实验四 图像的傅立叶变换与频域滤波

合集下载

二维傅里叶变换变换、性质和频域滤波

二维傅里叶变换变换、性质和频域滤波

实验三 二维傅里叶变换变换、性质和频域滤波一、实验目的1、了解图像傅里叶变换的物理意义;2、掌握频域滤波原理;3、熟悉傅里叶变换的基本性质;4、熟练掌握FFT的变换方法及应用;5、通过实验了解二维频谱的分布特点;二、实验平台计算机和Matlab语言环境三、实验内容1、数字图像二维傅里叶变换及其对数显示2、频域滤波器处理图像3、二维傅里叶变换的性质(比例变换性、旋转、可分性)四、实验步骤1、二维傅里叶变换的性质1> 二维傅里叶变换构造一幅图像,在64×64的黑色背景中产生一个5个白条纹,对其进行傅里叶变换f = zeros(64,64);for j=1:5f(:,j*10:j*10+1)=1;endF=fft2(f);Fc=fftshift(F);subplot(1,2,1),imshow(f,[ ]);title('原始图像');subplot(1,2,2),imshow(abs(Fc),[ ]);title('图像傅里叶变换');2> 比例变换性将图像扩大到原来的2倍后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异fresize=imresize(f,2);fresize=fresize(31:94,31:94);Fresize=fft2(fresize);Fc1=fftshift(Fresize);subplot(1,2,1),imshow(fresize,[ ]);title('图像扩大2倍');subplot(1,2,2),imshow(abs(Fc1),[ ]);title('图像扩大2倍后傅里叶');3> 旋转将图像旋转45度后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异frotate=imrotate(f,45);%图像旋转Frotate=fft2(frotate);Fc2=fftshift(Frotate);%图像旋转后做傅里叶变换subplot(1,2,1),imshow(frotate,[ ]);title('图像旋转');subplot(1,2,2),imshow(abs(Fc2),[ ]);title('图像旋转后傅里叶');4> 可分性首先沿着图像的每一行计算一维变换,然后沿着中间结果的每一列计算一维变换,以此计算二维傅里叶for i=1:64fft_row(i,:)=fft(f(i,:));%沿着图像的每一行计算一维变换endfor j=1:64fft_col(:,j)=fft(fft_row(:,j));%沿着中间结果的每一列计算一维变换 endFc3=fftshift(fft_col);figure,imshow(abs(Fc3),[ ]);title('两次fft');2、数字图像二维傅里叶变换及其对数显示1> 首先构造一幅图像,对其进行傅里叶变换f = zeros(30,30);f(5:24,13:17) = 1; %构造一幅图像fF=fft2(f); %对f作二维傅里叶变换 S=abs(F); %因为F是复数,显示其模值subplot(1,2,1),imshow(f,[ ]);title('原始图像');subplot(1,2,2),imshow(S,[ ]);title('二维傅里叶频谱');2> 把低频分量移到图象中心,而把高频分量移到四个角上Fc=fftshift(F);figure,imshow(abs(Fc),[ ]);title('居中的频谱');3> 利用图象增强中动态范围压缩的方法增强2DFTS2=log(1+abs(Fc)); %使用对数变换后的频谱 ff=ifft2(F); %逆变换ff_real=real(ifft2(F)); %取实部figure,imshow(abs(S2),[ ]);title('使用对数变换后的频谱');3、频域滤波器1> 理想低通滤波读取一幅图像,傅里叶变换后作中心变换,取低频模板HLPF与原图像相乘;clcf = imread('C:\Users\000000\Desktop\exp\exp3\a.tif');F=fft2(f);Fc=fftshift(F);[M N]=size(f);HLPF= zeros(M,N);HLPF(M/2-50:M/2+50,N/2-50:N/2+50) = 1; %保留低频成分 Fc1=Fc.*HLPF; %理想低通滤波器处理F1=ifftshift(Fc1); %逆中心变换 ff1=ifft2(F1); %理想低通滤波后逆变换subplot(1,2,1),imshow(f,[ ]);title('原始图像');subplot(1,2,2),imshow(abs(ff1),[ ]);title('理想低通滤波器处理后的图像');2> 巴特沃斯低通滤波器函数dftuv提供了距离计算的网格数组输出为[U,V],D0=0.1*N;D=sqrt(U.^2+V.^2);[U,V]=dftuv(M,N);D0=0.1*N;D=sqrt(U.^2+V.^2);n=5;HBLPF=1./(1+(D/D0).^(2*n));HBLPF=fftshift(HBLPF);Fc2=Fc.*HBLPF;F2=ifftshift(Fc2);ff2=ifft2(F2);figure,imshow(abs(ff2),[ ]);title('巴特沃斯低通滤波器处理后的图像');3> 高斯低通滤波器HGLPF=exp(-(U.^2+V.^2)/(2*D0^2));HGLPF=fftshift(HGLPF);Fc3=Fc.*HGLPF;F3=ifftshift(Fc3);ff3=ifft2(F3);figure,imshow(abs(ff3),[ ]);title('高斯低通滤波器处理后的图像');4> 3种高通滤波器理想高通滤波器、巴特沃斯高通滤波器、高斯高通滤波器HHPF=1-HLPF;%理想高通滤波器传递函数HBHPF=1-HBLPF;%巴特沃斯高通滤波器传递函数HGHPF=1-HGLPF;%高斯高通滤波器传递函数Fc4=Fc.*HHPF;%理想高通滤波器处理Fc5=Fc.*HBHPF;%巴特沃斯高通滤波器处理Fc6=Fc.*HGHPF;%高斯高通滤波器处理F4=ifftshift(Fc4);ff4=ifft2(F4);%理想高通滤波后逆变换F5=ifftshift(Fc5);ff5=ifft2(F5);%巴特沃斯高通滤波后逆变换F6=ifftshift(Fc6);ff6=ifft2(F6);%高斯高通滤波后逆变换figure(3),subplot(2,2,1),imshow(f,[ ]);title('原始图像');subplot(2,2,2),imshow(abs(ff4),[ ]);title('理想高通滤波后的图像');subplot(2,2,3),imshow(abs(ff5),[ ]);title('巴特沃斯高通滤波后的图像');subplot(2,2,4),imshow(abs(ff6),[ ]);title('高斯高通滤波后的图像');六、思考题1.二维DFT的可分离性的意义?答:二维DFT的可分离性为我们提供了计算二维DFT的方法,即将一个二维傅里叶变换的运算分解为水平方向和垂直方向上的两次一维DFT运算。

图像的傅立叶变换与频域滤波

图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波一、 实验目的1了解图像变换的意义和手段;2熟悉傅里叶变换的基本性质;3熟练掌握FFT 方法的应用;4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。

6、掌握怎样利用傅立叶变换进行频域滤波7、掌握频域滤波的概念及方法8、熟练掌握频域空间的各类滤波器9、利用MATLAB 程序进行频域滤波二、 实验原理1应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

2傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为 :⎰⎰∞∞-+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π二维离散傅立叶变换为:∑∑-=+--==10)(2101),(),(N y N y u M x u j M x MN e y x f v u F π图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

3利用MATLAB 软件实现数字图像傅立叶变换的程序:I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;%归一化figure; %设定窗口imshow(A); %显示原图像的频谱域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和高通滤波器。

数字图像处理实验三:图像的频域处理

数字图像处理实验三:图像的频域处理

数字图像处理实验报告实验三、图像的频域处理一、实验类型:综合性实验二、实验目的1. 掌握二维傅里叶变换的原理。

2. 掌握二维傅里叶变换的性质。

三、实验设备:安装有MATLAB 软件的计算机四、实验原理傅里叶变换在图像增强、图像分析、图像恢复和图像压缩等方面扮演着重要的角色。

在计算机上使用傅里叶变换常常涉及到该变换的另一种形式——离散傅里叶变换(DFT )。

使用这种形式的傅里叶变换主要有以下两方面的理由:·DFT 的输入和输出都是离散的,这使得计算机处理更加方便;·求解DFT 问题有快速算法,即快速傅里叶变换(FFT )。

MATLAB 函数fft,fft2 和fftn 可以实现傅里叶变换算法,分别用来计算1 维DFT、2 维DFT 和n 维DFT。

函数ifft,ifft2 和ifftn 用来计算逆DFT。

下面结合一个例子进行演示。

(1)创建一个矩阵f,代表一个二值图像。

f=zeros(30,30);f(5:24,13:17)=1;imshow(f,’notruesize’)(2 )用以下命令计算f 的DFT 并可视化。

F=fft2(f);F2=log(abs(F));imshow(F2,[-1 5],’notruesize’);colormap(jet);colorbar(3)为了获取傅里叶变换的更佳的取样数据,计算F 的DFT 时给它进行0 填充。

0 填充和DFT 计算可以用下面的命令一步完成。

F=fft2(f,256,256);上面的命令在计算DFT 之前将F 的大小填充为256 ×256。

imshow(log(abs(F)),[-1 5]);colormap(jet);colorbar(4 )但是,0 频率系数仍然显示在左上角而不是中心位置。

可以用fftshift 函数解决这个问题,该函数交换F 的象限,使得0 频率系数位于中心位置上。

F=fft2(f,256,256)F2=fftshift(F);imshow(log(abs(F2)),[-1 5]);colormap(jet);colorbar五、实验内容选择一幅图像,对其进行离散傅立叶变换,观察离散傅立叶频谱,并演示二维离散傅立叶变换的主要性质(如平移性、旋转性)。

频域滤波器设计(数字图像处理实验报告)

频域滤波器设计(数字图像处理实验报告)

数字图像处理作业——频域滤波器设计摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。

本文利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。

低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。

本文使用的低通滤波器有巴特沃斯滤波器和高斯滤波器,使用的高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器。

实际应用中应该根据实际图像中包含的噪声情况灵活地选取适当的滤波算法。

1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。

实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。

在频域空间,图像的信息表现为不同频率分量的组合。

如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。

频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。

低通滤波是要保留图像中的低频分量而除去高频分量。

图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。

理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。

实验四图像的傅立叶变换与频域滤波

实验四图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波一、实验目的1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3熟练掌握FFT 方法的应用;4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。

6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、实验原理1应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

2傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:⎰⎰∞∞-+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π 二维离散傅立叶变换为: ∑∑-=+--==10)(2101),(),(N y N y u M x u j M x MNey x f v u F π图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A -min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和高通滤波器。

频域滤波二维傅里叶变换

频域滤波二维傅里叶变换
27
周期为的 1/ f0 矩形波函数,在一个周期内的解析 式为
A g ( x) 0
x / 4 / 4 x / 2
g ( x)
A 2A 1 [cos 2 f 0 x cos 2 (3 f 0 ) x 2 3 1 1 cos 2 (5 f 0 ) x cos 2 (7 f 0 ) x ] 5 7
物理上所用到的函数总存在FT
在应用问题中,也会遇到一些理想化的函数,如常数函数、阶跃 函数等光学领域中常用的函数,但是他们不满足保证其傅里叶变 换存在的充分条件;同时他们在物理上也不能够严格实现,对这 类数学难以讨论其经典意义下的傅里叶变换。但是可以借助函数 序列极限概念得到这类函数的广义傅里叶变换。
28
A 2
2A

cos 2 f 0 x
2A 1 cos 2 (3 f 0 ) x 3 2A 1 cos 2 (5 f 0 ) x 5
29
1.3.2 傅立叶积分(Fourier integral)及 傅立叶变换(Fourier transform)
若函数 f(x,y)在整个无限 xy平面上满足狄里赫利条件, 且绝对可积,f(x,y)可用叠加积分表示成:
脉冲函数的采性(相乘)样质:
(t )
x ( 0) ( t ) x(t)
x (t 0 ) (t t 0 )
(t t 0 )
x(t)
t
t0
t
函数值:
t 0 x(t) (t t0 ) 0 t 0
强度:



x(t ) (t t 0 )dt x(t 0 ) (t t 0 ) dt x(t 0 )

傅里叶变换和频率域滤波的介绍

傅里叶变换和频率域滤波的介绍

傅立叶变换和频率域滤波的介绍序言.傅立叶变换的作用和意义1、下图中,最后一个波是由前面四个波组合而成的,是用傅立叶变换,可以很容易将其区分出来。

2、对比物理上对光谱的理解(赤橙黄绿青蓝紫、初中对光的三棱镜分解、高中对燃烧的钠元素所发出光的光谱分析实验),可以将傅立叶变换理解成“数学上的三棱镜”,傅立叶变换使我们能够通过频率成分来分析一个函数。

一.一维傅立叶变换及其反变换单变量连续函数f(x)的傅立叶变换F(u)定义为等式:(1)其中j=。

相反,给定F(u),通过傅立叶反变换可以获得f(x):(2)这两个等式组成了傅立叶变换对。

很明显,()F u 是一个复函数,即 ()()()F u R u jI u =+ (3)R(u)和I(u)分别是F(u)的实部和虚部,其中 (4) 称为傅立叶变换的幅度或频率谱,同时 (5) 称为变换的相角或相位谱。

在研究图像增强时,我们主要关心频率谱的性质。

所以需要定义的另一个量是功率谱,它被定义为傅立叶变换的平方:(6) 术语“谱密度”也用来指功率谱。

这些等式很容易扩展到两个变量u 和v 的情况:(7)类似地,反变换为:(8) 例1、已知()(0,0)x f x e x β-∂=>∂>,而且()0(0)f x t =<=。

则其傅立叶变换为: 2(2)00(2)(2)00222222()2(2)2(2)(2)2(2)2(2)(2)x j ux x j ux j u x j u xF u e e dx e dx e dx e j uj u j u j u j u j u u u j u u ππππββββπββππππββππββπππ+∞+∞-∂--∂++∞-∂+-∂++∞==-==∂+-∂-==∂+∂+∂-∂-=∂+∂=-∂+∂+⎰⎰⎰我们的兴趣在于离散函数,所以将不停留在这些数学定义中。

然而,在某些情况下,利用这些等式比利用它们的离散形式更容易证明二维傅立叶变换的性质。

数字图像处理图像变换与频域处理

数字图像处理图像变换与频域处理

南京信息工程大学 计算机图像处理 实验(实习)报告 实验(实习)名称 图像变换与频域处理 实验(实习)日期 得分 指导老师 系 专业 班级 姓名 学号一、 实验目的1.了解离散傅里叶变换的基本性质;2.熟练掌握图像傅里叶变换的方法及应用;3.通过实验了解二维频谱的分布特点;4.熟悉图像频域处理的意义和手段;5.通过本实验掌握利用MATLAB 的工具箱实现数字图像的频域处理。

二、 实验原理(一)傅立叶变换傅立叶变换是数字图像处理中应用最广的一种变换,其中图像增强、图像复原 和图像分析与描述等,每一类处理方法都要用到图像变换,尤其是图像的傅立 叶变换。

离散傅立叶(Fourier )变换的定义:二维离散傅立叶变换(DFT )为:逆变换为:式中,在DFT 变换对中, 称为离散信号 的频谱,而 称为幅度谱, 为相位角,功率谱为频谱的平方,它们之间的关系为:图像的傅立叶变换有快速算法。

(二)图像的频域增强常用的图像增强技术可分为基于空域和基于变换域的两类方法。

最常用的变换域是频域空间。

在频域空间,图像的信息表现为不同频率分量的组合。

如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图像的频率分布,达到不同的增强目的。

频域增强的工作流程:频域空间的增强方法对应的三个步骤:(1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2) 在频域空间中通过不同的滤波函数H(u,v)对图像进行不同的增强,得到G(u,v)(注:不同的滤波器滤除的频率和保留的频率不同,因而可获得不同的增强效果);(3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。

),(v u F ),(v u G ),(y x f ∑∑-=-=+-=1010)(2exp ),(1),(M x N y N vy M ux j y x f MN v u F π∑∑-=-=+=101)(2exp ),(1),(M u N v N vy M ux j v u F MN y x f π}1,,1,0{,-∈M x u }1,,1,0{,-∈N y v ),(v u F ),(y x f ),(v u F ),(v u ϕ),(),()],(exp[),(),(v u jI v u R v u j v u F v u F +==ϕ1.低通滤波图像中的边缘和噪声都对应图像傅立叶变换中的高频部分,如要在频域中消弱其影响,设法减弱这部分频率的分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 图像的傅立叶变换与频域滤波
一、 实验目的
1了解图像变换的意义和手段;
2熟悉傅里叶变换的基本性质;
3熟练掌握FFT 方法的应用;
4通过实验了解二维频谱的分布特点;
5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。

6、掌握怎样利用傅立叶变换进行频域滤波
7、掌握频域滤波的概念及方法
8、熟练掌握频域空间的各类滤波器
9、利用MATLAB 程序进行频域滤波
二、 实验原理
1应用傅立叶变换进行图像处理
傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化
系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

2傅立叶(Fourier )变换的定义
对于二维信号,二维Fourier 变换定义为:
⎰⎰∞∞-+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π
二维离散傅立叶变换为:
∑∑-=+--==1
0)(2101
),(),(N y N y u M x u j M x MN
e y x
f v u F π
图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

3利用MATLAB 软件实现数字图像傅立叶变换的程序:
I=imread(‘原图像名.gif ’); %读入原图像文件
imshow(I); %显示原图像
fftI=fft2(I); %二维离散傅立叶变换
sfftI=fftshift(fftI); %直流分量移到频谱中心
RR=real(sfftI); %取傅立叶变换的实部
II=imag(sfftI); %取傅立叶变换的虚部
A=sqrt(RR.^2+II.^2);%计算频谱幅值
A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;
%归一化
figure; %设定窗口
imshow(A); %显示原图像的频谱
域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和
高通滤波器。

频域低通过滤的基本思想:
G(u,v)=F(u,v)H(u,v)
F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤
器变换函数,G(u,v)是通过H(u,v)减少F(u,v)的高频部分来得到的结果,运用傅立叶逆变换得到钝化后的图像。

理想地通滤波器(ILPF)具有传递函数:
其中,0D 为指定的非负数,),(v u D 为(u,v)到滤波器的中心的距离。

0),(D v u D =的点的轨迹为一个圆。

n 阶巴特沃兹低通滤波器(BLPF)(在距离原点0D 处出现截至频率)的传递函数为n D v u D v u H 20]),([11
),(+=
与理想地通滤波器不同的是,巴特沃兹率通滤波器的传递函数并不是在0D 处突
然不连续。

高斯低通滤波器(GLPF)的传递函数为
222),(),(σv u D e v u H =
⎩⎨⎧>≤=0
0),(0),(1),(D v u ifD D v u ifD v u H
其中,σ为标准差。

相应的高通滤波器也包括:理想高通滤波器、n 阶巴特沃兹高通滤波器、
高斯高通滤波器。

给定一个低通滤波器的传递函数),(v u H lp ,通过使用如下的简单关系,可以获得相应高通滤波器的传递函数:),(1v u H H lp hp -=
利用MATLAB 实现频域滤波的程序
f=imread('room.tif');
F=fft2(f); %对图像进行傅立叶变换
S=fftshift(log(1+abs(F)));%对变换后图像进行队数变化,并对其坐标平
移,使其中心化
S=gscale(S); %将频谱图像标度在0-256的范围内
imshow(S) %显示频谱图像
h=special('sobel'); %产生空间‘sobel ’模版
freqz2(h) %查看相应频域滤波器的图像
PQ=paddedsize(size(f));%产生滤波时所需大小的矩阵
H=freqz2(h,PQ(1),PQ(2));%产生频域中的‘sobel ’滤波器
H1=ifftshift(H); %重排数据序列,使得原点位于频率矩阵的左上

imshow(abs(H),[]) %以图形形式显示滤波器
figure,imshow(abs(H1),[])
gs=imfilter(double(f),h); %用模版h 进行空域滤波
gf=dftfilt(f,H1); %用滤波器对图像进行频域滤波
figure,imshow(gs,[])
figure,imshow(gf,[])
figure,imshow(abs(gs),[])
figure,imshow(abs(gf),[])
f=imread('number.tif');%读取图片
PQ=paddedsize(size(f));%产生滤波时所需大小的矩阵
D0=0.05*PQ(1); %设定高斯高通滤波器的阈值
H=hpfilter('gaussian',PQ(1),PQ(2),D0);%产生高斯高通滤波器
g=dftfilt(f,H); %对图像进行滤波
figure,imshow(f) %显示原图像
figure,imshow(g,[]) %显示滤波后图像
三、实验步骤
1.生成如下图所示的一个二维矩形信号。

2.利用一维FFT计算二维付里叶变换。

分别显示行计算结果和列变换结果。

(立体结果,用mesh(F)显示)
3.利用MatLab工具箱中的函数编制FFT频谱显示的函数;
4 a). 调入、显示“实验一”获得的图像;图像存储格式应为“.gif”;
b) 对这三幅图像做FFT并利用自编的函数显示其频谱;
c) 讨论不同的图像内容与FFT频谱之间的对应关系。

5 利用MATLAB提供的低通滤波器实现图像信号的滤波运算,并与空间滤波进行比较。

6利用MATLAB提供的高通滤波器对图像进行处理。

7 记录和整理实验报告。

四、实验报告内容
1叙述实验过程;
2提交实验的原始图像和结果图像。

五、思考题
1.傅里叶变换有哪些重要的性质?
2.图像的二维频谱在显示和处理时应注意什么?
3.用数据和图片给出各个步骤中取得的实验结果,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。

4.结合实验,评价频域滤波有哪些优点?
5.在频域滤波过程中需要注意哪些事项?
clc;clear;
I=zeros(256,256);
for i=118:138
for j=118:138
I(i,j)=1;
end
end
% imshow(I);
[m,n]=size(I);
[X,Y]=meshgrid(1:m,1:n);
J=I.*(-1).^(X+Y);
% H=fft(J);
figure,mesh(log(1+abs(H)));title('行变换'); L=fft(J')';
figure,mesh(log(1+abs(L)));title(’列变换’);
clc;clear;
I=zeros(256,256);
for i=118:138
for j=118:138
I(i,j)=1;
end
end
% imshow(I);
I=fft(I);
J=fft(I')';
J=fftshift(J);
imshow(log(1+abs(J)),[])
clc;clear;
I=zeros(256,256);
for i=118:138
for j=118:138
I(i,j)=1;
end
end
% imshow(I);
F1=fft(fft(I)')';
F1=fftshift(F1);
F2=fftshift(fft2(I));
figure,imshow(I);
figure,mesh(log(1+abs(F1))); figure,mesh(log(1+abs(F2)));
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档