十年高考真题分类汇编(2010-2019) 数学 专题09 不等式

合集下载

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。

(2010-2019)十年高考数学真题分类汇编:函数(含解析)

(2010-2019)十年高考数学真题分类汇编:函数(含解析)

(2010-2019)十年高考数学真题分类汇编:函数(含解析)1.(2019•天津•理T8)已知a ∈R ,设函数f(x)={x 2-2ax +2a ,x ≤1,x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e] 【答案】C【解析】(1)当a ≤1时,二次函数的对称轴为x=a.需a 2-2a 2+2a ≥0.a 2-2a ≤0.∴0≤a ≤2. 而f(x)=x-aln x ,f'(x)=1-a x =x -a x >0此时要使f(x)=x-aln x 在(1,+∞)上单调递增,需1-aln 1>0.显然成立.可知0≤a ≤1.(2)当a>1时,x=a>1,1-2a+2a ≥0,显然成立.此时f'(x)=x -a x ,当x ∈(1,a),f'(x)<0,单调递减,当x ∈(a ,+∞),f'(x)>0,单调递增.需f(a)=a-aln a ≥0,ln a ≤1,a ≤e ,可知1<a ≤e.由(1)(2)可知,a ∈[0,e],故选C.2.(2019•天津•文T8)已知函数f(x)={2√x ,0≤x ≤1,1x ,x >1.若关于x 的方程f(x)=-14x+a(a ∈R)恰有两个互异的实数解,则a 的取值范围为( )A.54,94B.54,94C.54,94∪{1}D.54,94∪{1} 【答案】D【解析】当直线过点A(1,1)时,有1=-14+a ,得a=54.当直线过点B(1,2)时,有2=-14+a ,a=94.故当54≤a≤94时,有两个相异点.当x>1时,f'(x 0)=-1x 02=-14,x 0=2.此时切点为2,12,此时a=1.故选D.3.(2019•浙江•T9)设a ,b ∈R ,函数f(x)={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f(x)-ax-b 恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>0【答案】C【解析】当x<0时,由x=ax+b ,得x=b 1-a ,最多一个零点取决于x=b 1-a 与0的大小,所以关键研究当x≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g(x).画出三次函数g(x)的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x≥0时g(x)单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g(x)与y=b 可以有两个交点,且此时要求x=b 1-a <0,故-1<a<1,b<0,选C.4.(2019•北京•文T3)下列函数中,在区间(0,+∞)上单调递增的是( )A.y=x 12B.y=2-xC.y=lo g 12xD.y=1x【答案】A【解析】函数y=2-x ,y=lo g 12x ,y=1x 在区间(0,+∞)上单调递减,函数y=x 12在区间(0,+∞)上单调递增,故选A.5.(2019•全国1•理T11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(π2,π)内单调递增③f(x)在[-π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③【答案】C【解析】因为函数f(x)的定义域为R ,关于原点对称,且f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),所以f(x)为偶函数,故①正确; 当π2<x<π时,f(x)=2sin x ,它在区间(π2,π)内单调递减,故②错误;当0≤x ≤π时,f(x)=2sin x ,它有两个零点0和π;当-π≤x ≤0时,f(x)=sin(-x)-sin x=-2sin x ,它有两个零点-π和0;故f(x)在区间[-π,π]上有3个零点-π,0和π,故③错误;当x ∈[2k π,2k π+π](k ∈N *)时,f(x)=2sin x;当x ∈(2k π+π,2k π+2π](k ∈N *)时,f(x)=sin x-sin x=0.又f(x)为偶函数,所以f(x)的最大值为2,故④正确;综上可知①④正确,故选C.6.(2019•全国3•理T11文T12)设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f (log 314)>f(2-32)>f(2-23)B.f (log 314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f (log 314)D.f(2-23)>f(2-32)>f (log 314)【答案】C【解析】∵f(x)是R 上的偶函数,∴f (log 314)=f(-log 34)=f(log 34).又y=2x 在R 上单调递增,∴log 34>1=20>2-23>2-32.又f(x)在区间(0,+∞)内单调递减, ∴f(log 34)<f(2-23)<f(2-32),∴f(2-32)>f(2-23)>f (log 314).故选C.7.(2019•全国1•理T3文T3)已知a=log 20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a【答案】B【解析】因为a=log 20.2<0,b=20.2>20=1,又0<c=0.20.3<0.20<1,所以a<c<b.故选B.8.(2019•天津•理T6)已知a=log 52,b=log 0.50.2,c=0.50.2,则a ,b ,c 的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b【答案】A【解析】∵a=log 52<log 5√5=12,b=log 0.50.2>log 0.50.5=1,c=0.50.2=(12)0.2>(12)1,∴b>c>a.故选A.9.(2019•天津•文T5)已知a=log 27,b=log 38,c=0.30.2,则a ,b ,c 的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.c<a<b命题点比较大小,指、对数函数的单调性. 解题思路利用指、对数函数的单调性比较.【答案】A【解析】a=log 27>log 24=2.b=log 38<log 39<2,且b>1.又c=0.30.2<1,故c<b<a ,故选A.10.(2019•全国1•T5)函数f(x)=sinx+xcosx+x 2在[-π,π]的图像大致为( )。

十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)

十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)

专题08不等式历年考题细目表题型年份考点试题位置单选题2014 线性规划2014年新课标1理科09填空题2018 线性规划2018年新课标1理科13填空题2017 线性规划2017年新课标1理科14填空题2016 线性规划2016年新课标1理科16填空题2015 线性规划2015年新课标1理科15填空题2012 线性规划2012年新课标1理科14填空题2011 线性规划2011年新课标1理科13历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(,y)∈D,+2y≥﹣2 p2:∃(,y)∈D,+2y≥2p3:∀(,y)∈D,+2y≤3p4:∃(,y)∈D,+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p32.【2018年新课标1理科13】若,y满足约束条件,则=3+2y的最大值为.3.【2017年新课标1理科14】设,y满足约束条件,则=3﹣2y的最小值为.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5g ,乙材料1g ,用5个工时;生产一件产品B 需要甲材料0.5g ,乙材料0.3g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150g ,乙材料90g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元. 5.【2015年新课标1理科15】若,y 满足约束条件.则的最大值为 .6.【2012年新课标1理科14】设,y 满足约束条件:;则=﹣2y 的取值范围为 .7.【2011年新课标1理科13】若变量,y 满足约束条件,则=+2y 的最小值为 .考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设为向量OB uuu v 在向量OA u u u v 方向上的投影,则的取值范围为( )A.⎣⎦ B.⎣⎦ C .[]2,18D .[]4,183.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .34.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .106.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+D .m n m n mn +>->7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .68.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( ) A .(4,+∞)B.[3)++∞C .[6,+∞)D.(4,3+10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( )A .32B .83C .114D .不存在11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A .322+ B .32+C .222+D .312.若实数满足,则的最大值是( )A .-4B .-2C .2D .4 13.已知,则取到最小值时( ) A .B .C .D . 14.已知函数,若,则的最小值为( )A .B .C .D .15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A .B .C .4D .16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A .当时,B .当时,C .当时,D .当时,17.关于的不等式的解集为,则的取值范围为 ( )A .B .C .D .18.若关于的不等式上恒成立,则实数a 的取值范围是A .B .C .D .19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .520.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<<B .1322a -<< C .3122a -<< D .02a <<21.在ABC ∆中,,,a b c 分别为角,,A B C 所对边的长,S 为ABC ∆的面积.若不等式22233kS b c a ≤+-恒成立,则实数k 的最大值为______.22.已知实数,x y 满足约束条件2020x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若2(0)z ax y a =->的最大值为1-,则实数a 的值是______23.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.24.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.25.点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 26.已知实数,x y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3xz y =-+的最大值为_____27.已知实数x ,y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值是__________.28.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为______.29.若,x y 满足约束条件40,20,20,x y x x y -+≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最小值为__________.30.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC ∆,则ab 最小值为_______.。

2010高考数学试题分类汇编----不等式(有答案)

2010高考数学试题分类汇编----不等式(有答案)

(2010福建)(7分)(3)选修4—5:不等式选讲已知函数f(x)=|x-a|.①若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;②在①的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.答案:法一:①由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以31,35,aa=⎧⎨+=⎩--解得a=2.②当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|=21,3, 5,32, 21, 2.x xxx x<⎧⎪≤≤⎨⎪+>⎩----所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].法二:①同解法一.②当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(2010湖北)15.(理)设a>0,b>0,称2aba b+为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D.连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段______的长度是a,b的几何平均数,线段______的长度是a,b的调和平均数.答案:CD DE解析:∵△ACD∽△DCB,∴ACCD=CDCB,CD∵Rt△ECD∽Rt△COD,∴DE=2CDOD=2aba b+=2aba b+.(2010江西)3.(理)不等式|2x x->2x x -的解集是( ) A .(0,2) B .(-∞,0)C .(2,+∞)D .(-∞,0)∪(0,+∞)答案:A 2x x->2x x -,∴2x x -<0.∴0<x <2. (2010全国卷新课标)24.(10分)选修4-5:不等式选讲设函数f(x)=|2x -4|+1.(1)画出函数y =f(x)的图像;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.答案: (1)由于f (x )=⎧⎨≥⎩-2x+5,x<2,2x -3,x 2,则函数y =f (x )的图像如图所示.(2)由函数y =f (x )与函数y =ax 的图像可知,当且仅当a ≥12或a <-2时,函数y =f (x )与函数y =ax 的图像有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞). (2010山东)14.(理)若对任意x >0,231x x x ++≤a 恒成立,则a 的取值范围是________. 答案: [15,+∞) 解析:法一:当x >0时,211313x x x x x=++++ ∵x +1x≥2(当且仅当x =1时取等号)∴x+1x+3≥5∴113xx++≤15∴a≥1 5 .法二:原式 ax2+(3a-1)x+a≥0对任意x>0恒成立.显然a≤0时不恒成立.当a>0时,Δ≤0或312aaa⎧<⎪⎨⎪>⎩--,得a≥15.(2010陕西)15.A.(不等式选做题)不等式|x+3|-|x-2|≥3的解集为__________.答案:{x|x≥1}B.169C.(-1,1),(1,1)解析:A.x≥2时,|x+3|-|x-2|=5,-3≤x<2时,|x+3|-|x-2|=2x+1≥3 x≥1,x<-3时,|x+3|-|x-2|=-5,因此综上有|x+3|-|x-2|≥3的解集为{x|x≥1}.(210四川)12.(理)设a>b>c>0,则2a2+1ab+1()a a b--10ac+25c2的最小值是( )A.2 B.4C..5答案:B 因为a>b>c>0,2a2+1ab+1()a a b--10ac+25c2=a2+()a b bab a b-+-+(a-5c)2=a2+1()b a b-+(a-5c)2≥a2+212b a b+-⎛⎫⎪⎝⎭+(a-5c)2=a2+24a+(a-5c)2≥4+(a-5c)2≥4.当且仅当a2b=5c时取等号.(2010浙江)23.(10分) (1)设正实数a,b,c,满足abc≥1.求222222 a b ca b b c c a+++++的最小值;(2)已知m∈R,解关于x的不等式:1-x≤|x-m|≤1+x.答案:解:(1)因为(222222a b ca b b c c a+++++)[(a+2b)+(b+2c)+(c+2a)]≥(a+b。

专题08 不等式-高考数学(理)十年真题(2010-2019)深度思考(新课标Ⅰ卷)(解析版)

专题08 不等式-高考数学(理)十年真题(2010-2019)深度思考(新课标Ⅰ卷)(解析版)

专题08不等式历年考题细目表历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y ≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.2.【2018年新课标1理科13】若x,y满足约束条件,则z=3x+2y的最大值为.【解答】解:作出不等式组对应的平面区域如图:由z=3x+2y得y x z,平移直线y x z,由图象知当直线y x z经过点A(2,0)时,直线的截距最大,此时z最大,最大值为z=3×2=6,故答案为:63.【2017年新课标1理科14】设x,y满足约束条件,则z=3x﹣2y的最小值为.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.5.【2015年新课标1理科15】若x,y满足约束条件.则的最大值为.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA3,即的最大值为3.故答案为:3.6.【2012年新课标1理科14】设x,y满足约束条件:;则z=x﹣2y的取值范围为.【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y,则表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]7.【2011年新课标1理科13】若变量x,y满足约束条件,则z=x+2y的最小值为.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y x,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y =x ﹣9与2x +y =3的交点得到A (4,﹣5) ∴z =4+2(﹣5)=﹣6 故答案为:﹣6.考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C 【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩, 又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…② ∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设z 为向量OB 在向量OA 方向上的投影,则z 的取值范围为( ) A.,55⎡⎢⎣⎦ B.55⎡⎢⎣⎦ C .[]2,18D .[]4,18【答案】A 【解析】作出不等式组对应的平面区域如图: 则(),OB x y =, ()2,2OA =,则OB 在向量OA方向上的投影为||cos ||OA O B z OA B O θ⋅===,设2u x y =+,则2y x u =-+,平移直线2y x u =-+,由图象知当直线2y x u =-+经过点()02,B 时直线的截距最小, 此时2u =,当直线2y x u =-+经过D 时,直线2y x u =-+的截距最大,由23603260x y x y -+=⎧⎨--=⎩,得66x y =⎧⎨=⎩,即()6,6D ,此时12618u =+=.即218u ≤≤z55z, 即z的取值范围是⎣⎦, 故选:A .3.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .3【答案】C 【解析】解:由z =﹣2x +y ,得y =2x +z ,作出不等式对应的可行域(阴影部分),平移直线y =2x +z ,由平移可知当直线y =2x +z ,经过点A 时,直线y =2x +z 的截距最大,此时z 取得最大值,由1260x x y =⎧⎨+-=⎩,解得()1,4A .将A 的坐标代入z =﹣2x +y ,得z =2,即目标函数z =﹣2x +y 的最大值为2. 故选:C .4.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-【答案】B 【解析】画出不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域,如下图所示直线()1y k x =+过定点(1,0)A -要使得直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点则0AC k k #20=20(1)AC k -=--[]0,2k ∴∈.故选B5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .10【答案】C 【解析】绘制不等式组表示的平面区域如图所示,目标函数即:2y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点()2,2B 处取得最大值, 据此可知目标函数的最大值为:max 2226z =⨯+=,其中z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小, 据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程:2020y x y -=⎧⎨+-=⎩,可得点的坐标为:()0,2A ,据此可知目标函数的最小值为:min 2022z =⨯+=. 综上可得:2z x y =+ 的最大值与最小值之和为8. 故选:C .6.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+ D .m n m n mn +>->【答案】B 【解析】因为0.30.32211log 0.6log 10,log 0.6log 1022m n =>==<=, 所以0,0mn m n <->,因为0.60.60.6112log 2log 0.250,log 0.30n m -=-=>=>,而0.60.6log 0.25log 0.3>, 所以110n m->>,即可得0>+n m , 因为()()20m n m n n --+=->,所以m n m n ->+, 所以m n m n mn ->+>, 故选B.7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .6【答案】D 【解析】作出不等式组对应的平面区域如图所示:由4y xx y =⎧⎨+=⎩,解得(2,2)A ,由2z x y =+,得122z y x =-+,平移直线122zy x =-+,由图象可知当直线经过点A , 直线的截距最大,此时z 最大,此时6z =, 故选:D .8.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】0x ∀>时,12x x +≥, ∴“0x ∀>,1x a x+≥”等价于2a ≤,而2a =可推出2a ≤,2a ≤不能推出2a =, 所以“2a =”是“0x ∀>,1x a x+≥”成立的充分不必要条件,故选A. 9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( )A .(4,+∞)B .[3)++∞C .[6,+∞)D .(4,3+【答案】B 【解析】∵函数f (x )=|ln (x ﹣1)|,f (a )=f (b ),且x >1,不妨设a b <,则12a b <<<. ∴﹣ln (a ﹣1)=ln (b ﹣1),∴11a -=b ﹣1,∴b=11a -+1,∴a+2b=a+222133311a a a +=-+++=+--…a +1取等号,∴a+2b 的取值范围是[3)++∞ 故选:B .10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( ) A .32B .83C .114D .不存在【答案】C 【解析】设正项等比数列{a n }的公比为q ,且q >0,由a 7=a 6+2a 5得:a 6q=a 6+62a q, 化简得,q 2-q-2=0,解得q=2或q=-1(舍去), 因为a m a n =16a 12,所以()()1111m n a qa q --=16a12,则q m+n-2=16,解得m+n=6,所以191191918(m n)10106663n m m n m n m n ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝… . 当且仅当9n m m n =时取等号,此时96n m m n m n ⎧=⎪⎨⎪+=⎩,解得3292m n ⎧=⎪⎪⎨⎪=⎪⎩, 因为mn 取整数,所以均值不等式等号条件取不到,则1983m n +>, 验证可得,当m=2、n=4时,19m n+取最小值为114,故选:C .11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A.3+B.3C.2+D .3【答案】A 【解析】由题意,因为21m n +=,则11112()(2)333n m m n m n m n m n +=+⋅+=++≥+=+, 当且仅当2n mm n =,即n =时等号成立, 所以11m n+的最小值为3+ A.12.若实数满足,则的最大值是()A.-4B.-2C.2D.4【答案】B【解析】由题得(当且仅当x=y=-1时取等)所以,所以x+y≤-2.所以x+y的最大值为-2.故选:B13.已知,则取到最小值时()A.B.C.D.【答案】D【解析】由,可得.所以,当时等号成立,解得.所以取到最小值时.故选D.14.已知函数,若,则的最小值为()A.B.C.D.【答案】A【解析】由题可知:令又于是有因此所以当且仅当时取等号本题正确选项:15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A.B.C.4 D.【答案】D【解析】设M(m,0),N(n,n),(m,n>0).∵,∴,∴,当且仅当时取等号.可得:则∴的最大值是.故选:D.16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则()A.当时,B.当时,C.当时,D.当时,【答案】B【解析】当m>0时,∵0⇔0,令f(x)=mx2﹣(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,则0,且x1+x2,∵f(1)=m﹣3﹣3m+2m+4=1>0,f(2)=4m﹣6﹣6m+2m+4=﹣2<0,∴1<x1<2<x2,所以不等式的解集为(1,x1]∪(2,x2],∴l=x1﹣1+x2﹣2=x1+x2﹣3=3,故选:B.17.关于的不等式的解集为,则的取值范围为()A.B.C.D.【答案】D【解析】当时,,若,则原不等式可化为,显然恒成立;若,则原不等式可化为不是恒成立,所以舍去;当时,因为的解集为,所以只需,解得;综上,的取值范围为:.故选D18.若关于x的不等式上恒成立,则实数a的取值范围是A.B.C.D.【答案】A【解析】解:关于x的不等式上恒成立,等价于,当时,成立,当时,,即,因为恒成立,所以,故选:A . 19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .5【答案】C 【解析】 由题意,,因为的解集为,所以,且,则,的极小值为,解得,故答案为C.20.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<< B .1322a -<< C .3122a -<< D .02a <<【答案】B 【解析】由题意,可知不等式()()1x a x a -+<对任意实数x 都成立,又由()()()(1)x a x a x a x a -+=---,即2210x x a a --++>对任意实数x 都成立,所以214(1)0a a ∆=--++<,即24430a a --<,解得1322a -<<, 故选B 。

不等式选讲-2010-2019年高考文科数学真题专题分类汇编训练

不等式选讲-2010-2019年高考文科数学真题专题分类汇编训练

专题十五 不等式选讲 第三十五讲 不等式选讲答案部分 2019年1.解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---. 当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.2.解析 (1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 3.解析(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦„,故由已知2222(2)(2)(1)()3a x y z a +-+-+-…,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +…,解得3a -„或1a -….2010-2018年1.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0≤a ,则当(0,1)x ∈时|1|1-≥ax ; 若0a >,|1|1ax -<的解集为20x a <<,所以21≥a,故02<≤a . 综上,a 的取值范围为(0,2].2.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x等价于|||2|4++-≥x a x.而|||2||2|++-+≥x a x a,且当2=x时等号成立.故()1≤f x等价于|2|4+≥a.由|2|4+≥a可得6-≤a或2≥a,所以a的取值范围是(,6][2,)-∞-+∞U.3.【解析】(1)13,,21()2,1,23, 1.x xf x x xx x⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x=的图像如图所示.(2)由(1)知,()y f x=的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a≥且2b≥时,()f x ax b+≤在[0,)+∞成立,因此a b+的最小值为5.4.D.【证明】由柯西不等式,得2222222()(122)(22)x y z x y z++++++≥.因为22=6x y z++,所以2224x y z++≥,当且仅当122x y z==时,不等式取等号,此时244333x y z===,,,所以222x y z++的最小值为4.5.【解析】(1)当1a=时,不等式()()f xg x≥等价于2|1||1|40x x x x-+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤; 当1x >时,①式化为240x x +-≤,从而1x < 所以()()f x g x ≥的解集为{|1x x -<. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.6.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++ 2224()ab a b =+-4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++ 23()2()4a b a b +++≤33()24a b +=+,所以3()8a b +≤,因此2a b +≤.7.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()fx 1≥得,x -211≥,解得x 12≤≤ 当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.8.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤. 9.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤. 当312x -<<,321x ->,解得1x >或13x <, 113x -<<∴或312x <<,当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >,综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,. 10.【解析】(I )当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.11.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+„,得13x -剟.因此,()6f x ≤的解集为{|13}x x-剟.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a -+-+…|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,()()3f x g x +…等价于|1|3a a -+…. ① 当1a „时,①等价于13a a -+…,无解. 当1a >时,①等价于13a a -+…,解得2a …. 所以a 的取值范围是[2,)+∞.12.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x <≤.所以()1f x >的解集为2{|2}3x x <<. (Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,所以函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.所以a 的取值范围为(2,)+∞. 13.【解析】(Ⅰ)∵2a b =++2c d =++由题设a b c d +=+,ab cd >得22>.>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-, 即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>>则22>,即a b c d ++>++ 因为a b c d +=+,所以ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-. 因此||||a b c d -<-,>||||a b c d -<-的充要条件.14.【解析】(I11a b =+≥,得2ab ≥,且当a b ==故33ab+≥a b ==时取等号.所以33ab +的最小值为(II )由(I)知,23a b +≥≥.由于6>,从而不存在,a b , 使得236a b +=.15.【解析】(I )由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥. 所以()f x ≥2. (Ⅱ)1(3)33f a a=++-. 当时a >3时,(3)f =1a a+,由(3)f <5得3<a<52+.当0<a ≤3时,(3)f =16a a-+,由(3)f <5<a ≤3.综上,a). 16.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤, ∴2x a -≥对x ∈[2a -,12)都成立,故2a-≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=.所以()31ab bc ca ++≤,即13ab bc ca ++≤(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥ ∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥ 18.【解析】(1)当3a =-时,()3323f x x x ⇔-+-厖2323x x x ⎧⇔⎨-+-⎩„…或23323x x x <<⎧⇔⎨-+-⎩…或3323x x x ⎧⇔⎨-+-⎩…… 1x ⇔„或4x ….(2)原命题()4f x x ⇔-„在[1,2]上恒成立24x a x x ⇔++--„在[1,2]上恒成立 22x a x ⇔---剟在[1,2]上恒成立30a⇔-剟.19.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. ( Ⅱ) 由()0f x ≤ 得30x a x -+≤,此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aa x ⎧⎪⎨-⎪⎩≤≤,因为0a >,所以不等式组的解集为{}|2ax x ≤-,由题设可得2a-=1-,故2a =.专题十五 不等式选讲第三十五讲 不等式选讲2019年1.(2019全国II 文23)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.2.(2019全国1文23)已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.3.(2019全国III 文23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 2010-2018年解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.4.(2018江苏)D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.5.(2017新课标Ⅰ)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.6.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥;(2)2a b +≤.7.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.8.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.9.(2016年全国I 高考)已知函数()|1||23|f x x x =+--.(I )在图中画出()y f x =的图像;(II )求不等式|()|1f x >的解集.10.(2016年全国II )已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.11.(2016年全国III 高考)已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.12.(2015新课标1)已知函数()|1|2||f x x x a =+--,0a >. (Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.13.(2015新课标2)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd a b c d >a b c d >||||a b c d -<- 的充要条件.14.(2014新课标1)若0,0a b >>,且11ab a b+=.(Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.15.(2014新课标2)设函数()f x =1(0)x x a a a++-> (Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.16.(2013新课标1)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 17.(2013新课标2)设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤ (Ⅱ)2221a b c b c a++≥ 18.(2012新课标)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x …的解集;(Ⅱ)若()|4|f x x -„的解集包含]2,1[,求a 的取值范围.19.(2011新课标)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值.。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用

A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
28.(2014•陕西•理 T8)原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真
假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3
18.(2016•山东•理 T6)已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面
α 和平面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
13.(2017•天津•理 T4)设 θ∈R,则“
π
- 12
<
π
12”是“sin
1
θ<2”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14.(2017•浙江•理 T6)已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的 ( )
+ ≥ 6, 1.(2019•全国 3•文 T11)记不等式组 2 - ≥ 0 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q ②¬p∨q ③p∧¬q ④¬p∧¬q 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十年高考真题分类汇编(2010—2019)数学
专题09不等式
1.(2019·全国1·理T4文T4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,
且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是( )
A.165 cm
B.175 cm
C.185 cm
D.190 cm
【答案】B
【解析】设人体脖子下端至肚脐的长度为x cm,则,得x≈42.07,又其腿
长为105 cm,所以其身高约为42.07+105+26=173.07(cm),接近175 cm.故选B.
2.(2019·全国2·理T6)若a>b,则( )
A.ln(a-b)>0
B.3a<3b
C.a3-b3>0
D.|a|>|b|
【答案】C
【解析】取a=2,b=1,满足a>b.但ln(a-b)=0,排除A;
∵3a=9,3b=3,∴3a>3b,排除B;∵y=x3是增函数,a>b,∴a3>b3,故C正确;取a=1,b=-2,满足a>b,但|a|<|b|,排除D.故选C.
3.(2019·天津·理T2文T2)设变量x,y 满足约束条件则目标函数z=-4x+y的最大值为
( )
A.2
B.3
C.5
D.6
【答案】C
1。

相关文档
最新文档