导数基础知识梳理

导数基础知识梳理
导数基础知识梳理

导数基础知识梳理

1.导数的概念:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈当x ?无限接近于0时,比值 无限趋近于一个常数A ,则称()f x 在点0x x =处可导,并称常数A 为函数()f x 在0x x =处的 ,记作 .

2.导数的几何意义:函数()f x 在点0x 处的导数0()f x '的几何意义就是曲线()y f x =在点 处的 .

3.常见函数的导数:

4.导数运算法则

(1)/[()()]f x g x ±= ;(2)/[()()]f x g x = ; (3)/

()[

]()

f x

g x = [()0].g x ≠ 5.简单复合函数的导数:

若(),y f u u ax b ==+,则x u x y y u '''=?,即x y '= .

可导函数的极值

6、 极值的概念

设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.

⑵ 求可导函数极值的步骤: ① 求导数)(x f ';

② 求方程)(x f '=0的 ;

③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .

7.函数的最大值与最小值: ⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =

)(x f 在(a ,b )内有导数,则函数y =)

(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:

① 求y =)(x f 在(a ,b )内的 值;

② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.

(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .

基础训练

1.函数y =ax 2+1的图象与直线y =x 相切,则a =( )

A .18

B .41

C .2

1

D .1

2.若

2)(0='x f ,则=

--→k

x f k x f k 2)()(000lim

3.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则

x

y

??为…( ) A .△x +x ?1 +2 B .△x -x ?1-2 C .△x +2 D .2+△x -x

?1

4.已知两曲线ax x y +=3

和c bx x y ++=2

都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。

5、求下列函数的导数:

(1)y=(2x 2

-1)(3x+1)

(2)x x y sin 2

= (3)ln x

y x

=

(4)()ln 32y x =+ (5)y =sin(2)3

x π

+

3.(2008.辽宁)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,

]4π

,则点P 横坐标的取值范围是( )

A . 1[1,]2--

B . [-1,0]

C . [0,1]

D . [1

,12

]

1. 设f(x)=x 2

(2-x),则f(x)的单调增区间是 ( )

A.(0,)34

B.(,34+∞)

C.(-∞,0)

D.(-∞,0)∪(3

4,+∞) 2. 如果函数y=f(x)的图象如图所示,那么导函数y=)(x f '的图象可能是 ( )

3. 若函数()3

2

1f x x ax =-+在(0,2)内单调递减,则实数a 的取值范围为 ( )

A.a≥3

B.a=3

C.a≤3

D.0

A .),31(+∞

B .]31,(-∞

C .),31[+∞

D .)3

1,(-∞

变式训练:若函数3

2

()6f x x ax x =--+在(0,1)内单调递减,则实数a 的取值范围是( )

A .1a ≥

B .1a =

C .1a ≤

D .01a <<

例3.设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )

A

B

C

D

变式训练1:(05江西)已知函数()y xf x '=的图象如右图所示(其中'(f 数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )

变式训练2:如果函数()y f x =的导函数的图象如下图所示,给出下列判断: ①函数()y f x =在区间1(3,)2

--内单调递增; ②函数()y f x =在区间1(,3)2

-内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当1

2

x =-

时,函数()y f x =有极大值. 则上述判断中正确的是____________.

1. 函数9x 3ax x )x (f 2

3-++=, 已知)x (f 在3x -=时取得极值, 则a 的取值是( )

A. 2

B. 3

C. 4

D. 5

2. 函数y=x-sinx,,2x ππ??

∈?

???

的最大值是( ) A.π-1 B. 2

π

-1 C. π D. π+1 3. 已知()f x =

32

11632

x x x --,当x ∈[-1,2]时,()f x m <恒成立,则实数m 的取值范围是______.

例1.函数y =1+3x -x 3有( )

A.极小值-2,极大值2

B.极小值-2,极大值3

C.极小值-1,极大值1

D.极小值-1,极大值3

1. 函数()3

2

39f x x ax x =+--,已知()f x 的两个极值点为12,x x ,则12x x = ( )

A .9

B .9-

C .1

D .1-

2. 函数2cos y x x =+在区间[0,]2

π

上的最大值是 .

3. 函数()ln x

f x x

=

的单调递减区间是_ _____. 变式训练1:已知函数f(x)=x 3+ax 2

+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若

x=3

2时,y=f(x )有极值.

(1)求a,b,c 的值;

(2)求y=f(x )在[-3,1]上的最大值和最小值.

例2.(2006.北京)已知函数()32f x ax bx cx =++在点x 0处取得 极大值5,其导数y='()f x 的图象经过点(1,0),(2,0)(如图所示)。

求: (1) x 0的值; (2) ,,a b c 的值.

变式训练:(2008福建)设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是( )

A B C D

例3.已知函数)0

(

)

2

3

(

)

(2

3>

+

-

-

+

+

=a

d

x

b

a

c

bx

ax

x

f的

图像如图所示。

(1)求d

c,的值;

(2)若函数)

(x

f在2

=

x处的切线方程为0

11

3=

-

+y

x,求函数)

(x

f的解析式;

(3)若

x=5,方程a

x

f8

)

(=有三个不同的根,求实数a的取值范围。

x0

1

o x

y

3

例1.已知函数32()f x x ax bx c =-+++图象上的点(1,(1))P f 处的切线方程为31y x =-+. ⑴若函数()f x 在2x =-处有极值,求()f x 的表达式;

⑵若函数()f x 在区间[2,0]-上单调递增,求实数b 的取值范围. 变式训练:已知3x =是函数2()ln(1)10f x a x x x =++-的极小值点. ⑴求实数a 的值;

⑵求函数()f x 的单调区间.

变式训练:设定函数3

2()(0)3

a f x x bx cx d a =+++ ,且方程'()90f x x -=的两个根分别为1,4。

(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式; (Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。

例3.已知函数f(x)=x3-

2

1x2+bx+c.

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)

1.

22

1

(21)

x x dx

++=

?;

2. 由抛物线2

y x

=与直线2

y x

=-围成的平面图形的面积为 .

(完整)高中数学导数题型总结,推荐文档

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020年高考数学(理) 函数和导数 知识点归纳汇总

目录 基本初等函数性质及应用 (3) 三角函数图象与性质三角恒等变换 (17) 函数的图象与性质、函数与方程 (43) 导数的简单应用与定积分 (60) 利用导数解决不等式问题 (81) 利用导数解决函数零点问题 (105)

基本初等函数性质及应用 题型一 求函数值 【题型要点解析】 已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化. 例1.若函数f (x )=a |2x -4| (a >0,且a ≠1),满足f (1)=1 9 ,则f (x )的单调递 减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2] 【解析】 由f (1)=19,得a 2=19,解得a =13或a =-1 3 (舍去),即f (x )= 4 231-?? ? ??x 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在 (-∞,2]上递增,在[2,+∞)上递减. 【答案】 B 例2.已知函数f (x )=? ???? 3x 2+ln 1+x 2+x ,x ≥0, 3x 2 +ln 1+x 2-x ,x <0,若f (x -1)0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2 +ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式 f (x -1)0,解得x >0或x <-2.

导数的运算练习题.doc

导数的运算练习 一、常用的导数公式 (1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________; 二、导数的运算法则 1、(1) ; (2) ; (3)______________________________________; (4) =___________________________________;(C 为常数) 2、复合函数的导数 设 . 三、练习 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x 的导数是( ) A .23x B .213x C .12- D 33x

4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( ) A .0 B .13- C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4 π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π?????? B .30,,24πππ????????????U C .3,4ππ?????? D .3,24ππ?? ???

知识讲解-导数的计算-基础(1)

导数的计算 【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。 2. 熟记八个基本初等函数的导数公式,并能准确运用。 3. 能熟练运用四则运算的求导法则, 4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”. 【要点梳理】 知识点一:基本初等函数的导数公式 (1)()f x C =(C 为常数),'()0f x = (2)()n f x x =(n 为有理数),1'()n f x n x -=? (3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()x f x e =,'()x f x e = (6)()x f x a =,'()ln x f x a a =? (7)()ln f x x =,1 '()f x x = (8)()log a f x x =,1 '()log a f x e x = 。 要点诠释: 1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴. 2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1()'n n x nx -=(n ∈Q ). 特别地 2 11'x x ?? =- ??? ,=。 3.正弦函数的导数等于余弦函数,即(sin x )'=cos x . 4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x . 5.指数函数的导数:()'ln x x a a a =,()'x x e e =. 6.对数函数的导数:1(log )'log a a x e x = ,1 (ln )'x x =. 有时也把1(log )'log a a x e x = 记作:1 (log )'ln a x x a = 以上常见函数的求导公式不需要证明,只需记住公式即可.

第21讲 导数中参数问题的求解策略高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 导数中参数的问题是高考的重点和难点,也是学生感到比较棘手的问题.导数中参数问题的处理常用的有分离参数和分类讨论两种方法,并且先考虑分离参数,如果分离参数不行,可以再考虑分类讨论.因为分离参数解题效率相对高一点. 【方法讲评】 方法一 分离参数法 解题步骤 先分离参数,再解答. 【例1】已知函数()ln ()f x a x a R x = -∈. (1)若()()2h x f x x =-,当3a =-时,求()h x 的单调递减区间; (2)若函数()f x 有唯一的零点,求实数a 的取值范围. 如图,作出函数()x ?的大致图象,则要使方程1 ln x x a =的唯一的实根, 【点评】1 ln a x x = 有唯一的实根,如果直接研究,左边函数含有参数a ,和右边的函数分析交点,不是很方便,但是分离参数后得1 ln x x a =,左边函数没有参数,容易画出它的图像,右边是一个常数函数, 交点分析起来比较方便. 【反馈检测1】已知函数()()2x f x x e =-和()3 2g x kx x =--. (1)若函数()g x 在区间()1,2不单调,求实数k 的取值范围; (2)当[)1,x ∈+∞时,不等式()()2f x g x x ≥++恒成立,求实数k 的最大值. 【反馈检测2】已知()2ln f x x x =,32 ()2g x x ax x =+-+. (1)如果函数()g x 的单调递减区间为1(,1)3 -,求函数()g x 的解析式; (2)在(1)的条件下,求函数()y g x =的图象在点(1,(1))P g --处的切线方程; (3)已知不等式()'()f x g x ≤2+恒成立,若方程0a ae m -=恰有两个不等实根,求m 的取值范围. 方法二 分类讨论法 解题步骤 就参数分类讨论解答. 【例2】已知函数,其中为常数. (1)讨论函数 的单调性;

第五章一元函数的导数及其应用知识点与基础巩固题(解析版)高二数学复习巩固练习(人教A版2019)

专题14人教A 版(2019)第五章一元函数的导数及其应用知 识点与基础巩固题——寒假作业14(解析版) 一.导数的定义: 0000000()() ()'()'|lim ()() ()'()'lim x x x x f x x f x y f x x x f x y x f x x f x y f x f x y x =?→?→+?-====?+?-===?1.(1).函数在处的导数: (2).函数的导数: 2.利用定义求导数的步骤: ①求函数的增量:00()()y f x x f x ?=+?-;②求平均变化率: 00()() f x x f x y x x +?-?= ??; ③取极限得导数:00'()lim x y f x x ?→?=? (下面内容必记) 二、导数的运算: (1)基本初等函数的导数公式及常用导数运算公式: ① '0() C C =为常数;② 1 ()'n n x nx -=; 11( )'()'n n n x nx x ---==- ; 1 ()'m m n n m x x n -== ③ (sin )'cos x x =; ④ (cos )'sin x x =- ⑤ ()'x x e e = ⑥ ()'ln (0,1)x x a a a a a =>≠且; ⑦1(ln )'x x = ; ⑧1(log )'(0,1)ln a x a a x a =>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差). 法则2:[()()]''()()()'()f x g x f x g x f x g x ?=?+?(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3:2 ()'()()()'()[ ]'(()0)()[()] f x f x g x f x g x g x g x g x ?-?=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法: ①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =?③回代()u g x = 三.导数的物理意义 1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ',

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名: 导数概念公式 【笔记】 课堂练习 1、在曲线2 y x =上切线倾斜角为 4 π 的点是( D ) A .(0,0) B .(2,4) C .11(, )416 D .11 (,)24 【笔记】 2、曲线2 21y x =+在点(1,3)P -处的切线方程为( A ) A .41y x =-- B .47y x =-- C .41y x =- D .47y x =+ 【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10 【笔记】 4、函数1 y x x =+ 的导数是( A ) A .211x - B .11x - C .2 11x + D .1 1x + 【笔记】 5、函数cos x y x = 的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2 cos cos x x x x +- 【笔记】 6、函数sin (cos 1)y x x =+的导数是( C ) A .cos2cos x x - B .cos2sin x x + C .cos2cos x x + D .2 cos cos x x + 【笔记】 课后作业(1) 姓名: 1、3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( D ) A .3 19 B .3 16 C .3 13 D .3 10 2、函数sin 4y x =在点(,0)M π处的切线方程为( D ) A .y x π=- B .0y = C . 4y x π=- D .44y x π=- 3、求下列函数的导数: (1)12 y x =; (2)41 y x = ; (3 )y 【答案】(1)11 ' 12x y =, (2)5 4--=x y ;(3)52 5 3- =x y 4、若3' 0(),()3f x x f x ==,则0x 的值为_________1±________ 5、函数sin x y x =的导数为___________2 ' sin cos x x x x y -=__________ 6、与曲线y =1 e x 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底) 高考数学模拟卷基础题型训练(2)姓名: 1、已知曲线3 :C y x =。求曲线C 上横坐标为1的点处的切线的方程为 【笔记】 2、已知3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值是( ) A . 193 B .163 C .133 D .10 3 【笔记】

导数基础知识专项练习

(((((((((( 导数专项练习 一、选择题(本大题共21小题,共105.0分) =1处的切线方程为( +)1.函数(在点)= 3xxfxx xyxyxyxy-2=0+++2=0 +2=0 B.4 -D.4-2=0 A.4C.4-yxylnxaa的值为(已知直线+=)+1与曲线)相切,则= (2.A.1 B.2 C.-1 D.-2 +1在点M处的瞬时变化率为-4,则点已知曲线M=2的坐标是() 3.A.(1,3) B.(1,2xy 4) C.(-1,3) D.(-1,-4) yfxyfxyfx)的图象可能(′((4.若函数)的图象如图所示,则=)(=)的导函数 =

D.C.A. B.23aaxxfxx的取值范-∞,+∞)上是单调递减函数,则实数5.已知函数-1(在()=--+ )围是( D.- )∪(]∪[,+∞),+∞)B.[-] C.(∞,A.(---∞,()- mxfx的取值(上是增函数,则实数)=,2]在区间6.已知函数[1 )范围为( mmmm D.≤4 C. ≤2 A.4≤≤5 B.2≤≤4 α处切线的倾斜角为α,则角上的任意一点,点7.设点PP是曲线)的取值范围是( ,)∪[,π)B.[0 D.C. A.xxfyf))的图象如图所示,则下列说法正确的是(()导函数(' 8.函数= xfy 0)上单调递增()在(-A.函数=∞,xfy 5,函数=)()的递减区间为(3B.((((((((((((.(((((((((( yfxx=0处取得极大值=)在( C.函数yfxx=5处取得极小值=)在(D.函数 bxyb的取值范围是()在R=+(上存在三个单调区间,则+6) 9.已知+3bbbbbb>3或D.< C.-2 <-2A.<≤-2或3 ≥3 B.-2≤≤3b范围为( R上不是单调增函数则)10. 函数在A.(-1,2) B.(-∞,-1]∪[2,+∞) C.[-1,2] D.(-∞,-1)∪(2,+∞) afxxabf,)的定义域为(′(,)在()11.已知函数,导函数(bxabf)上的极大值点)在()上的图象如图所示,则函数,()的个数为(

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

导数基础练习题

导数基础练习题 一 选择题 1.函数()22)(x x f π=的导数是( C ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( A ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( B ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则(A ) (A ) 10<b (D ) 2 1,对于任意实数x 都有()0f x ≥,则 (1) '(0) f f 的最小值为( C ) A .3 B .5 2 C .2 D .32 9.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( B ) A.充分不必要条件 B.必要不充分条件

导数基础知识

导数基础知识 1、函数4532)(23+-+=x x x x f 的导数=')(x f , 2. 函数y =cos x x 的导数是( ) A .-sin x x 2 B .-sin x C .-x sin x +cos x x 2 D .-x cos x +cos x x 2 3.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2 B .4+2x 3 C .2(2+x 3)2 D .2(2+x 3)·3x 4.函数y =3x (x 2+2)的导数是( ) A .3x 2+6 B .6x 2 C .9x 2+6 D .6x 2+6 5.若函数f (x )=1-sin x x ,则f ′(π)________________. 6、设,sin 2x e y x -=则y '等于( ) x e A x cos 2.- x e B x sin 2.- x e C x sin 2. )cos (sin 2.x x e D x +-2. 7. 已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133 D.103 8.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 9. 求下列函数的导数: (1)3ln )(2+?=x x x f (2)x e x x f ?=33)( (3)2312)(+-= x x x f (4))1)(52()(2+-=x x x f (5)x e x x f )12()(2-= (6)3()12(0)f x x x x =++> (7)x x x f cos 2)(+= (8)x x x f 3ln 2)(+=

导数的基本题型归纳

导数的基本题型归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

导数基础题型 题型一 导数与切线 利用两个等量关系解题: ①切点处的导数=切线斜率,即()k x f o ='; ②切点()o o y x ,代入曲线方程或者代入切线方程. 切点坐标(或切点横坐标)是关键 例1:曲线y =x x +2 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 例2:已知函数的图象在点(1,f (1))处的切线方程是x -2y +1=0,则f (1)+2f ′ (1)的值是( ) B .1 D .2 例3 求曲线132+=x y 过点(1,1)的切线方程 练习题: 1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =( ) D .1 2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15 3.设曲线y =x +1x -1 在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B .-2 C .-12 4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 5.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. 求直线l 2的方程;

题型二 用导数求函数的单调区间 ①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间(注意:定义域参与区间的划分);⑤判断导数在各个区间的正负. 例1:求函数c x x x y +-+=33 123的单调区间. 例2 求函数x a x a x x f )1(ln 2 1)(2+-+=的单调区间(其中a >0) 例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围. 练习题: 1.求函数x x x f ln 2)(2-=的单调增区间. 2.已知33 1)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围. 题型三 求函数极值和最值 ①求定义域;②求导;③令0)(='x f 求出x 的值;④列表(注意:定义域参与区间的划分); ⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值 例:求函数x x y ln 2-=的极值. 例:求函数y =x +2cos x 在区间???? ??0,π2上的最大值. 例:已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在 [-2,2]上的最小值为 ( ) A .-37 B .-29 C .-5 D .-11 例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是 ( ) A .)1,0( B .)1,(-∞ C .),0(∞+ D .)2 1, 0( 练习题: 1.设函数x x x f ln 2)(+=则 ( ) =21为f(x)的极大值点 =21为f(x)的极小值点 =2为f(x)的极大值点 =2为f(x)的极小值点

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

导数高考常见题型

导数的应用常见题型 一、常用不等式与常见函数图像 1、1+≥x e x x x ≤+)1ln( 1-ln 1-1x x x ≤≤ 2、常见函数图像 二、选择题中的函数图像问题 (一)新型定义问题 对与实数,a b ,定义运算“*”:a *b=22,,a ab a b b ab a b ì-??í?->?,设()(21)*(1)f x x x =--且关于x 的方程()()f x m m R =?恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围为 (二)利用导数确定函数图像 ①已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ) A 、(2,)+? B 、(,2)-? C 、(1,)+? D 、(,1)-? ②设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e ,1) 三、导数与单调性

实质:导数的正负决定了原函数的单调性 处理思路:①求导,解不等式[0)('0)('<>x f x f 或] ②求解0)('=x f ,分段列表 ③根据)('x f y =的图像确定 (一)分段列表 ①已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性; (Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; ②已知函数x x xe e x x f -+-=2)2()(,讨论函数的单调性 ③设函数mx x e x f mx -+=2)( (Ⅰ)证明:)(x f 在(-∞,0)单调递减,在(0,+∞+)单调递增; (Ⅱ)若对于任意]1,0[,21∈x x ,都有1)()(21-≤-e x f x f ,求m 的取值范围 (二)根据导函数图像确定 ①已知函数x x a ax x f ln )1(2 1)(2+-+-=,试讨论函数的单调性 ②已知函数a a ax x x a x x f +--++-=2222ln )(2)(,其中0>a .设)(x g 是)(x f 的导函数,讨论)(x g 的单调性

基本初等函数的导数公式表

基本初等函数的导数 公式表 Revised on November 25, 2020

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、=n n x nx -1'() (n 为正整数) 3、ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1 '() 5、ln =x x 1 '() 6、sin cos =x x '() 7、cos sin =-x x '() 8、=-x x 211 '() 知识点二:导数的四则运算法则 1、v =u v u ''' ±±() 2、=u v uv v u '''+() 3、(=Cu Cu '') 4、u -v =u v u v v 2'' '() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b 内,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b 内,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调 减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15=

(2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23=0 ( (6)y x 5= (7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 14= ,x =16 (2)sin y x = , x π=2 (3)cos y x = ,x π=2 (4)sin y x x = , x π=4 (5)3y x = ,1128(,)

导数基础题

导数基础题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

导数公式及导数的运算法则 1.给出下列结论: ①x x sin )(cos '=; ②3cos )3(sin 'ππ=; ③x x 1)1('2-=; ④x x x 21)1('=- 其中正确的个数是______。 A .0 B .1 C .2 D .3 2.函数x x y cos 2?=的导数为_________。 A .x x x x y sin cos 22'-= B .x x x x y sin cos 22'+= C .x x x x y sin 2cos 2'-= D .x x x x y sin cos 2'-= 3.已知3)(x x f =,6)(0'=x f ,则_______0=x 。 A .2 B .2- C .2± D .1± 4.函数x y cos =在6π= x 处的切线的斜率为______。 A .23 B .23- C .21 D .2 1- 5.曲线423+-=x x y 在点)3,1(处的切线的倾斜角为_______。 A .030 B .045 C .060 D .0120 6.已知x x x f 2)(2+=,则_______)0('=f 。 7.已知曲线)(x f y =在2-=x 处的切线的倾斜角为4 3π,则_______)2('=-f 。 8.已知x x x x f cos sin )(-?=,则_______)('=πf 。 9.函数x x f x ln 2)(?=在2=x 处的导数为___________ 。 10.求下列函数的导数: ①x x x x f 52 131)(23++=; ②x x x y ln ?+=; ③x e x f x =)( 11.求下列函数的导数:

相关文档
最新文档