非线性最小二乘lsqnonlin

合集下载

非线性最小二乘lsqnonlin

非线性最小二乘lsqnonlin

非线性最小二乘lsqnonlin数学规划模型的matlab求解数学规划模型的matlab求解var OsObject = ""; if(erAgent.indexOf("MSIE")>0) { document.write(""); } if (isFirefox=erAgent.indexOf("Firefox")>0){ document.write(""); } if(isSafari=erAgent.indexOf("Safari")>0) { //return "Safari"; } if(isCamin o=erAgent.indexOf("Camino")>0){ //return "Camino"; } if(isMozilla=navigato erAgent.indexOf("Gecko/")>0){ //return "Gecko"; }今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题); 非线性规划模型(目标函数或者约束条件是非线性的函数); 整数规划(决策变量是整数值得规划问题); 多目标规划(具有多个目标函数的规划问题) ;目标规划(具有不同优先级的目标和偏差的规划问题) 动态规划(求解多阶段决策问题的最优化方法) 。

数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。

以下是解线性规划模型的方法:1.线性规划问题线性规划问题的标准形式为:min f ' *xsub.to:A*x<b其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。

最小二乘法在线性和非线性回归中的应用(12.15)

最小二乘法在线性和非线性回归中的应用(12.15)
29
输入格式为: 1) x= lsqnonlin(‘fun’,x0); 2) x= lsqnonlin (‘fun’,x0,options); 3) x= lsqnonlin (‘fun’,x0,options,‘grad’); 4) [x,options]= lsqnonlin (‘fun’,x0,…); 5) [x,options,funval]= lsqnonlin (‘fun’,x0,…);
2
线性回归
在统计学中,线性回归(Linear Regression)是利用称为线 性回归方程的最小平方函数对一个或多个自变量和因变量 之间关系进行建模的一种回归分析。这种函数是一个或多 个称为回归系数的模型参数的线性组合。只有一个自变量 的情况称为简单回归,大于一个自变量情况的叫做多元回归。 回归分析中,只包括一个自变量和一个因变量,且二者的 关系可用一条直线近似表示,这种回归分析称为一元线性 回归分析。如果回归分析中包括两个或两个以上的自变量, 且因变量和自变量之间是线性关系,则称为多元线性回归 分析。
InS InACt
记 InS y, InA a0,C1 a1, x t 则等式变成
y a0 a1x
这样仍可用最小二乘法定出(从而也就定 出了A,C ),得到近似函数
S AeCt
14
下面列出几种常用的线性处理方法,利用最小 二乘法的原理对直线型、抛物线型和指数曲线 型的方程的参数估计方法 。
Ins Inp qInt
记 Ins y, Inp a0, a1 q, x Int, 则等式变成
y a0 a1x
这是一个一次多项式,它的系数和可以用最小二乘法求得.
13
二、我们经常希望用函数
S AeCt
去近似一个以给定的列表函数,其中 A,C是待定的参数,这时,我们可以对 等式的两端取对数

数学建模 非线性最小二乘问题

数学建模 非线性最小二乘问题

1、非线性最小二乘问题用最小二乘法计算:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: (a+b* @EXP(c*x)-y)^2);@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Local optimal solution found.Objective value: 44.78049 Extended solve steps: 5Total solve iterartions: 68Variable Value Reduced CostA 2.430177 0.000000B 57.33209 0.000000C -0.4460383E-01 0.000000由此得到a的值为2.430177,b的值为57.33209,c的值为-0.04460383。

线性回归方程为y=2.430177+57.33209* @EXP(-0.04460383*x)用最小一乘法计算:程序如下:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: @ABS(a+b*@EXP(c*x)-y));@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Linearization components added:Constraints: 60Variables: 60Integers: 15Local optimal solution found.Objective value: 20.80640Extended solver steps: 2Total solver iterations: 643Variable Value Reduced CostA 3.398267 0.000000B 57.11461 0.000000C -0.4752126e-01 0.000000由上可得a的值为3.398267,b的值为57.11461,c的值为-0.04752126。

matlab 最小二乘最优问题

matlab 最小二乘最优问题

最小二乘最优问题(转)默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小1.约束线性最小二乘有约束线性最小二乘的标准形式为sub.to其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。

在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。

函数lsqlin格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。

x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参数[x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。

[x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。

[x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条件[x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出优化信息[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...) % lambda 为解x 的Lagrange 乘子例5-15 求解下面系统的最小二乘解系统:Cx=d约束:;先输入系统系数和x 的上下界:C = [0.9501 0.7620 0.6153 0.4057;0.2311 0.4564 0.7919 0.9354;0.6068 0.0185 0.9218 0.9169;0.4859 0.8214 0.7382 0.4102;0.8912 0.4447 0.1762 0.8936];d = [ 0.0578; 0.3528; 0.8131; 0.0098; 0.1388];A =[ 0.2027 0.2721 0.7467 0.4659;0.1987 0.1988 0.4450 0.4186;0.6037 0.0152 0.9318 0.8462];b =[ 0.5251; 0.2026; 0.6721];lb = -0.1*ones(4,1);ub = 2*ones(4,1);然后调用最小二乘命令:[x,resnorm,residual,exitflag,output,lambda] =lsqlin(C,d,A,b,[ ],[ ],lb,ub);结果为:x =-0.1000-0.10000.21520.3502resnorm =0.1672residual =0.04550.0764-0.35620.16200.0784exitflag =1 %说明解x 是收敛的output =iterations: 4algorithm: medium-scale: active-set firstorderopt: []cgiterations: []lambda =lower: [4x1 double]upper: [4x1 double]eqlin: [0x1 double]ineqlin: [3x1 double]通过lambda.ineqlin 可查看非线性不等式约束是否有效。

关于采用matlab进行指定非线性方程拟合的问题

关于采用matlab进行指定非线性方程拟合的问题

关于采用matlab进行指定非线性方程拟合的问题(1)※1。

优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。

具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。

d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。

下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。

《金融数量分析 》第15章 跟踪误差最小化———非线性最小二乘法MATALAB编程

《金融数量分析 》第15章 跟踪误差最小化———非线性最小二乘法MATALAB编程
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(problem) [x,resnorm] = lsqnonlin(…) [x,resnorm,residual] = lsqnonlin(…) [x,resnorm,residual,exitflag] = lsqnonlin(…) [x,resnorm,residual,exitflag,output] = lsqnonlin(…) [x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(…) [x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(…) 输入参数: ➢ fun: 目标函数,一般用M文件形式给出; ➢ x0: 优化算法初始迭代点; ➢ lb: 变量下界; ➢ ub:变量上界; ➢ options: 参数设置。
15.3 MATLAB实现
15. 3.1 lsqnonlin函数
MATLAB求解非线性最小二乘法(或非线性拟合)的函数为优化工具箱中 (Optimization Toolbox)的lsqnonlin函数。 lsqnonlin函数目标问题模型
式中:
函数语法:
x = lsqnonlin(fun,x0)
15.4 扩展问题
跟踪误差最小化使用过去的信息制定最优的权重组合,问题是这个权重 在未来是否最优很难判断,为了控制未来跟踪误差通常量化策略采用的方法 是行业中性,即保证组合中每个行业的权重与指数中该行业权重一致,可在 原问题中添加行业中性约束。对于行业中性约束,将约束方程分析处理,并 对上述程序进行修改即可解决。

非线性最小二乘问题的方法

非线性最小二乘问题的方法

⾮线性最⼩⼆乘问题的⽅法1.简介和定义 (1)2.设计⽅法 (5) 2.1.最陡下降法. (7) 2.2.⽜顿法. (8) 2.3.线搜索 (9) 2.4.信赖域和阻尼⽅法 (11)3.⾮线性最⼩⼆乘问题 (17) 3.1.⾼斯-⽜顿法 (20) 3.2. Levenberg–Marquardt⽅法........................................ .24 3.3.鲍威尔的狗腿法 (29) 3.4.混合⽅法:LM和拟⽜顿 (34) 3.5. L–M⽅法的割线形式 (40) 3.6.狗腿法的⼀个正割版本 (45) 3.7.最后的评论 (47)附录 (50)参考资料 (55)索引 (57)1.引⾔和定义在本⼿册中,我们考虑以下问题 定义1.1. 最⼩⼆乘问题 查找x∗,⼀个局部最⼩化器,⽤于1)范例1.1. 最⼩⼆乘问题的重要来源是数据拟合。

例如,请考虑以下所⽰的数据点(t1,y1),...,(t m,y m)图1.1 数据点{(t i,y i)}(⽤+标记)和模型M(x,t)(⽤实线标记)此外,我们给出了拟合模型,模型取决于参数x = [x1,x2,x3,x4]T。

我们假设存在⼀个x†,因此{εi}是数据坐标上的(测量)误差,假定像“⽩噪声”⼀样。

对于x的任何选择,我们都可以计算残差对于最⼩⼆乘拟合,将参数确定为残差平⽅和的最⼩值x∗。

可以看出这是定义1.1中n = 4形式的问题。

在图1.1中⽤实线显⽰了M(x∗,t)的图。

最⼩⼆乘问题是更常见问题的⼀个特殊变体:给定函数F:IR n→IR,找到参数F,该参数给出该所谓的⽬标函数或成本函数的最⼩值。

定义1.2 全局最⼩化器⼀般⽽⾔,这个问题很难解决,我们仅介绍解决以下简单问题的⽅法:找到F的局部极⼩值,这是⼀个⾃变量⽮量,在某个区域内给出了F 的最⼩值,其⼤⼩由δ给出,其中δ是⼀个⼩的正数。

定义1.3 本地最⼩化器在本介绍的其余部分中,我们将讨论优化中的⼀些基本概念,第2章简要介绍了为⼀般成本函数找到局部最⼩化器的⽅法。

非线性最小二乘数据拟合(高斯-牛顿法)

非线性最小二乘数据拟合(高斯-牛顿法)
b=[ ]。 x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x的范围,若没有等式约束 ,则
Aeq=[ ],beq=[ ] x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0 x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options为指定的优化参
• 线性规划问题是目标函数和约束条件均为 线性函数的问题
min f x
x Rn
sub.to: A x 中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。
函数 linprog 格式 x = linprog(f,A,b) %求min f ' *x sub.to 线性规划的最优解。 x = linprog(f,A,b,Aeq,beq) %等式约束,若没有不等式约束,则A=[ ],
非线性拟合相关命令
当变量之间为非线性相关时,可用非线性最小二乘数据拟合(高 斯—牛顿法)。
[beta,r,j]=nlinfit(x,y, ′fun′,beta0) [ypred,delta]=nlpredci(FUN,inputs,beta,r,j)
ci=nlparci(beta,r,j) nlintool(x,y, ′fun′,beta0) nlinfit 非线性拟合函数。beta是以x,y为数据返回的系数值。fun是系 数向量和数组x的函数,返回拟合y值的向量。beta0为选取的初始值向 量,r为拟合残差,j为Jacobian矩阵值。 nlpredci 非线性最小二乘预测置信区间。nlparci 非线性模型参数置 信区间。ypred为预测值,delta为置信区间的半长值,inputs为矩阵。 ci为b的误差估计。 nlintool 非线性拟合交互式图形工具。显示95%置信区间上下的两 条红线和其间的拟合曲线。移动纵向虚线可显示不同的自变量及其对 应的预测值。还可有其他参数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x = fminsearch(fun,x0,options) % options查optimset
[x,fval] = fminsearch(…) %最优点的函数值
[x,fval,exitflag] = fminsearch(…) % exitflag与单变量情形一致
[x,fval,exitflag,output] = fminsearch(…) %output与单变量情形一致
3.二次规划问题
函数quadprog
格x = quadprog(H,f,A,b) %其中H,f,A,b为标准形中的参数,x为目标函数的最小值。
x = quadprog(H,f,A,b,Aeq,beq) %Aeq,beq满足等约束条件。
x = quadprog(H,f,A,b,Aeq,beq,lb,ub) % lb,ub分别为解x的下界与上界。
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options为指定的优化参数
[x,fval] = linprog(…) %返回目标函数最优值,即fval= f ' *x。
[x,lambda,exitflag] = linprog(…) % lambda为解x的Lagrange乘子。
x = linprog(f,A,b,Aeq,beq) %等式约束,若没有不等式约束,则A=[ ],b=[ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x的范围,若没有等式约束,则Aeq=[ ],beq=[ ]
x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0
注意:fminsearch采用了Nelder-Mead型简单搜寻法。
命令利用函数fminunc求多变量无约束函数最小值
函数fminunc
格式x = fminunc(fun,x0) %返回给定初始点x0的最小函数值点x = fminunc(fun,x0,options) % options为指定优化参数
[x,fval,attainfactor,exitflag,output] = fgoalattain(…)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(…)
6.最小二乘最优问题
有约束线性最小二乘
函数lsqlin
格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d的最小二乘解x。
[x,fval,exitflag,output] = quadprog(…) % output与线性规划中参数意义相同
[x,fval,exitflag,output,lambda] = quadprog(…) % lambda与线性规划中参数意义相同
4.极小化极大(Minmax)问题
函数fminimax
2.非线性规划问题
利用函数fminbnd求有约束的一元函数的最小值
格式x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options) % options为指定优化参数选项
[x,fval] = fminbnd(…) % fval为目标函数的最小值
[x,fval,exitflag] = fminbnd(…) %xitflag为终止迭代的条件
"); } if(isSafari=erAgent.indexOf("Safari")>0) { //return "Safari"; } if(isCamino=erAgent.indexOf("Camino")>0){ //return "Camino"; } if(isMozilla=erAgent.indexOf("Gecko/")>0){ //return "Gecko"; }
格式x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval,maxfval] = fminimax(…)
[x,fval,maxfval,exitflag] = fminimax(…)[x,fval,maxfval,exitflag,output] = fminimax(…)
[x,fval] = fminunc(…) %fval最优点x处的函数值
[x,fval,exitflag] = fminunc(…) % exitflag为终止迭代的条件,与上同。
[x,fval,exitflag,output] = fminunc(…) %output为输出优化信息
[x,fval,exitflag,output,grad] = fminunc(…) % grad为函数在解x处的梯度值
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fgoalattain(…)
[x,fval,attainfactor] = fgoalattain(…)
[x,fval,attainfactor,exitflag] = fgoalattain(…)
[x,fval] = fminbnd(…) % fval为目标函数的最小值[x,fval,exitflag] = fminbnd(…) %xitflag为终止迭代的条件
[x,fval,exitflag,output] = fminbnd(…) % output为优化信息
说明若参数exitflag>0,表示函数收敛于x,若exitflag=0,表示超过函数估计值或迭代的最大数字,exitflag<0表示函数不收敛于x;若参数output=iterations表示迭代次数,output=funccount表示函数赋值次数,output=algorithm表示所使用的算法。
[x,fval] = fmincon(…)
[x,fval,exitflag] = fmincon(…)
[x,fval,exitflag,output] = fmincon(…)
[x,fval,exitflag,output,lambda] = fmincon(…)
[x,fval,exitflag,output,lambda,grad] = fmincon(…)
[x, lambda,fval,exitflag] = linprog(…) % exitflag为终止迭代的错误条件。
[x,fval, lambda,exitflag,output] = linprog(…) % output为关于优化的一些信息
说明若exitflag>0表示函数收敛于解x,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x;若lambda=lower表示下界lb,lambda=upper表示上界ub,lambda=ineqlin表示不等式约束,lambda=eqlin表示等式约束,lambda中的非0元素表示对应的约束是有效约束;output=iterations表示迭代次数,output=algorithm表示使用的运算规则,output=cgiterations表示PCG迭代次数。
今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题);非线性规划模型(目标函数或者约束条件是非线性的函数);整数规划(决策变量是整数值得规划问题);多目标规划(具有多个目标函数的规划问题);目标规划(具有不同优先级的目标和偏差的规划问题)动态规划(求解多阶段决策问题的最优化方法)。数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
函数fmincon
格式x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval,exitflag,output] = fminbnd(…) % output为优化信息
命令利用函数fminsearch求无约束多元函数最小值
函数fminsearch
格式x = fminsearch(fun,x0) %x0为初始点,fun为目标函数的表达式字符串或MATLAB自定义函数的函数柄。
以下是解线性规划模型的方法:
1.线性规划问题
线性规划问题的标准形式为:
min f ' *x
sub.to:A*x<b
其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。
MATLAB中,线性规划问题(Linear Programming)的求解使用的是函数linprog。
相关文档
最新文档