的另一个交点的横坐标为43(1)求椭圆C 的方程;(2)点M 为POQ △内一点,O 为坐标原点,满足MP MO MQ ++=0,若点M 恰好在圆2249O x y +=:上,求实数m 的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、C 【解题分析】 求出AB 的元素,再确定其真子集个数.【题目详解】由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B 中有两个元素,因此它的真子集有3个. 故选:C.【题目点拨】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集.2、C 【解题分析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积. 【题目详解】解:根据几何体的三视图转换为几何体为: 该几何体为由一个三棱柱体,切去一个三棱锥体, 如图所示:故:111112*********V =⨯⨯⨯-⨯⨯⨯⨯=. 故选:C. 【题目点拨】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题. 3、C 【解题分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【题目详解】 因为(1)1i z i +⋅=-,所以()()()211111i iz i i i i --===-++⋅-, 由复数模的定义知,()211z =-=.故选:C 【题目点拨】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题. 4、D 【解题分析】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件,故{}2,22,23S =,得到答案.【题目详解】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件. 故12AB BCCD AD CC =====,1122BC DC ==,123AC =.故{}2,22,23S =,故22S ∈,23S ∈.故选:D .【题目点拨】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力. 5、A 【解题分析】因为(0)1f =,所以排除C 、D .当x 从负方向趋近于0时,0cos cos x x x x <+<-,可得0()1<<f x .故选A . 6、B 【解题分析】 化简得lg cos A =lg=﹣lg 2,即,结合, 可求,得代入sinC =sinB ,从而可求C ,B ,进而可判断. 【题目详解】 由,可得lg cos A ==﹣lg 2,∴,∵,∴,,∴sin C =sin B ==,∴tanC =,C =,B =.故选:B 【题目点拨】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题. 7、A 【解题分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【题目详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【题目点拨】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少. 8、B 【解题分析】由焦点得抛物线方程,设A 点的坐标为2()14m m ,,根据对称可求出点A 的坐标,写出直线AF 方程,联立抛物线求交点,计算弦长即可. 【题目详解】抛物线2()20C x py p :=>的焦点为1(0)F ,, 则12p=,即2p =, 设A 点的坐标为2()14m m ,,B 点的坐标为()113n n ≤,,, 如图:∴2211114211142222m n m m m n ⎧-⎪=-⎪⎪-⎨⎪++⎪=⨯+⎪⎩,解得62m n =⎧⎨=⎩,或343359m n ⎧=-⎪⎪⎨⎪=⎪⎩(舍去), ∴9(6)A ,∴直线AF 的方程为413y x +=, 设直线AF 与抛物线的另一个交点为D ,由24134y x x y ⎧=+⎪⎨⎪=⎩,解得69x y =⎧⎨=⎩或2319x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴21,39D ⎛⎫-⎪⎝⎭, ∴2221100||69399AD ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭, 故直线AF 被C 截得的弦长为1009. 故选:B . 【题目点拨】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.9、C 【解题分析】将三辆车的出车可能顺序一一列出,找出符合条件的即可. 【题目详解】三辆车的出车顺序可能为:123、132、213、231、312、321 方案一坐车可能:132、213、231,所以,P 1=36; 方案二坐车可能:312、321,所以,P 1=26; 所以P 1+P 2=56故选C. 【题目点拨】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题. 10、C 【解题分析】易得||2AF a =,||4BF a =,又1()2FO FB FA =+,平方计算即可得到答案. 【题目详解】设双曲线C 的左焦点为E ,易得AEBF 为平行四边形, 所以||||||||2BF AF BF BE a -=-=,又||2||BF AF =, 故||2AF a =,||4BF a =,1()2FO FB FA =+, 所以2221(41624)4c a a a a =+-⨯,即223c a =,故离心率为e =. 故选:C. 【题目点拨】本题考查求双曲线离心率的问题,关键是建立,,a b c 的方程或不等关系,是一道中档题. 11、B 【解题分析】根据14+=nn n a a ,分别令1,2n =,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n 项和公式进行求解即可. 【题目详解】设等比数列{}n a 的公比为q ,由题意可知中:10,0a q >>.由14+=n n n a a ,分别令1,2n =,可得124a a =、2316a a =,由等比数列的通项公式可得:1112114162a a q a a q a q q ⎧⋅⋅=⎧=⎪⇒⎨⎨⋅⋅⋅==⎪⎩⎩因此5S ==故选:B【题目点拨】本题考查了等比数列的通项公式和前n 项和公式的应用,考查了数学运算能力.12、D【解题分析】构造函数()ln x f x x =,利用导数求得()f x 的单调区间,由此判断出,,a b c 的大小关系. 【题目详解】依题意,得ln 33a ==,1ln e b e e -==,3ln 2ln888c ==.令ln ()x f x x=,所以21ln '()x f x x -=.所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减.所以max 1[()]()f x f e b e ===,且(3)(8)f f >,即a c >,所以b a c >>.故选:D.【题目点拨】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档