水利工程常用计算公式

水利工程常用计算公式
水利工程常用计算公式

精心整理

水利专业常用计算公式

一、枢纽建筑物计算

1、进水闸进水流量计算:Q=B 0δεm(2gH 03)1/2

式中:m —堰流流量系数 ε—堰流侧收缩系数

最为常见。求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。逐段试算法的基本公式为

△x=f

2

1112222i -i 2g v a h 2g v a h ???? ??+-???? ??+

式中:△x ——流段长度(m );

g ——重力加速度(m/s2);

h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用

??? ??+=-2f 1f -f i i 21i 或???

?

??+=?=3

/4222

224/3

12121f f v n R v n 21x h i R n 1=n 2 0.2m ; (6)进口断面河吼道断面间的水平距离与其高度之比:l/P=0.7—0.9; 6、最大负压值出现在吼道断面定点a 处,a 点的最大负压值按下式确定: 式中:Z —前池内正常水位与最低水位之间的高差(m );

h 0—吼道断面高度(m );

∑w

h

—从进水口断面至吼道断面间的水头损失(m );

γ/p *

—因法向加速度所产生的附加压强水头(m )。

附加压强水头按下式计算:

式中:0γ—吼道断面中心半径(m ) 计算结果,须满足下列条件:

式中: h a —计算断面处的大气压强水柱高(m ); H v —水的气化压强水柱高(m ) 最小淹没深度S ,可按下式估算:

式中:0γF —吼道断面的水流弗劳德数,000gh /V F =γ。

B —坝址处的河谷宽度(相当于坝顶的部仪),m 。 L —蓄水后库区延伸长度(回水长度),km(公里)。 H —最大坝前水深,m 。

K —按库尾蓄水断面与坝址蓄水断面之比采用的系数: l:lO 时,K=32;1:5时,K=27

(2)根据淹没面积初估: V=HA/K

V—水库总库容,104·m3(万立米)。

A—库区最大水面面积(淹没面积),亩。

K—按以下原则采用的系数:

库底平坦 K=25~30,库底坡度陡 K=30~38 2、有效库容估算公式: V=ChoF

V—水库有效库容,104·m3(万立米)。

ho—多年平均径流深(查《水文手册》),mm(毫米)。

m上=H/20+2,m下=H/20+1.5

m上、m下—均质土坝上、下游坝坡的边坡系数。 H—设计坝高,m。

5、堆石坝坝坡初估公式

m上=H/30+1.5,m下=1.3~1.5

m上、m下—堆石坝上、下游坝坡的边坡系数。

H —设计坝高,m 。

6、水库调洪演算水量平衡方程式: 式中:△t ——调洪时段,(s )

Q 1、Q 2——时段初、末进库流量(m 3/s ) Q 1′、Q 2′——时段初、末出库流量(m 3/s ) V 1、V 2——时段初、末水库库容 7、枢纽建筑物计算

kN ); (kN 对中、小型工程,若无条件进行抗剪试验取得c 值时,也可按下列抗剪强度公式计算岩基底面的抗滑稳定安全系数

K 2=

P

W f ∑∑2

式中:k 2—按抗剪强度计算的抗滑稳定安全系数;

f 2—混凝土与基岩接触面的抗剪摩擦系数。

9、堰流过水流量计算:Q=B 0δεm (2gH 03)1/2

式中:m —堰流流量系数

ε—堰流侧收缩系数

δ—堰流淹没系数

10、挖深式消力池校核长度计算:Lsj=Ls+βLj

式中:Lsj —消力池长度(m)

Ls —消力池斜坡段投影长度(m)

β —水跃长度校正系数

Q —造床流量(m3/s)

J —河床比降

11、建筑物基底抗滑稳定校核:K c=f ΣG/ΣH

式中:K c—抗滑稳定安全系数

f —基础底面与地基之间摩擦系数

ΣG—作用于堰体、闸室上的全部竖向荷载

ΣH—作用于堰体、闸室上的全部水平荷载

2、建筑物基底应力计算:P min max =ΣG/A m +ΣM/W

式中:P min max —闸室基底压力的最大值和最小值(KN/m 2) A m —闸室基础底面面积

ΣM—作用在闸室上的全部水平向和水平荷载对基础底面垂直水流方向的形心轴的力矩(KN·m )

W —闸室基础底面对该底面垂直水流方向的形心轴的截面矩(m 3)

2 3 F ——汇流面积, km 2。 τ——汇流时间,h ,τ=0.2784

13

1

Q

mJ L ;

其中:m ——汇流参数; J ——主河槽比降; L ——主河道长度,km ;

13、河道稳定性计算

1、纵向稳定系数

按下式计算:Φh=d/hJ

式中:

d—床砂平均粒径(m);

h—平滩水深(m);

J—纵坡,为7.9‰;

Φh

Φb

B—相当于造床流量下平滩河宽(m);

h—平滩水深(m)。

稳定河宽采用阿尔图宁经验公式和河道水流阻力连续方程式两种办法计算。

①阿尔图宁经验公式:

B=A·Q0.5/J0.2计算:

式中:B──稳定河段的水面宽度。

A──稳定河道系数,由于工程区河床横向较不稳定。

Q──采用相当于频率为50%的平滩流量作为造床流量m 3/s 。 ②河道水流阻力连续方程式:

B=11

6213

5

J ζ????

?????

?

??n Q 其中:ζ——断面河相系数;

K =n

h j ──上、下断面间的局部水头损失,按下列情况计算:

(1)河槽断面收缩 h j =0.2×(g V g V 222

122-)

(2)河槽断面扩大 h j =0.2×(g

V g V 222

221-)

5、 弯道段计算公式

h j =ξ(g

V g V 222

122-)

式中:ξ=

???

?

??+r b R C L 43162.192 R ──为水力半径(m );

b ──为河宽,对梯形断面应为水面宽(m ); r ──为河弯轴线的弯曲半径(m );

v K P ——P=2%爬高累计频率换算系数; R 0——无风情况下的爬高值;

8、风浪要素选用莆田试验站公式计算: 其中:T ——平均波周期,s ; L ——堤前波浪的波长,m ; H ——堤前波浪的平均波高,m ;

V ——计算风速,采用历年汛期最大风速平均值的1.5倍;

14、设计风壅水面计算公式

设计风壅水面高度采用公式e= cos 22gd

F

KV 计算:

K ——综合摩阻系数; d ——水域的平均水深, m ;

F ——由计算点逆风向量到对岸的距离,m ;

m ——护坡迎水面边坡系数;

d ——坡脚处土壤计算粒径,取大于15%(按重量计)的筛孔直径(m ); V j ——水流局部冲刷流速(m 3/s ),按滩地河床段计算: g ——重力加速度,取9.8。 V j =(Q/B 1H 1)·(2η/1+η) 式中:

B 1——河滩宽度,从河槽边缘至坡脚距离,(m );

Q ——通过河滩部分的设计流量(m 3/s );

H 1——河滩水深(m );

η——水流流速不均匀系数,查表得。 16、混凝土护坡斜坡计算公式 ①混凝土护坡斜坡式土堤

满足混凝土板整体稳定所需的最小厚度由下式确定:

当砼板作为堤防护面时,满足砼板整体稳定所需的护面板厚度度t 按下式确定:

; t ——浆砌石厚度(m )

Q ——主要护面层的护面块石个体质量t ; 其中: Q=0.1

m r r K H r b D b 3

3

1??

?

??-;

K D ——稳定系数;

r b ——浆砌石重度,26kN/m3;

r——水重度,10kN/m3;

n——护面块石的层数;

c——系数。

H──设计波高,取H5%,;

17、堤防稳定计算公式

①施工期抗滑稳定安全系数可按下式计算:

m′——包括侧收缩影响的流量系数;

H o——桥前水深,根据《公路桥涵设计通用规范》(JTGD60-2004)、《公路水文勘测设计规范》(JTG C30-2002),要求拱(平)顶至最高水位预留0.5m净空(m);

b′——桥宽(m)。

σs——淹没系数。

18、泵站扬程计算公式

①管径确定

按公式:D=

计算管径

由于管道内流速的大小直接影响工程造价和日常运转费用,按经验管内流速范围一般在1.5—2.5之间,取V=1.5m/s 的经济流速作为设计流速。

②扬程确定

扬程由净扬程和损失扬程两部分组成,损失扬程由沿程损失和局部损失两部分组成。

沿程损失按下式计算: v=C

式中:C ——谢才系数

R ——过水断面水力半径(m ) J ——水力坡降(m/m ) 沿程损失为: Hf=L·J 式中:L —计算管段长度(m )

局部损失:一般情况下,局部水头损失可按沿程水头损失的5%—10%计,因管线较长,局部水头损失按沿程水头损失的10%计算。即:Hj=0.1Hf 。

损失扬程为:Hw=Hf+Hj ③总扬程确定 H 总=H 净+ Hw 19、管道管径确定 ①管道设计内径计算

管道设计内径,应根据设计流量和设计流速确定,即: D=V Q 4

式中:D —管道计算内径(mm ) Q —管段设计流量,(m3/s ) V —经济流速,(m/s ); (4)水头损失计算 ①沿程水头损失(hf )

hf=iL

式中:hf—沿程水头损失(m)

L—计算管段长度(m)

i—单位管长水头损失(m/m)

②UPVC管、PE管等硬塑料管的单位管长水头损失i=0.000915 Q1.774/ d4.774

式中:Q——计算流量(m3/s)

按沿程水头损失的10%计算。

⑥总水头损失(hw)

弱电工程中常用设备材料数量计算方法

弱电工程中常用设备材料数量计算方法 弱电工程量计算: 一辅材的计算 1、统计信息点数,包括各房间和机房,填入点位分布表中; 2、确定是否超长?如超长,应在何处设置子配线间,几个?如有子配线间,那么交换机的数量也相应有变化。3、确定路由的走向;4、确定各处桥架的型号和长度。计算方法:(长×宽)×0.4/28,结果为信息点数,常用标准桥架有:300×100,200×100,100×100,100×50,50×50,其它桥架都需要定做。 一、辅材的计算 1、统计信息点数,包括各房间和机房,填入点位分布表中; 2、确定是否超长?如超长,应在何处设置子配线间,几个?如有子配线间,那么交换机的数量也相应有变化。 3、确定路由的走向; 4、确定各处桥架的型号和长度。计算方法:(长×宽)×0.4/28,结果为信息点数,常用标准桥架有:300×100,200×100,100×100,100×50,50×50,其它桥架都需要定做。 注:如果分支路由有相同的桥架型号,则分别计算其长度,最后才统计该桥架型号的总长度。 5、?25和?20管的计算(通常?25可以布6根线,?20可以布4根线)。计算时,以?20为准,平均某一信息点从桥架到终端需要?20的长度,如为A,那么就可以计算出所有信息点需要?20的长度了,即B=A×(总点数/4),而实际在工程中,?20=2/3×B,?25=1/3×B。

6、角钢(30×30)的计算。角钢的长度=30cm×(桥架的总长m/1.5m),即每根角钢的平均长度为30cm,每隔1.5m的距离就需要一根角钢。 7、龙骨(75×45)的计算。龙骨的长度=70cm×(总点数/2),即每根龙骨的长度为70cm,通常布置为双口面板。 8、龙骨卡子、管接、盒接、铆钉、钢锯条等辅料的计算。=总辅料价格×10% 9、底盒(86×86)的计算。底盒的数量=总点数/2 二、设备材料的计算 1、线缆的计算:(最远+最近)/2×点数×1.1/305 说明: 最远为从机房到信息点的最远点;最近为机房内的信息点,一般为20米; 点数为从机房开始所覆盖的信息点,如果有子配线间,那么该点数就为从子配线间开始路由所覆盖的信息点数,1.1中的0.1为富裕量,即10%。305为每箱线的长度为305米。 如果有子配线间,则应该分别计算,公式是一致的。即:中心机房覆盖信息点所需的线缆数量+子配线间覆盖信息点所需的线缆数量+子配线间到中心机房级联线所需的线缆数量。 还有一点请注意网线的数量一般为300米左右,不到305米,如果这个工程线缆数量比较大的时候,这个也有考虑。比如穿线设备端预留的线缆长度,也要综合考虑,这个也会根据您的施工队伍的整体施工

公路工程测量方法总结

公路工程测量方法总结 一、常用计算公式和常用命令 1、已知A(X1,Y1)、B(X2,Y2)、C(X3,Y3)三点,求圆心O点坐标(X,Y)。 Y= ((X32+ Y32- X22- Y22)/(2X3-2X2) -(X22+ Y22- X12- Y12)/(2X2-2X1))/((Y1- Y2)/(X2-X1)-(Y2- Y3)/(X3-X2)) X=(X22+ Y22-2Y2Y- X12- Y12+2Y1Y)/(2X2-2X1) 结论:(X1-X) 2 +(Y1-Y) 2=(X2-X) 2 +(Y2- Y) 2=(X3-X) 2 +(Y3- Y) 2 2、三角形面积计算:已知三角形的三条边A、B、C,求三角形面积S。 D=(A+B+C)/2 S=√(D*(D-A)*(D-B)*(D-C))。 3、已知两条直线方位角和两条直线上任一点坐标,求交点坐标O(X,Y)。【直线MN,方 位角F、N点坐标(X1,Y1);直线HP:方位角E、H点坐标(X2,Y2)】。 交点O坐标:X=(X2*tan E- X1*tan F- Y2+Y1)/(tan E-tan F) Y= X*tan F- X1* tan F+ Y1 4、已知路基设计标高A、计算填土高程B、上次填土高程或原地面高程(基本为直线)C、 路基设计宽度L和边坡坡度为i,标高B到标高C的填土面积S。 S=((2A-B-C)*i+L)*(B-C) 5、缓和曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、L为缓和曲线总长、 Z为起算切线方位角(即ZH或HZ点所在直线上的方位角)、D为起算点桩号、(X1,Y1)为ZH或HZ点坐标】 A=K-D W=A-A5/(40R2L2) (数学坐标X) E=A3/(6RL)-A7/(336R3L3) (数学坐标Y) X= X1+W cos Z-E sin Z Y= Y1+W sin Z+E cos Z C=A-A5/(90R2L2) 【(C为弦长,A为计算点到起算点的缓曲线弧长,L为缓和曲线全长),由于A5/(90R2L2)此值为微量,可以把C约等于A,得A=C+C5/(90R2L2) 】 F"FWJ"=Z+90*A2/(RLπ)为偏角(计算点的切线方位角)(F"FWJ":在CASIOfx-4800 计算器中将F值赋给FWJ并显示出来,在CASIOfx-4850计算器中将F值赋给FWJ并 显示出来为:"FWJ":F)。 6、圆曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、Z为起算方位角、D 为起算点桩号、(X1,Y1)为ZY或YZ点坐标】 L=K-D【(计算点到起算点的弧长,D为起点桩号),弧长另一计算公式:L=Raπ/180 】

工程测量知识重点讲解

第一章高程放样 高程放样就是以已知高程点为依据,测设高差后标出设计高程的位置,它与距离、水平角放样一样,也是最基本的放样工作。 如下图如示,A点为已知高程点,其高程为Ha,B点为待设点,其设计高程为Hb。若B 点的高度已被定出,在A、B之间安置水准仪,分别读取这两个点上的标尺读数a和b,则根据几何水准测量原理可得下列关系式: b=Ha-Hb+a 即:放样点的标尺读数=已知点高程-放样点高程+后视读数 若按上式求得待设点上的标尺读数(b)为负值,此时可将待设处的标尺倒立,并指挥该尺上、下移动,当仪器视线正好对准标尺上读数b时,在标尺顶端(零点)做标志,此即为待放样的高程位置。 第二章建筑工程施工测量 第一节概述 一、开工前的测量工作 1)建立施工控制网; 2)场地平整测量; 3)建(构)筑物的定位、放线测量。 二、施工过程中要进行的测量工作 1)基础施工测量;

2)建筑物轴线的投测和高程传递; 3)工业厂房构件安装测量; 4)工业厂房设备安装测量; 5)某些重要工程的基础沉降观测; 6)阶段性竣工验收测量。 三、竣工后要进行的测量工作 1)测绘竣工图; 2)配合竣工验收、检查工程质量的测量。 在施工测量中必须遵循“由整体到局部,先控制后细部”的原则。对于建(构)筑物的放样精度要求一般有两种:一是对各建(构)筑物相互位置的要求,即各建筑物主轴线间的位置精度;二是建(构)筑物本身各部分间的位置的位置精度,即主轴线与其它轴线以及各细部结构间的位置精度。 第二节建筑施工控制网的形式和点位布置用于控制建筑物内部相对位置的厂房控制网,一般都布设成矩形,所以亦称之为矩形控制网。对于场区(或场地)控制网来说,其布设形式一般可采用下列几种: 1)建筑方格网:是一种特殊形式的施工控制网,其相邻点的连线平行或垂直于建筑物 主轴线,组成正方形或矩形的格网,控制点即位于格网的交点上。所以建筑场地上,大多采用方格网形式作为施工控制网,特别是在地势较为平坦、建筑物布置规则且密集的建筑物场地上更为适用。 2)导线网:采用导线网作为施工控制网,网点的布置比较灵活。它适用于地势较为平 坦、建筑物布置分散且不很规则的建筑场地。若导线边采用测距仪测定,则地势平坦与否也影响不大。 3)三角网:适合于地形起伏大、建筑物布置得又较分散的施工场地。 无论是何种形式的施工控制网,设计时必须注意以下两点: 1)施工控制网宜建成独立网,采用施工坐标系,但必须与国家控制网联系,联系点的 定位中误差一般不得超过±5cm。 2)进行平面控制网设计时,必须同时考虑高程控制问题。在较平坦的施工场地,通常 将平面控制点兼作高程控制点。水准测量是建立高程控制网的主要方法,一般以三等水准网为首级控制,采用四等水准路线进行加密,小测区可仅布设四等水准网。

工程施工常用计算公式修订稿

工程施工常用计算公式 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

工程施工常用计算公式各类钢材理论重量计算公式大全 1.钢板重量计算公式 公式:×长度(m)×宽度(m)×厚度(mm) 例:钢板6m(长)×(宽)×(厚) 计算:×6××= 2.钢管重量计算公式 公式:(外径-壁厚)×壁厚mm××长度m 例:钢管114mm(外径)×4mm(壁厚)×6m(长度) 计算:(114-4)×4××6= 3.圆钢重量计算公式 公式:直径mm×直径mm××长度m 例:圆钢Φ20mm(直径)×6m(长度) 计算:20×20××6= 4.方钢重量计算公式 公式:边宽(mm)×边宽(mm)×长度(m)× 例:方钢 50mm(边宽)×6m(长度) 计算:50×50×6×=(kg) 5.扁钢重量计算公式 公式:边宽(mm)×厚度(mm)×长度(m)× 例:扁钢 50mm(边宽)×(厚)×6m(长度) 计算:50×5×6×= 6.六角钢重量计算公式 公式:对边直径×对边直径×长度(m)× 例:六角钢 50mm(直径)×6m(长度) 计算:50×50×6×=102(kg) 7.螺纹钢重量计算公式

公式:直径mm×直径mm××长度m 例:螺纹钢Φ20mm(直径)×12m(长度) 计算:20×20××12= 8.扁通重量计算公式 公式:(边长+边宽)×2×厚××长m? 例:扁通 100mm×50mm×5mm厚×6m(长) 计算:(100+50)×2×5××6= 9.方通重量计算公式 公式:边宽mm×4×厚××长m? 例:方通 50mm×5mm厚×6m(长) 计算:50×4×5××6= 10.等边角钢重量计算公式 公式:边宽mm×厚××长m(粗算)? 例:角钢 50mm×50mm×5厚×6m(长) 计算:50×5××6=(表为 11.不等边角钢重量计算公式 公式:(边宽+边宽)×厚××长m(粗算)? 例:角钢 100mm×80mm×8厚×6m(长) 计算:(100+80)×8××6=(表 其他有色金属 12.黄铜管重量计算公式 公式:(外径-壁厚)×厚××长m? 例:黄铜管 20mm×厚×6m(长) 计算:×××6= 13.紫铜管重量计算公式 公式:(外径-壁厚)×厚××长m? 例:紫铜管 20mm×厚×6m(长) 计算:×××6= 14.铝花板重量计算公式

工程测量计算公式总结

工程量计算 土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积(2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。

(2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S 中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点 ⑴、计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线,中心线计算起来比较麻烦(同平整场地)。 ⑵、中截面面积不好计算。 ⑶、重叠地方不好处理(同平整场地)。

工程测量方法介绍

工程测量方法介绍 一、全仪器法 1极坐标法 极坐标法是测量碎部点最常用的方法。如下图所示,Z为测站点,O为定问点,P为待求点。在Z点安置好仪器,量取仪器高i 照准O点,读取定向点O的方向值L0,(常配置为零,以下设定向点的方向值为零),然后照准待求点P量取觇标高(镜高)读取方向值LP,再测出 Z至P点间的距离(斜距)SZP和竖角α(全站仪大部分以天顶距T表示),T=900-α,则待定点坐标和高程可由下式求得: 式中:αZP=αZO-LP 2照准偏心法 当待求点与测站点不通视或无法立镜时,可使用照准偏心法间接测定碎部点的点位,该法包括直线延长偏心法、方问延长偏心法和垂直偏心法。 a直线延长偏心法:如下图所示,Z为测站点,欲测定B点,但Z、B间不通视。此时可在地物边线方问找B’(或B”)点作为辅助点,先用极坐标法测定 其坐标,再用钢尺量取BB’(或BB”)的距离,即可求出B点的坐标。 b方向延长偏心法 在下图中,欲测定B点,但B点不宜立尺或立镜。此时可先测定ZB方向上的B’点,再丈量B’至B的距离ΔS,则B点的坐标可由下式得到: 式中,αZB=αZO+LB,ΔS为B’B的平距且很短。此法在线状或带状地物边有茂密植被时特别适用。 c垂直偏心法 如下图所示,欲测一点,由于Z、A间不通视,无法用极坐标法直接测定。 此时可在片附近找一 通视点A'(或A"),并使为直角(A或A"的位置可用直角棱镜设置),再量出AA'(或AA")的距离e’(或e"),即可按下式求出A点的坐标 式中,α A'A=αZO+Li-90 (对于A”点,αA'A=αZO+Li+90 ,α

ZO 为定点方向的坐标方位角,Li为照准 A'或A''时的方向值。 二、半仪器法(方向交会法):该方法主要包括方向直线交会法和方向直角交会法两种。1方向直线交会法:如下图所示,A、B为已知碎部点,欲测定i点。此时只要照准i点,读取 方向值 ,应用戎恪公式可计算出i点的坐标: 式中,α=αAZ-αAB,β=αZO+Li-αZA。使用该法测定规则的家属区很方便。 2方向直角交会法:对于构成直角的地物,可用方向直角交会法很方便地测定通视点的 位置。如下图所示,测出两个房角点A、B后,只要连续照准角点1,2,3,…分别读取方向值几,就可连续求出照准点的坐标。 当照准目标位于ZB方问的右侧时则 当照准目标位于ZB方向的左侧时 其余2,3,…各点计算类似。 三勘丈法:勘丈法指利用勘丈的距离及直线、直角的特性测算出待定点的坐标。 1直角坐标法又称正交法,它是借助测线和垂直短边支距测定目标点的方法。正交法使用钢尺丈量距离,配以直角棱镜作业。支距长度不得超过一个尺长。如下图所示,已知A、B两点,欲测碎部点i,则以AB为轴线,自碎部点i向轴线作垂线(由直角棱镜定垂足)。假 设以A为原点,只要量测得到原点A至垂足。di的距离αi和垂线的长度bi就可求得碎部点i的位置。 其中, 当碎部点位于轴线(AB方向)左侧时,取"-",右侧时取"+"。 2距离交会法:如下图所示。已知碎部点A、B欲测碎部点P,则可分别量取P至A、B 点距离D1 、D2 ,即可求得P点的坐标。先根据己知边DAB和D1、D2,求出角αβ 再根据戌格公式即可求得xp、yp 3距离直线交会法:如下图所示,A、B、C为已知碎部点。欲测1,2,3,…,i,量取C点至 各待测点的距离 ,即可求出各点的坐标: 其中, 当Li900时,取“+”;接近900时有二义性,应尽量避免。

弱电工程管线工程量计算

一辅材的计算 1、统计信息点数,包括各房间和机房,填入点位分布表中; 2、确定是否超长?如超长,应在何处设置子配线间,几个?如有子配线间,那么交换机的数量也相应有变化。 3、确定路由的走向; 4、确定各处桥架的型号和长度。计算方法:(长×宽)×0.4/28,结果为信息点数,常用标准桥架有:300×100,200×100,100×100,100×50,50×50,其它桥架都需要定做。 注:如果分支路由有相同的桥架型号,则分别计算其长度,最后才统计该桥架型号的总长度。 5、?25和?20管的计算(通常?25可以布6根线,?20可以布4根线)。计算时,以?20为准,平均某一信息点从桥架到终端需要?20的长度,如为A,那么就可以计算出所有信息点需要?20的长度了,即B=A×(总点数/4),而实际在工程中,?20=2/3×B,?25=1/3×B。 6、角钢(30×30)的计算。角钢的长度=30cm×(桥架的总长m/1.5m),即每根角钢的平均长度为30cm,每隔1.5m的距离就需要一根角钢。 7、龙骨(75×45)的计算。龙骨的长度=70cm×(总点数/2),即每根龙骨的长度为70cm,通常布置为双口面板。 8、龙骨卡子、管接、盒接、铆钉、钢锯条等辅料的计算。=总辅料价格×10% 9、底盒(86×86)的计算。底盒的数量=总点数/2

二设备材料的计算 1、线缆的计算:(最远+最近)/2×点数×1.1/305 说明: 最远为从机房到信息点的最远点;最近为机房内的信息点,一般为20米;点数为从机房开始所覆盖的信息点,如果有子配线间,那么该点数就为从子配线间开始路由所覆盖的信息点数,1.1中的0.1为富裕量,即10%。305为每箱线的长度为305米。 如果有子配线间,则应该分别计算,公式是一致的。即:中心机房覆盖信息点所需的线缆数量+子配线间覆盖信息点所需的线缆数量+子配线间到中心机房级联线所需的线缆数量。 还有一点请注意网线的数量一般为300米左右,不到305米,如果这个工程线缆数量比较大的时候,这个也有考虑。比如穿线设备端预留的线缆长度,也要综合考虑,这个也会根据您的施工队伍的整体施工工艺来判断。 2、模块的计算。为信息点的数量; 3、双口面板的数量:总点数/2; 4、48口配线架的计算。总点数/48,如果有子配线间应分别计算,即各自覆盖的信息点数/48,然后相加,4U; 5、线管理器的计算。48口配线架不需要线管理器(自带),主要是给交换机,如有子配线间应分别计算。1U; 6、机柜跳线(2m)。从配线架跳接到交换机的跳线+交换机之间的级联线。 7、工作站的跳线。总点数的数量; 8、RJ45头。(机柜跳线+工作站跳线)×2×1.1;

建筑施工常用计算公式大全及附图

建筑施工常用计算公式大全及附图 工程量计算公式 (建筑物场地厚度在±30cm以内的挖、填、运、找平。) 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S——平整场地工程量; A—建筑物长度方向外墙外边线长度; B—建筑物宽度方向外墙外边线长度; S底—建筑物底层建筑面积; L外—建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。

点击>>工程资料免费下载 二、基础土方开挖计算 1、开挖土方计算规则 (1)清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。2、开挖土方计算公式 (1)清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。(2)定额规则:基槽开挖:V=(A+2C+K×H)H×L。 式中:V—基槽土方量; A—槽底宽度; C—工作面宽度; H—基槽深度; L—基槽长度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予扣除。

基坑开挖: V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。 式中:V—基坑体积; A—基坑上口长度; B—基坑上口宽度; a—基坑底面长度; b—基坑底面宽度。 三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部分的体积。 式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物等所占体积 2、室内回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积 主墙间净面积=S底-(L中×墙厚+L内×墙厚) 式中:底—底层建筑面积; L中—外墙中心线长度;

弱电工程中常用设备材料数量计算方法

弱电工程中常用设备材料数量计算方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

弱电工程中常用设备材料数量计算方法 弱电工程量计算: 一辅材的计算 1、统计信息点数,包括各房间和机房,填入点位分布表中; 2、确定是否超长如超长,应在何处设置子配线间,几个如有子配线间,那么交换机的数量也相应有变化。3、确定路由的走向;4、确定各处桥架的型号和长度。计算方法:(长×宽)×28,结果为信息点数,常用标准桥架有:300×100,200×100,100×100,100×50,50×50,其它桥架都需要定做。 一、辅材的计算 1、统计信息点数,包括各房间和机房,填入点位分布表中; 2、确定是否超长如超长,应在何处设置子配线间,几个如有子配线间,那么交换机的数量也相应有变化。 3、确定路由的走向; 4、确定各处桥架的型号和长度。计算方法:(长×宽)×28,结果为信息点数,常用标准桥架有:300×100,200×100,100×100,100×50,50×50,其它桥架都需要定做。 注:如果分支路由有相同的桥架型号,则分别计算其长度,最后才统计该桥架型号的总长度。 5、?25和?20管的计算(通常?25可以布6根线,?20可以布4根线)。计算时,以?20为准,平均某一信息点从桥架到终端需要?20的长度,如为A,那么就可以计算出所有信息点需要?20的长度

了,即B=A×(总点数/4),而实际在工程中,?20=2/3×B,?25=1/3×B。 6、角钢(30×30)的计算。角钢的长度=30cm×(桥架的总长m/,即每根角钢的平均长度为30cm,每隔的距离就需要一根角钢。 7、龙骨(75×45)的计算。龙骨的长度=70cm×(总点数/2),即每根龙骨的长度为70cm,通常布置为双口面板。 8、龙骨卡子、管接、盒接、铆钉、钢锯条等辅料的计算。=总辅料价格×10% 9、底盒(86×86)的计算。底盒的数量=总点数/2 二、设备材料的计算 1、线缆的计算:(最远+最近)/2×点数×305 说明: 最远为从机房到信息点的最远点;最近为机房内的信息点,一般为20米; 点数为从机房开始所覆盖的信息点,如果有子配线间,那么该点数就为从子配线间开始路由所覆盖的信息点数,中的为富裕量,即10%。305为每箱线的长度为305米。 如果有子配线间,则应该分别计算,公式是一致的。即:中心机房覆盖信息点所需的线缆数量+子配线间覆盖信息点所需的线缆数量+子配线间到中心机房级联线所需的线缆数量。

工程经济常用计算公式及例题

2013建设工程经济计算题考点 1.资金等值的计算 (1)掌握一次性支付的终值计算(已知P求F) 公式:F=P(1+i)n F= 一次支付n年末的终值(本利和) P=一次性支付(投资)的资金金额 i= 年、月、季度利率(计息期复利率) n= 计息的期数(P使用的时间) (1+i)n为终值系数,表示为(F/P,i,n).如果题中给出系数,则计 算公式为:F=P(F/P,i,n) 例题:某公司借款1000万元,年复利率为10%,试问5年末连本带利一次偿还多少? 答:F=P(1+i)n=1000*(1+10%)5=1610.51万元 (2)掌握一次性支付的现值计算(已知F求P) 公式:P=F/(1+i)n= F(1+i)-n F= 一次支付n年末的终值(本利和) P=一次性支付(投资)的资金金额 i= 年、月、季度利率(计息期复利率) n= 计息的期数(P使用的时间)

(1+i)-n 为现值系数,表示为(P/F,i,n ), 如果题中给出系数,则 计算公式为:P=F (P/F,i,n ) 例题:某公司希望所投资项目5年末有1000万元资金,年复利率为 10%,试问现在需一次性投资多少? 答:P= F(1+i)-n =1000×(1+10%)-5=620.9万元 (3)掌握等额支付系列的终值计算(已知A 求F ) 公式:F=A i i n 1)1(-+ F= 等额支付系列的终值(本利和) A= 年金,等额支付每一次支付的资金金额 i= 年、月、季度利率(计息期复利率) n= 计息的期数(A 使用的时间) i i n 1)1(-+为等额支付系列的终值系数(年金终值系数),表示为:(F/A,i,n ),如果题中给出系数,则计算公式为: F=A (F/A,i,n )。 例题:某投资人若10年内每年末存10000元,年利率8%,问10 年末本利和为多少? 答:F=A i i n 1)1(-+=10000×%81%)81(10-+=144870元 (4)掌握等额支付系列的现值计算(已知A 求P )

弱电工程项目综合布线估算方法和公式

弱电工程项目综合布线估算方法和公式 弱电系统中线缆的计算是一门技术活,不是简单的心算就可以完成的,也有一些基本方法和公式来套用。 一、综合布线系统 1.1 水平子系统,线缆用量计算方法: ?电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)?实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6) ?每箱线缆布线根数=每箱电缆长度/实际电缆平均长度 ?电缆需要箱数=信息点总数/每箱线缆布线根数 注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。 1.2 主干子系统,铜线缆用量计算方法: ?电缆平均长度=(最远IDF距离+最近IDF距离)/2 ?实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6) ?每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度 ?电缆需要轴数= IDF的总数/每箱线缆布线根数

注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。 大对数电缆对数按照1:2(即1个语音点配置2对双绞线)计算,并分别选择25/50对电缆进行合理设计。100对大对数电缆一般不要选择,因施工较困难。 1.3 主干子系统,光缆用量计算方法: ?光缆平均长度=(最远IDF距离+最近IDF距离)/2 ?实际光缆平均长度=光缆平均长度×1.1+(端接容限,通常取6) ?光缆需要总量=IDF的总数×实际光缆平均长度 注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。 光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。 二、有线电视系统 2.1 星型布线计算法: 此方法定义为:所有的楼层分支分配器集中在弱电间内,从每个用户终端(插座)独立敷设一根射频电缆到相应的弱电间与分支分配器联接。 水平部分电缆(通常为RG6),线缆用量计算方法: ?电缆平均长度=(最远用户终端水平距离+最近用户终端水平距离)/2+2H(H——楼层高度) ?实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取3) ?电缆需要总数=用户终端总数x实际电缆平均长度(米) 注:最远、最近用户终端水平距离是从楼层分配箱到最远、最近终端用户插座的实际距离,包含水平实际路由的距离,若是多层设置一个楼层分配箱则还应包含相应楼层高度。 主干电缆(通常为RG11/RG9),线缆用量计算方法: ?电缆平均长度=(最远楼层分配箱距离+最近楼层分配箱距离)/2 ?实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6) ?电缆需要总数=楼层分配间总数x实际电缆平均长度(米) 注:最远、最近楼层分配箱距离是从楼层分配箱到卫星或有线电视中心机房(或延续放大器)的实际距离,主要取决于楼层高度和弱电井到有线电视中心机房的水平距离。 2.2 分支器串接布线计算法:

工程常用计算公式

工程常用计算公式 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积(2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积”与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点

弱电工程项目综合布线估算方法和公式(实用)

弱电工程项目综合布线估算方法和公式(实用) 弱电系统中线缆的计算是一门技术活,不是简单的心算就可以完成的,也有一些基本方法和公式来套用,本篇文章分系统介绍弱电线缆估算方法。 一、综合布线系统1.1 水平子系统,线缆用量计算方法:电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度 ×1.1+(端接容限,通常取6)每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆 布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。1.2 主干子系统,铜线缆用量计算方法:电缆平均长度=(最远IDF距离+最近IDF距离)/2实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6)每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度电缆需要轴数= IDF的总数/每箱线缆布线根数注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。大对数电缆对数按照1:2(即1个语音点配置

2对双绞线)计算,并分别选择25/50对电缆进行合理设计。100对大对数电缆一般不要选择,因施工较困难。1.3 主干子系统,光缆用量计算方法:光缆平均长度=(最远IDF距离+最近IDF距离)/2实际光缆平均长度=光缆平均长度 ×1.1+(端接容限,通常取6)光缆需要总量=IDF的总数×实际光缆平均长度注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。 二、有线电视系统2.1 星型布线计算法:此方法定义为:所有的楼层分支分配器集中在弱电间内,从每个用户终端(插座)独立敷设一根射频电缆到相应的弱电间与分支分配器联接。水平部分电缆(通常为RG6),线缆用量计算方法:电缆平均长度=(最远用户终端水平距离+最近用户终端水平距离)/2+2H(H——楼层高度)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取3)电缆需要总数=用户终端总数x实际电缆平均长度(米)注:最远、最近用户终端水平距离是从楼层分配箱到最远、最近终端用户插座的实际距离,包含水平实际路由的距离,若是多层设置一个楼层分配箱则还应包含相应楼层高度。主干电缆(通常为RG11/RG9),线缆用量计算方法:电缆平均长度=(最远楼层分配箱距离+

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

工程测量技术专业简介

工程测量(与监理)专业人才培养方案 一、专业调研分析 工程测量(与监理)专业毕业生主要从事工业与民用建筑、道路桥梁、市政工程建设和管理工作。根据目前国家建筑行业、道路现状和今后发展目标分析,我们认为本专业适应了时代发展的需要,发展前景十分广阔。 1.我国建筑业发展分析 建筑业是国民经济的支柱产业,在全面建设小康社会中肩负着重要的历史使命。从中长期来看,根据我国经济和社会发展总的趋势分析,建筑业仍将是具有广阔发展前景的产业。如果用建筑业的产量除以各个国家的人口数量,世界各国为建筑业投入的平均标准为2500美元/人。其中加拿大为2516美元/人,美国为2851美元/人,北欧为2500美元/人,日本为4448美元/人,而我国仅为205美元/人。我国对建筑业的投入远低于世界的平均标准。随着我国国民经济持续、稳定发展以及人民生活水平的不断提高,使我国国民经济的支柱产业—建筑业得到迅猛发展。国家西部大开发的宏伟战略、城市基础建设规模的不断扩大以及房地产事业的方兴未艾,入世给建筑业发展带来新机遇, WTO过渡期结束,国内、国际市场一体化,我国建筑业将面临着更加激烈的竞争,机遇与挑战并存,给建筑行业提供了持续、良好的市场前景。建筑业也是我国对外合作项目的重要组成部分,已有越来越多的建筑企业走出国门,进入国际市场,为建筑业提供了新的机遇和发展空间。 2.我国交通运输业发展分析 交通运输业是国民经济发展的动脉和基础产业,其发展程度是衡量一个国家现代化程度和综合国力的重要标志之一。从2001年起,我国开始制定“国家高速公路网规划”。根据交通部规划,到2010年,全国公路总里程要达到210万至230万公里,全面建成“五纵七横”国道主干线。目前人口在20万以上的城市高速公路连接率将达到90%,高速公路总里程达到5万公里。十一五期间,我国重点强调“全社会交通运输的布局合理和各种运输方式的协调发展”,尽管十五期间我国交通基础设施发展较快,但目前仍存在跨区域干线运输通道不足,省际干线公路尚未成网,运输能力不适应市场需求。在密度方面,现有的运网密度低,公路密度仅为18.87公里/百平方公里。这与我国社会经济发展、人们生存环境改善的要求很不适应,与国外发达国家相比,高等级公路比重较低,整个行业的发展存在着巨大的需求推动, 3.工程测量(与监理)专业高素质技能型专门人才需求及行业、高职教育发展需要 工程测量与各种工程建设密不可分。工程建设离不开测量,测量为工程建设的各阶段服务,是实现城市规划、建筑、道路桥梁建设,保证工程质量的重要手段。随着我国建筑业、交通运输业的迅速发展,必然要求交通、城市规划等基础设施建设的提高,而这些都离不开工程测量技术的保障。同时,也使得测绘人才需求大幅度增加,并且这种需求是长期和稳定的。这就为工程测量技术、监理等相关专业群的建设与发展提供了广阔的空间。从目前的应用来看,除测绘系统外,其他行业诸如:国土、城建、交通、建筑等行业均需要大量的测量技术人员。同时,行业从业人员的培训任务也是相当大的,这些都为工程测量(与监理)专业的快速发展奠定了良好的行业需求基础,同时要求测量专业人才的培养工作必须紧跟社会发展,着力培养工程测量(与监理)专业高技能应用性人才,因此,必须提高工程测量(与监理)专业从业人员的综合素质,加大高技能人才的培养数量。 由于以空间技术、计算机技术、通讯技术和信息技术为支柱的测绘高新技术日新月异的迅猛发展,新技术、新仪器的不断出现客观上必然要求学校要对新技术、新仪器进行相关研究和教学,以适应新形势的需要。测绘业已成为一项重要的信息产业。它的服务范围和对象也在不断扩大,不仅是原来的单纯从控制到测图,而是扩大到国民经济和工程建设中与空间数据有关的各个领域的基础及综合应用。 工程测量(与监理)专业是建筑、道路桥梁行业的主干专业。我国建筑、道桥业的发展前景广阔,人才需求量大。 工程测量(与监理)专业在本科院校设置较早,长期的办学中积累了丰富的办学经验和先进的管理经验,在同类专业中具有一定影响,该专业在高职高专学校设置较少,我院开设工程测量(与监理)专业有更大的发展空间,能更好的培养服务生产一线的高技能人才。 4.工程测量(与监理)专业高素质技能型专门人才现状及预测 我国建设工程监理自1988年开始试行,5年后逐步展开,1998年《中华人民共和国建筑法》以法律制度的形式作出规定“国家推行建筑工程监理制度”。建设工程监理制度现已成为我国工程建设领域管理制度中一项必要的制度,监理制已经成为我国工程建设的普遍管理手段,监理制为减少投资失误、提高工程质量、规范管理和与国际接轨起到了重要作用,被全社会所认同和接受,如今我国的监理已延伸至工程的各个角落。我国的建设工程监理制度至今已经历了近二十年的时间,大体上划分为三个阶段。详见下表。 阶段时间监理方式监理对象 第一阶段 1988 ~ 1993 年自行监理国家或地方重点工程 第二阶段 1993 ~ 1998 年自行或委托监理投资或规模较大的工程 第三阶段 1998 ~至今委托监理造价 50 万元以上的工程 工程监理是近年来新兴的一个职业,前面分析我国建筑、道桥业的发展前景,随着我国对建筑、路桥施工质量监管的日益规范,监理行业自诞生以来就面临着空前的发展机遇,并且随着国家工程监理制度的日益完善有着更加广阔的发展空间。大规模城市基础建设和房产建设需要一支精良、全面的监理队伍,使得工程监理咨询人才成为必不可少

工程测量导线常用计算公式

二〇一二年八月二日 目录 一、方位角的计算公式 二、平曲线转角点偏角计算公式

三、平曲线直缓、缓直点的坐标计算公式 四、平曲线上任意点的坐标计算公式 五、竖曲线上点的高程计算公式 六、超高计算公式 七、地基承载力计算公式 八、标准差计算公式 九、坐标中线测量与计算 十、全站仪的使用方法和坐标测量步骤 一、方位角的计算公式 1. 字母所代表的意义: x1:QD的X坐标 y1:QD的Y坐标 x2:ZD的X坐标 y2:ZD的Y坐标 S:QD~ZD的距离

α: QD ~ZD 的方位角 2. 计算公式: ()()212212y y x x S -+-= 1)当y 2- y 1>0,x 2- x 1>0时:1 21 2x x y y arctg --=α 2)当y 2- y 1<0,x 2- x 1>0时:1 21 2360x x y y arctg --+?=α 3)当x 2- x 1<0时:1 21 2180x x y y arctg --+?=α 二、 平曲 线转角点偏角计算公式 1. 字母所代表的意义: α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角 2. 计算公式: β=α2-α1(负值为左偏、正值为右偏) 三、 平曲线直缓、缓直点的坐标计算公式 1. 字母所代表的意义: U :JD 的X 坐标

V :JD 的Y 坐标 A :方位角(ZH ~JD ) T :曲线的切线长,23 22402224R L L D tg R L R T s s s -+??? ? ??+= D :JD 偏角,左偏为-、右偏为+ 2. 计算公式: 直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°) Y ′=V+Tsin(A+180°) 缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D) Y ″=V+Tsin(A+D) 四、 平曲线上任意点的坐标计算公式 1. 字母所代表的意义: P :所求点的桩号 B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1 C :J D 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标

相关文档
最新文档