2016合肥一模文科数学
合肥一模理科数学含答案

35
合计
k0
2.706 3.841 5.024 6.635 7.879
19(本小题满分 12 分)
四棱锥 E ABCD 中, AD / / BC, AD AE 2BC 2AB 2, AB AD ,平面 EAD 平面
ABCD ,点 F 为 DE 的中点. (Ⅰ)求证: CF / / 平面 EAB ; (Ⅱ)若 CF AD ,求四棱锥 E-ABCD 的体积.
(A) (7+ 2 )
22
(C)
7
(9)若双曲线 C1 :
x2 2
y2 8
1与 C2
(B) (8+ 2 )
(D) (l+ 2 ) +6
渐近线相同,且双曲线 C2 的焦距为 4 5 ,则 b=
(A)2 (B)4 (C)6 (D)8
(10)函数 y= sin( x ) 在 x=2 处取得最大值,则正数∞的最小值为 6
:
x2 a2
y2 b2
1(a
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2016年高考全国卷一文科数学试题及答案

2016年普通高等学校招生全国统一考试全国卷一文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D){1,7} (2)设的实部与虚部相等,其中a 为实数,则a=(A )-3 (B)-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A ) (B) (C ) (D )(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=(A ) (B )(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为 (A)31 (B )21 (C )32 (D )43(6)若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为 (A )y =2sin(2x +4π) (B )y =2sin (2x +3π) (C )y =2sin (2x –4π) (D )y =2sin (2x –3π)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。
若该几何体的体积是328π,则它的表面积是(A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0〈c<1,则(A)log a c<log b c (B)log c a<log c b (C)a c〈b c (D)c a〉c b(9)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(10)执行右面的程序框图,如果输入的n=1,则输出的值满足(A)(B)(C) (D )(11)平面过正方体ABCD —A 1B 1C 1D 1的顶点A ,, ,,则m ,n 所成角的正弦值为(A) (B) (C ) (D )(12)若函数在单调递增,则a 的取值范围是(A ) (B ) (C ) (D )二、填空题:本大题共4小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a b ,则x =(14)已知θ是第四象限角,且sin (θ+)=,则tan(θ–)= .(15)设直线y=x +2a 与圆C :x 2+y 2-2ay —2=0相交于A ,B 两点,若32AB ,则圆C 的面积为(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
安徽省“江淮十校”2016届高三第一次联考数学文试卷

“江淮十校”2016届高三第一次联考·文科数学参考答案及评分标准1.D2.B3.A4.B5.B6.C7.C8.D9.D 10.A 11.21 12.35 13.12 14.2 15. 159t -≤≤- 16.解:(1)()()cos f x x m x x ϕ=+=+tan ϕ⎛= ⎝.…………………4分知[]max ()f x =2=,得m =.221T ππ==.…………………………………………………………6分(2)由(1)知m =时,()2sin 4f x x π⎛⎫=+ ⎪⎝⎭.则 f +f 44A B ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,得sin sin sin A B A B +=.…………7分结合正弦定理sin sin sin a b c A B C ===得sin A B ==, 即3a b ab +=.结合余弦定理2222cos c a b ab C =+-,变形得()2222cos c a b ab ab C =+--即22320a b ab --=.…………………………………10分解得()213ab ab ==-或舍去,故1sin 2ABC S ab C ∆==………………………………12分 17.解:(1)30,80==y x . ………………4分(2)67.22≈χ,没有. ………………8分(3)高一3人,设为A 、B 、C ,高二2人,设为1、2.则符合情况的选法有:(AB )(AC )(A1)(A2)(BC )(B1)(B2)(C1)(C2)(12). 53=P . ………………12分 18.解:(1)取1AB 的中点G,AB 的中点F,连接FG,EG.则1121,//BB FG BB FG =. 1121,//BB EC BB EC = EC FG EC FG =∴,//.是平行四边形,四边形ECFG ∴ ………………3分CF EG //∴.由于AC=BC,AB CF ⊥∴,B AB BB CF BB =⊥ 11,又..,1111B B AA EG B B AA CF 面面⊥∴⊥∴B B AA AEB AEB EG 1111面面,面⊥∴⊂ . …………………6分(2)作AH 垂直BC 与点H ,由AC=BC=4,060=∠ACB ,32=∴AH . ………………8分是直三棱柱,面面11111,C B A ABC B BCC ABC BC BC AH -=⊥ ,11B BCC AH 面⊥∴. …………………9分 31231,18111=∙=∴=-BCEB BCEB A BCEB S AH V S . …………………12分 19.解:(1)时,2≥n ,11n S n n S n n +-=-两边同除以n ,,111+-=-n S n S n n 所以⎭⎬⎫⎩⎨⎧n S n 是以1为首项,1为公差的等差数列,,2n S n = ……………3分 显然{}n a 为等差数列,设公差为d,,)2(2122n d a n d n -+=2=d . .,12+∈-=∴N n n a n ……………6分(2),2)12(12-∙-=n n n c 9102)92038(12+-=-n n n T . ……………13分 20.解:(1))0(,3ln )(2>-+=x x x x x f .0)12)(1(321)(=--=-+='x x x x x x f ,1,2121==x x . 极大值()2f 42ln -=,极小值(1)f 2-=. ……………6分 (2)01221)(2≥+-=-+='xax x a x x x f 在),0(+∞上恒成立,0122≥+-ax x ,x x x x a 12122+=+≤,时等号成立当22,2212=≥+x x x . 22≤∴a . ……………13分21.解:(1)222,23,121c b a a c ab +===,,1,2==b a 椭圆的方程为1422=+y x . ……………4分 (2)直线2:+=kx y l 过顶点(0,2),COD ∠∴为钝角,即0<∙OD OC . 设),(),,(2211y x D y x C .⎪⎩⎪⎨⎧=++=14222y x kx y ()012164122=+++kx x k . ……………6分 2323,0-<>>∆k k 或. ……………8分 ⎪⎪⎩⎪⎪⎨⎧+=+-=+22122141124116k x x k k x x ,o y y x x <+2121.22-<>k k 或. ∴22-<>k k 或. ……………13分。
2016年安徽省“合肥十校”联考中考一模数学

2016年安徽省“合肥十校”联考中考一模数学一、选择题(本大题共10小题,每小题4分.满分40分,每小题只有一个选项符合题意)1. 64的算术平方根是( )A.4B.±4C.8D.±8=8,∴64的算术平方根是8.答案:C.2.下列各式正确的是( )A.-22=4B.20=0=±2D.=解析:根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.A、-22=-4,故本选项错误;B、20=1,故本选项错误;=,故本选项错误;C2D、=,故本选项正确.答案:D.3.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为( )A.1.0×109美元B.1.0×1010美元C.1.0×1011美元D.1.0×1012美元解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.100 000 000 000=1.0×1011.答案:C.4.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )A.B.C.D.解析:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面,即.答案:A.5.下列因式分解错误的是( )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)解析:根据公式法分解因式的特点判断,然后利用排除法求解.A、2a-2b=2(a-b),正确;B、x2-9=(x+3)(x-3),正确;C、a2+4a-4不能因式分解,错误;D、-x2-x+2=-(x-1)(x+2),正确.答案:C.6.如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=( )A.64°B.63°C.60°D.54°解析:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°.∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°-∠BEF=180°-126°=54°.答案:D.7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,则a n+a n+1=( )A.n2+nB.n2+n+1C.n2+2nD.n2+2n+1解析:∵a1+a2=4,a2+a3=9,a3+a4=16,…∴a n+a n+1=(n+1)2=n2+2n+1. 答案:D.8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧¼AMB上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°解析:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=12OC=12OA,∴∠OAD=30°,又OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.答案:D.9.已知二次函数y=a(x-2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1-2|>|x2-2|,则下列表达式正确的是( )A.y1+y2>0B.y1-y2>0C.a(y1-y2)>0D.a(y1+y2)>0解析:①a>0时,二次函数图象开口向上,∵|x1-2|>|x2-2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1-y2)>0,②a<0时,二次函数图象开口向下,∵|x1-2|>|x2-2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1-y2)>0,综上所述,表达式正确的是a(y1-y2)>0.答案:C.10.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是( )A.BF=EFB.DE=EFC.∠EFC=45°D.∠BEF=∠CBE解析:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=12BC=BF,A不合题意;∵DE=12AB,EF=12BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE,D不合题意.答案:B.二、填空题(每小题5分,共20分)的整数部分是 .解析:∵16<17<25,∴4<5,∴17的整数部分是4.答案:4.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是 .解析:该班此次成绩达到合格的同学占全班人数的百分比是50450×100%=92%.答案:92%.13.在平面直角坐标系的第一象限内,边长为l的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线4yx=(x>0)与此正方形的边有交点,则a的取值范围是 .解析:∵A点的坐标为(a,a). ∴C(a-1,a-1),当C在双曲线4yx=时,则411aa-=-,解得a=3;当A在双曲线4yx=时,则4aa=,解得a=2,∴a的取值范围是2≤a≤3.答案:2≤a≤3.14.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则下列判断:①当AP=BP时,AB′∥CP;②当AP=BP时,∠B′PC=2∠B′AC③当CP⊥AB时,AP=175;④B′A长度的最小值是1.其中正确的判断是 (填入正确结论的序号) 解析:①∵在△ABC中,∠ACB=90°,AP=BP,∴AP=BP=CP,∴∠B=∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P,∴∠AB′P=′B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP;故①正确;②∵AP=BP,∴PA=PB′=PC=PB,∴点A,B′,C,B在以P为圆心,PA长为半径的圆上,∵由折叠的性质可得:BC=B′C,∴»¼BC B C=',∴∠B′PC=2∠B′AC;故②正确;③当CP⊥AB时,∠APC=∠ACB,∵∠PAC=∠CAB,∴△ACP∽△ABC,∴AP AC AC AB=,∵在Rt△ABC中,由勾股定理可知:4AC=,∴2165ACAPAB==;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B ′、C 三点在一条直线上时,AB ′有最小值, ∴AB ′=AC-B ′C=4-3=1.故④正确.∴正确的有①②④.答案:①②④.三、本题共2小题.每小题8分,满分16分15.先化简,再求242x x x x⎛⎫ ⎪⎝⎭--÷值:其中x 2+2x-1=0. 解析:先根据分式混合运算的法则把原式进行化简,再求出x2+2x=1代入进行计算即可. 答案:原式()()()()22222222x x x x x x x x x x +-+--=÷=-g =x(x+2)=x 2+2x. 当x 2+2x-1=0时,x 2+2x=1,原式=1.16.解不等式组()2533224x x x +≥⎧⎪⎨--⎪⎩<,并把解集在数轴上表示出来.解析:先求出不等式组中每一个不等式的解集,然后把不等式的解集表示在数轴上,再表示出它们的公共部分即可.答案:()2533224x x x +≥⋯⎧⎪⎨--⋯⎪⎩①<②, 解①得:x ≥-1,解②得:x <2.不等式组的解集是:-1≤x <2.四、本大题共2小题.每小题8分,满分16分17.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),△ABC 绕原点逆时针旋转90°,得到△A 1B 1C 1,△A 1B 1C 1向右平移6个单位,再向上平移2个单位得到△A 2B 2C 2.(1)画出△A1B1C1和△A2B2C2.解析:(1)直接利用旋转的性质结合平移的性质分别得出符合题意的图形.答案:(1)如图所示:△A1B1C1和△A2B2C2,即为所求.(2)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.解析:(2)△ABC绕原点逆时针旋转90°,得到△A1B1C1,则对应点横坐标变为原纵坐标的相反数,纵坐标变为原来的横坐标,再利用平移的性质得出对应点位置.答案:(2)由题意可得:P1(-b,a),P2(-b+6,a+2).18.如图,一条城际铁路从A市到B市需要经过C市,A市位于C市西南方向,与C市相距40在千米,B市恰好位于A市的正东方向和C市的南偏东60°方向处.因打造城市经济新格局需要,将从A市到B市之间铺设一条笔直的铁路,求新铺设的铁路AB的长度.(结果保留根号)解析:过C 作CP ⊥AB 于P ,在直角三角形ACP 中,利用锐角三角函数定义求出AP 与PC 的长,在直角三角形BCP 中,利用锐角三角函数定义求出PB 的长,由AP+PB 求出AB 的长即可. 答案:过C 作CP ⊥AB 于P ,∵在Rt △ACP 中,AC=40千米,∠ACP=45°,sin ∠ACP AP AC =,cos ∠ACP CP AC=,∴AP=AC ·sin45°240=⨯=(千米),CP=AC ·cos45°240=⨯=千米), ∵在Rt △BCP 中,∠BCP=60°,tan ∠BCP BP CP=,∴BP=CP ·tan60°=千米),则AB=AP+PB=(千米.五、本大题共2小题,每小题10分.满分20分19.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率.解析:(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可.答案:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?解析:(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.答案:(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31-12.6)÷0.611160≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.20.某童装专卖店,为了吸引顾客,在“六一”儿童节当天举办了甲、乙两种品牌童装有奖酬宾活动,凡购物满100元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同.摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.解析:(1)让所求的情况数除以总情况数即为所求的概率.答案:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=23. (2)如果一个顾客当天在本店购物满100元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的童装?并说明理由.解析:(2)算出相应的平均收益,比较大小即可.答案:(2)∵两红的概率16P =,两白的概率16P =,一红一白的概率23P =, ∴甲品牌童装获礼金券的平均收益是:15301216361525⨯+⨯+⨯=元. 乙品牌童装获礼金券的平均收益是:30151216363020⨯+⨯+⨯=元. ∴我选择甲品牌童装.六、本大题满分12分 21.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE ∽△CBF.解析:(1)首先由△ABC 和△CEF 均为等腰直角三角形可得AC :BC=CE :CF ,∠ACE=∠BCF ;然后根据相似三角形判定的方法,推得△CAE ∽△CBF 即可.答案:(1)∵△ABC 和△CEF 均为等腰直角三角形,∴AC CE BC CF==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF ,∴△CAE ∽△CBF.(2)若BE=1,AE=2,求CE 的长.解析:(2)首先根据△CAE ∽△CBF ,判断出∠CAE=∠△CBF ,再根据∠CAE+∠CBE=90°,判断出∠EBF=90°;然后在Rt △BEF 中,根据勾股定理,求出EF 的长度,再根据CE 、EF 的关系,求出CE 的长是多少即可.答案:(2)∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,AE AC BF BC==,又∵AE AC BF BC==AE=2∴2BF=BF = 又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴2222231EF BE BF =+=+=,∴EF =∵CE 2=2EF 2=6,∴CE =七、本大题满分12分22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m 件)与时间(第x 天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x 天)的关系如下表:(1)求m 关于x 的一次函数表达式.解析:(1)根据待定系数法解出一次函数解析式即可.答案:(1)∵m 与x 成一次函数,∴设m=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +⎧⎨+⎩==, 解得:2200k b -⎧⎨⎩==.所以m 关于x 的一次函数表达式为m=-2x+200.(2)设销售该产品每天利润为y 元,请写出y 关于x 的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】解析:(2)设利润为y 元,则当1≤x <50时,y=-2x 2+160x+4000;当50≤x ≤90时,y=-120x+12000,分别求出各段上的最大值,比较即可得到结论.答案:(2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为: 2(216040001501201200050))9(0y x x x y x x ⎧-++≤⎨-+≤≤⎩=<=, 当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y 有最大值,最大值是7200;当50≤x ≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述,当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元.(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果. 解析:(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.答案:(3)在该产品销售的过程中,共有46天销售利润不低于5400元.八、本大题满分14分23.如图,在钝角△ABC中,点D是BC的中点,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,M、N分别为AB、AC的中点,连接DM、DN、DE、DF、EM、EF、FN.求证:(1)△EMD≌△DNF.解析:(1)首先根据D是BC中点,N是AC中点N,可得DN是△ABC的中位线,判断出DN=1 2AC;然后判断出EM=12AB,再通过证明四边形AMDN是平行四边形,可得∠AMD=∠AND,进而可证明∠EMD=∠DNF,由全等三角形的判定方法即可证明△EMD≌△DNF. 答案:(1)∵D是BC中点,M是AB中点,N是AC中点,∴DM、DN都是△ABC的中位线,∴DM∥AC,且DM=12 AC;DN∥AB,且DN=12 AB;∵△ABE是等腰直角三角形,M是AB的中点,∴EM平分∠AEB,EM=12 AB,∴EM=DN,同理:DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF ,在△EMD 和△DNF 中,EM DN EMD DNF MD NF ⎧⎪∠∠⎨⎪⎩===,∴△EMD ≌△DNF.(2)△EMD ∽△EAF.解析:(2)首先计算出EM :EA 的值,DM 和AF 的数量关系以及证明∠EMD=∠EAF ,再根据相似三角形判定的方法,判断出△EMD ∽△∠EAF.答案:(2)∵三角形ABE 是等腰直角三角形,M 是AB 的中点,∴EM 平分∠AEB ,EM ⊥AB ,∴EM=MA ,∠EMA=90°,∠AEM=∠EAM=45°,∴452EM sin EA =︒=, ∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM ∥AC ,且DM=12AC ; ∵△ACF 是等腰直角三角形,N 是AC 的中点,∴FN=12AC ,∠FNA=90°,∠FAN=∠AFN=45°, 又∵DM=12AC , ∴DM=FN=2FA , ∵∠EMD=∠EMA+∠AMD=90°+∠AMD ,∠EAF=360°-∠EAM-∠FAN-∠BAC ,=360°-45°-45°-(180°-∠AMD)=90°+∠AMD ,∴∠EMD=∠EAF ,在△EMD 和△∠EAF 中,2EM DM EA FA EMD EAF ⎧⎪⎨⎪∠∠⎩===,∴△EMD ∽△∠EAF.(3)DE ⊥DF.解析:(3)由(2)可知△EMD ∽△EAF ,即可判断出∠MED=∠AEF ,然后根据∠MED+∠AED=45°,判断出∠DEF=45°,再根据DE=DF ,判断出∠DFE=45°,∠EDF=90°,即可判断出DE ⊥DF. 答案:(3)∵△EMD ∽△∠EAF ,∴∠MED=∠AEF ,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵△EMD ≌△DNF ,∴DE=DF ,∴∠DFE=45°,∴∠EDF=180°-45°-45°=90°,∴DE ⊥DF.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
安徽省合肥市瑶海区2016年中考数学一模试卷含答案解析(word版)

安徽省合肥市瑶海区2016年中考数学一模试卷(解析版)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.计算(﹣3)2的结果为()A.9 B.6 C.﹣9 D.﹣6【分析】根据乘方的定义即可求解.【解答】解:(﹣3)2=(﹣3)×(﹣3)=9.故选A.【点评】本题考查了有理数的乘方,理解乘方的定义是关键.2.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为()A.3.6×102B.360×104C.3.6×104D.3.6×106【分析】单位为“万”,换成计数单位为1的数,相当于把原数扩大10000倍,进而把得到的数表示成a×10n的形式,a为3.6,n为整数数位减去1.【解答】解:360万=3600000=3.6×106,故选D.【点评】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80° B.85° C.100° D.110°【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠B=30°,∠DAE=55°,∴∠D=∠DAE﹣∠B=55°﹣30°=25°,∴∠ACD=180°﹣∠D﹣∠CAD=180°﹣25°﹣55°=100°.故选C.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.4.(4分)(2016•瑶海区一模)在一个不透明的口袋中装有5个质地、大小、颜色完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号不大于3的概率为()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号不大于3有1,2,3三个球,共5个球,从中随机摸出一个小球,其标号不大于3的概率为是.故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5.(4分)(2016•瑶海区一模)若点(x1,y1),(x2,y2)都是反比例函数y=﹣图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1<x2B.x2<x1C.y随x的增大而增大D.两点有可能在同一象限【分析】根据函数的解析式得出反比例函数y=﹣的图象在第二、四象限,求出点(x1,y1)在第四象限的图象上,点(x2,y2)在第二象限的图象上,再逐个判断即可.【解答】解:反比例函数y=﹣的图象在第二、四象限,∵y1<0<y2,∴点(x1,y1)在第四象限的图象上,点(x2,y2)在第二象限的图象上,∴x2<x1,A、x2<x1,故本选项错误;B、x2<x1,故本选项正确;C、在每一个象限内,y随x的增大而增大,故本选项错误;D、点(x1,y1)在第四象限的图象上,点(x2,y2)在第二象限的图象上,故本选项错误;故选B.【点评】本题考查了反比例函数的图象和性质的应用,能熟记反比例函数的性质是解此题的关键.6.(4分)(2016•瑶海区一模)如图,在平行四边形ABCD中,AB=m,BC=n,AC的垂直平分线交AD于点E,则△CDE的周长是()A.m+n B.mn C.2(m+n)D.2(n﹣m)【分析】由平行四边形的性质得出DC=AB=m,AD=BC=n,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB=m,AD=BC=n,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=m+n,故选:A.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7.(4分)(2016•瑶海区一模)在平面直角坐标系中,以原点O为圆心的⊙O交x轴正半轴为M,P为圆上一点,坐标为(,1),则cos∠POM=()A.B.C.D.【分析】作PA⊥x轴于A,根据坐标特征求出OA、PA,根据勾股定理求出OP,根据余弦的定义解答即可.【解答】解:作PA⊥x轴于A,∵点P的坐标为(,1),∴OA=,PA=1,由勾股定理得,OP=2,cos∠POM==,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握在直角三角形中,一个锐角的对边比斜边是这个角的正弦,邻边比斜边是这个角的余弦,对边比邻边是这个角的正切是解题的关键.8.(4分)(2016•瑶海区一模)为了求1+2+22+23+...+22016的值,可令S=1+2+22+23+ (22016)则2S=2+22+23+24+…+22017,因此2S﹣S=22017﹣1,所以1+2+22+23+…+22016=22017﹣1.仿照以上推理计算出1+3+32+33+…+32016的值是()A.32017﹣1 B.32018﹣1 C.D.【分析】仿照例子,令S=1+3+32+33+…+32016,则可得出3S=3+32+33+…+32016+32017,两者做差后除以2即可得出结论.【解答】解:令S=1+3+32+33+…+32016,则3S=3+32+33+…+32016+32017,∴S==.故选D.【点评】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+3+32+33+…+32016.本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论.9.(4分)(2016•瑶海区一模)某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5 B.6 C.7 D.8【分析】令W=0,解得x=4或12,求出不等式﹣x2+16x﹣48>0的解即可解决问题.【解答】解:由W=﹣x2+16x﹣48,令W=0,则x2﹣16x+48=0,解得x=12或4,∴不等式﹣x2+16x﹣48>0的解为,4<x<12,∴该景点一年中处于关闭状态有5个月.故选A.【点评】本题考查二次函数的应用,二次不等式与二次函数的关系等知识,解题的关键是学会解二次不等式,属于中考常考题型.10.(4分)(2016•瑶海区一模)如图,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设BE=x (0<x<2),阴影部分面积为y,则y与x之间的函数图象为()A.B.C.D.【分析】阴影部分的面积=△EFP的面积+△GHP的面积.得出函数关系式,进而判断即可.【解答】解:阴影部分的面积=阴影部分的面积=△EFP的面积+△GHP的面积∵AE=x,∴阴影部分的面积=x•x+×(2﹣x)•(2﹣x)=x2﹣2x+2=(x﹣1)2+1 (0<x<2),它的图象为C.故选C.【点评】此题考查了正方形的性质,本题关键是利用分割法求出阴影部分面积,利用二次函数的知识解决问题,属于中考常考题型.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2016•瑶海区一模)计算:x2y(2x+4y)=x3y+2x2y2.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:原式=x3y+2x2y2,故答案为:x3y+2x2y2.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键12.(5分)(2015•巴彦淖尔)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为x(x﹣1)=2×5.【分析】关系式为:球队总数×每支球队需赛的场数÷2=2×5,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.13.(5分)(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.14.(5分)(2016•瑶海区一模)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D 落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有①③④.(填序号)【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC 平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF===2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.【点评】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.三、解答题(共9小题,满分90分)15.(8分)(2016•瑶海区一模)解不等式组,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x<1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x<1,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.16.(8分)(2016•瑶海区一模)已知A(1,m),B(n,1),直线l经过A、B两点,其解析式为y=﹣x+b.(1)当b=5时,求m、n的值;(2)若此时双曲线y=(x>0)也过A、B两点,求关于x的方程x2﹣bx+k=0的解.【分析】(1)把A(1,m),B(n,1)分别代入解析式即可求得;(2)根据待定系数法求得k的值,确定方程为x2﹣5x+4=0,然后解方程即可.【解答】解:(1)当b=5时,y=﹣x+5,把A(1,m)代入得:m=﹣1+5=4,把B(n,1)代入得:1=﹣n+5,解得n=4,即m=4,n=4;(2)∵此时双曲线y=(x>0)也过A、B两点,∴k=1×4=4,∴方程为x2﹣5x+4=0,解得x1=4,x2=1.【点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征以及方程的解等.17.(8分)(2016•瑶海区一模)如图,AB是圆O的一条直径,弦CD垂直于AB,垂足为点G、E是劣弧BD上一点,点E处的切线与CD的延长线交于点P,连接AE,交CD于点F.(1)求证:PE=PF(2)已知AG=4,AF=5,EF=25,求圆O的直径.【分析】(1)如图1,连接OE,根据切线的性质得出∠PEO=90°,求出∠PEF=∠PFE,根据等腰三角形的判定得出即可;(2)如图2,连接BE,根据相似三角形的判定得出△AGF∽△AEB,得出比例式,代入求出即可.【解答】(1)证明:如图1,连接OE,∵EP是⊙O的切线,∴∠PEO=90°,∴∠OEA+∠PEF=90°,∵AB⊥CD,∴∠AGF=90°,∴∠A+∠AFG=90°,∵OE=OA,∴∠OEA=∠OAE,∴∠PEF=∠AFG,∵∠EFP=∠AFG,∴∠PEF=∠PFE,∴PE=PF;(2)解:如图2,连接BE,∵AB为直径,∴∠AEB=90°,∵∠AGF=90°,∴∠AGF=∠AEB,∵∠A=∠A,∴△AGF∽△AEB,∴=,∵AG=4,AF=5,EF=25,∴=,∴AB=,即圆O的直径为.【点评】本题考查了切线的性质,等腰三角形的性质和判定,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键.18.(8分)(2016•瑶海区一模)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.【分析】(1)找出三角形平移后各顶点的对应点,然后顺次连接即可;根据平移的规律即可写出点M平移后的坐标;(2)根据位似变换的要求,找出变换后的对应点,然后顺次连接各点即可.【解答】解:(1)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,再向下平移3个单位,可知M1的坐标(a﹣7,b﹣3);(2)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(﹣1,﹣4).【点评】本题考查了平移变换和位似变换后图形的画法,解题关键是根据变换要求找出变换后的对应点.19.(10分)(2016•瑶海区一模)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成60°的夹角.树杆AB 旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.【分析】由题意得出AB∥DE,证出△ABF∽△DEF,由相似三角形的性质得出,求出AB,再由三角函数求出AC,即可得出结果.【解答】解:根据题意得:AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△ABF∽△DEF,∴,即,解得:AB=3.6,∵cos∠BAC=,∴AC==7.2米,∴AB+AC=3.6+7.2=10.8米.答:这棵大树没有折断前的高度为10.8米.【点评】本题考查了解直角三角形的应用、相似三角形的应用;熟练掌握解直角三角形,由相似三角形的性质求出AB是解决问题的关键.20.(10分)(2016•瑶海区一模)观察下列各式:3×5=15=42﹣15×7=35=62﹣1…11×13=143=122﹣1…(1)写出一个符合以上规律的式子.(2)用字母表示一般规律,并说明该等式一定成立.【分析】(1)根据规律写出等式即可.(2)用字母n表示两个连续奇数的积即可,利用证明恒等式的方法证明即可.【解答】解:(1)13×15=195=142﹣1.(2)结论:(2n﹣1)(2n+1)=4n2﹣1=(2n)2﹣1.证明:左边=4n2﹣1,右边=4n2﹣1,∴左边=右边,∴结论成立.【点评】本题考查规律型:数字变化类,解题的关键是学会从一般到特殊的探究方法,找到规律后即可解决问题,属于中考常考题型.21.(12分)(2016•瑶海区一模)如图是八年级(1)班学生绿色评价科学素养考试成绩(依次A、B、C、D等级划分,且A等为成绩最好)的频数分布直方图和扇形统计图,请根据图中的信息回答下列问题:(1)补全频数分布直方图;(2)求C等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果科学素养成绩是B等及B等以上的学生才能报名参加科学兴趣社团活动,请你用该班学生的情况估计该校八年级360名学生中,有多少名学生有资格报名参加科学兴趣社团活动?【分析】(1)根据A等级的有15人,占25%,据此即可求得总人数,然后求得B等级的人数,即可作出直方图;(2)利用360°乘以对应的百分比即可求解;(3)根据(1)的计算即可求解;(4)利用总人数360乘以对应的百分比即可求解.【解答】解:(1)调查的总人数是:15÷25%=60(人),则B类的人数是:60×40%=24(人).频数分布直方图补充如下:;(2)C等所对应的扇形统计图的圆心角的度数是:360°×(1﹣25%﹣40%﹣5%)=108°;(3)该班学生共有60人;(4)360×(25%+40%)=234(人).【点评】本题考查的是频数分布直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.从频率分布直方图可以清楚地看出数据分布的总体态势,扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(12分)(2016•瑶海区一模)一辆汽车在某段路程中的行驶速度v(km/b)与时间t (h)的关系如图线段AB,CD,EF.(1)求图中阴影部分的面积.(2)说明所求阴影部分的面积的实际意义.(3)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2000km,试求行驶这段路程时汽车里程表读数s(km)与时间t(h)的函数关系式.【分析】(1)由长方形面积公式计算可得;(2)由速度×时间=路程可知阴影部分表示的是3小时内行驶的路程;(3)根据:总路程=行驶这段路程前的读数+速度×时间,分段表示即可.【解答】解:(1)S=60×1+80×1+100×1=240;(2)阴影部分面积的实际意义是汽车在3小时内行驶了240km;(3)当0≤t<1,S=2000+60t,当1≤t<2时,S=2000+60+80(t﹣1)=1980+80t,当2≤t≤3时,S=2140+100(t﹣2)=1940+100t,综上,S=.【点评】本题主要考查一次函数的应用,理解题意分段表示总路程是解题的关键.23.(14分)(2016•瑶海区一模)如图,在四边形ABCD中,∠ABC=∠BCD=60°,AB+DC=BC.(1)如图1,连结AC、BD,求证:AC=BD;(2)如图2,∠BAD与∠ADC的平分线相交于E点,求∠E的度数;(3)如图3,若AB=6,CD=3,点P为BC上一点,且∠APD=60°,试判断△APD的形状,并说明理由.【分析】(1)在CB上取CE=CD,连接DE,AE,根据全等三角形的判定和性质证明即可;(2)根据角平分线的定义以及四边形的内角和解答即可;(3)根据相似三角形的判定和性质以及等边三角形的判定解答即可.【解答】证明:(1)在CB上取CE=CD,连接DE,AE,如图1:,∵AB+DC=BC,∴AB=BE,∵∠ABC=∠BCD=60°,∴△ABE与△CDE均为等边三角形,∴AE=BE,DE=CE,∴∠AEB=∠CED=60°,∴∠BED=∠AEC=120°,在△BED与△AEC中,,∴△BED≌△AEC(SAS),∴AC=BD;(2)在四边形ABCD中,∠B=∠C=60°,∴∠BAD+∠ADC=240°,∵AE,DE分别是∠BAD,∠ADC的平分线,∴∠EAD+∠EDA=(∠BAD+∠ADC)=120°,∴∠E=60°;(3)如图2,∵∠APD=60°,∴∠APB+∠CPD=120°,∵∠ABP=60°,∴∠BAP+∠APB=120°,∴∠BAP=∠CPD,∵∠B=∠C=60°,∴△ABP∽△PCD,∴,∵AB=6,CD=3,BC=9,∴,∴BP(9﹣BP)=18,解得:BP=3,或BP=6,当BP=3时,,即AP=PD,∵∠APD=60°,∴△APD是等边三角形;当BP=6时,PC=3,可得△ABP和△CDP均为等边三角形,∴AP=6,DP=3,即AP=2DP,取AP的中点E,连接DE,可得:PE=PD,∵∠APD=60°,∴△EPD是等边三角形,∴ED=EP=EA,∴D点在以AP为直径的圆上,∴△APD是直角三角形.【点评】此题主要考查了三角形的综合问题,关键是根据全等三角形的判定与性质分析,证明三角形全等是证明线段相等的重要手段.。
安徽省合肥市第八中学2016届高三上学期第一次段考试数学(文)试题 含解析

说明:1。
考查范围:基本初等函数与导数,三角函数与解三角形 ,数列,平面向量;试卷结构:分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题);试卷分值:150分,考试时间:120分钟。
2.所有答案均要答在答题卡和答题卷上,否则无效。
考试结束后只交和答题卷。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
在复平面内,复数ii 21+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D考点:复数运算及复数与复平面内点的对应。
2。
设全集R U =,集合}|{41<<=x x A ,},,,,{54321=B ,则=B A C U)(A .},{32B .},,,{4321C .}{5D .},,{541【答案】D 【解析】 试题分析:}4x 1x {x A CU≥≤=或,所以=B A C U )(},,{541.故选D 。
考点:集合运算。
3。
若等差数列{na }的前三项和93=S且11=a ,则2a 等于()A .3B 。
4 C. 5 D. 6 【答案】A 【解析】试题分析:由等差数列的性质得,3,93223=∴==a a S .故选A.考点:等差数列的性质,21+=n nna s(n 为奇数).4。
阅读右面的程序框图,则输出的S 等于 ( ) A .40 B .20 C .32D .38【答案】D 【解析】试题分析:该程序运行如下:.1,38;2,32;3,20;4,0========i s i s i s i s考点:程序框图的应用. 5。
已知2280,02y x x y mm xy>>+>+,若恒成立,则实数m 的取值范围是( )A 。
42m m ≥≤-或 B. 24m m ≥≤-或 C 。
24m -<< D 。
42m -<<【答案】D考点:均值不等式、恒成立问题。
《解析》安徽省合肥市第一中学2016-2017学年高一上学期第一次数学试卷Word版含解析
安徽省合肥市第一中学2016-2017学年高一上学期第一次数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则中的元素个数为()A.B.C.D.2.下列各组中的两个函数是同一函数的为()A.B.C.D.3.在映射中,,且,则与中的元素对应的中的元素为()A.B.C.D.4.图中函数图象所表示的解析式为()A.B.C.D.5.设函数则的值为()A.B.C.D.6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为,值域为的“合一函数”共有()A.个B.个C.个D.个7.函数,则的定义域是()A.B.C.D.8.定义两种运算:,则是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数9.定义在上的偶函数满足:对任意的,有,且,则不等式的解集是()A.B.C.D.10.若函数,且对实数,则()A.B.C.D.与的大小不能确定11.函数对任意正整数满足条件,且,则()A.B.C.D.12.在上定义的函数是偶函数,且.若在区间上的减函数,则()A.在区间上是增函数,在区间上是增函数B.在区间上是减函数,在区间上是减函数C.在区间上是减函数,在区间上是增函数D.在区间上是增函数,在区间上是减函数二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的值域是______.14.已知函数,若,求______.15.若函数的定义域为,则______.16.已知函数,若,则实数的取值范围是______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知全集,集合.(1)求;(2)若集合,且,求实数的取值范围.18.在到这个整数中既不是的倍数,又不是的倍数,也不是的倍数的整数共有多少个?并说明理由.19.合肥市“网约车”的现行计价标准是:路程在以内(含)按起步价元收取,超过后的路程按元/收取,但超过后的路程需加收的返空费(即单价为元/).(1)将某乘客搭乘一次“网约车”的费用(单位:元)表示为行程,单位:)的分段函数;(2)某乘客的行程为,他准备先乘一辆“网约车”行驶后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.20.已知,若函数在区间上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断并证明函数在区间上的单调性,并求出的最小值.21.对于定义在区间上的函数,若存在闭区间和常数,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间上的“平底型”函数.(1)判断函数和是否为上的“平底型”函数?(2)若函数是区间上的“平底型”函数,求和的值.22.定义在的函数满足:①对任意都有;②当时,.回答下列问题:(1)判断函数的奇偶性,并说明理由;(2)判断函数在上的单调性,并说明理由;(3)若,试求的值.答案部分1.考点:集合的概念试题解析:由题得:所以中有4个元素。
2016年合肥一模答案
2016年合肥一模答案【篇一:2016合肥一模-生物(含答案)】lass=txt>生物试题(考试时间:90分钟满分:100分)注意事项:1. 答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。
2. 答第i卷时,每小题选出答案后,用2b铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第ii卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4. 考试结束,务必将答题卡和答题卷一并上交。
第i卷选择题(共40分)1. 核酸是生物的遗传物质,atp是生命活动的直接能源,下列有关核酸和atp的叙述正确的是a. dna的合成只能在细胞核中进行b. dna和atp含有的化学元素不相同c. 艾滋病毒的核酸由核糖核苷酸组成d. 控制细菌性状的基因只存在于拟核的dna上2. 细胞膜是系统的边界,下列有关其结构和功能的叙述,错误的是a. 脂质和蛋白质是组成细胞膜的主要物质b. 物质的跨膜运输都是顺相对含量梯度的c. 功能越复杂的细胞膜,蛋白质种类和数量越多d. 细胞产生的激素可与靶细胞膜上相应受体结合3. 生命活动离不开细胞,人类研究细胞的脚步从未停息。
以下关于细胞的研究正确的是a. 分析根尖分生区细胞的遗传物质必须提取其dna和rnab. 用一定手段破坏造血干细胞的骨架系统可以阻断其分裂分化c. 用差速离心法对破碎的叶肉细胞进行处理只能得到各种细胞器d. 用乳酸菌作为实验材料可以研究生物膜系统在结构和功能上的联系4. 主动运输消耗的能量可来自atp或离子电化学梯度等。
如图为na+、葡萄糖进出小肠上皮细胞的示意图。
下列关于图中物质跨膜运输过程的分析错误的是a. 葡萄糖从肠腔进入小肠上皮细胞是不需耗能的主动运输b. na+从小肠上皮细胞进入组织液是需要消耗atp的主动运输c. 葡萄糖从肠腔进入小肠上皮细胞与na+从肠腔到小肠上皮细胞相伴随d. na+从肠腔到小肠上皮细胞以及葡萄糖从小肠上皮细胞到组织液均为被动运输5. 人皮肤生发层正在分裂的细胞中中心体移向两极时,下列几种酶最活跃的是①rna聚合酶②解旋酶③atp水解酶④atp合成酶a. ①②b. ①③c. ②③d. ③④6. 甲、乙分别表示真核细胞中的某种结构,a、b表示有关化学反应。
2016年普通高等学校招生全国统一考试I卷文科数学(含答案)
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。
安徽省合肥八中高三数学上学期第一次段考试卷文(含解析)
2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.答案填涂到答题卡上.1.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设全集U=R,集合A={x|1<x<4},B={1,2,3,4,5},则(C U A)∩B=()A.{2,3} B.{1,2,3,4} C.{5} D.{1,4,5}3.若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.64.阅读右面的程序框图,则输出的S等于()A.40 B.20 C.32 D.385.已知x>0,y>0,若恒成立,则实数m的取值范围是()A.m≥4或m≤﹣2 B.m≥2或m≤﹣4 C.﹣2<m<4 D.﹣4<m<26.若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.17.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)8.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B. C.D.9.已知c>0,设p:函数y=c x在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是()A.B.C.D.(﹣∞,+∞)10.给定条件p:|x+1|>2,条件q:>1,则¬q是¬p的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件11.已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,设a=f(﹣),b=f(2),c=f(3),则a,b,c的大小关系为()A.b<a<c B.c<b<a C.b<c<a D.a<b<c12.已知log(x+y+4)<log(3x+y﹣2),若x﹣y<λ恒成立,则λ的取值范围是()A.(﹣∞,10] B.(﹣∞,10) C.[10,+∞)D.(10,+∞)二、填空题:本大题共5小题,每小题5分,共25分13.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为.14.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8= .15.三角形△ABC的外接圆半径为1,圆心O,已知3+4+5=,则•= .16.若△ABC的面积为,BC=2,C=60°,则边AB的长度等于.17.已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.三、解答题:解答应写出文字说明,证明过程或演算步骤.本大题共5小题,共65分18.已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.19.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.20.设函数f(x)=x3﹣3ax+b(a≠0).(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;(Ⅱ)求函数f(x)的单调区间与极值点.21.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.22.已知函数f(x)=ax2﹣(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.2015-2016学年安徽省合肥八中高三(上)第一次段考数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.答案填涂到答题卡上.1.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】计算题.【分析】根据1=﹣i2将复数进行化简成复数的标准形式,得到复数所对应的点,从而得到该点所在的位置.【解答】解: ==﹣i+2所对应的点为(2,﹣1),该点位于第四象限故选D.【点评】本题主要考查了复数代数形式的运算,复数和复平面内的点的对应关系,属于基础题.2.设全集U=R,集合A={x|1<x<4},B={1,2,3,4,5},则(C U A)∩B=()A.{2,3} B.{1,2,3,4} C.{5} D.{1,4,5}【考点】交、并、补集的混合运算.【专题】计算题.【分析】找出全集R中不属于A的部分,求出A的补集,找出A补集与B的公共部分,即可确定出所求的集合.【解答】解:∵全集U=R,集合A={x|1<x<4},∴C U A={x|x≤1或x≥4},∵B={1,2,3,4,5},则(C U A)∩B={1,4,5}.故选D【点评】此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.3.若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.6【考点】等差数列的前n项和;等差数列的通项公式.【专题】计算题;方程思想.【分析】根据等差数列的前n项和公式,结合已知条件,先求出d,再代入通项公式即可求解.【解答】解:∵S3=9且a1=1,∴S3=3a1+3d=3+3d=9,解得d=2.∴a2=a1+d=3.故选A.【点评】本题主要考查了等差数列的通项公式与前n项和公式,注意方程思想的应用.4.阅读右面的程序框图,则输出的S等于()A.40 B.20 C.32 D.38【考点】程序框图.【专题】计算题;等差数列与等比数列.【分析】结合流程图写出前几次循环的结果,经过每一次循环判断是否满足判断框中的条件,直到不满足条件输出s结束循环,得到所求.【解答】解:根据程序框图,运行结果如下:S i第一次循环 20 3第二次循环 32 2第三次循环 38 1此时退出循环故选D.【点评】本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题5.已知x>0,y>0,若恒成立,则实数m的取值范围是()A.m≥4或m≤﹣2 B.m≥2或m≤﹣4 C.﹣2<m<4 D.﹣4<m<2【考点】基本不等式.【专题】计算题;压轴题.【分析】先利用基本不等式求得的最小值,然后根据恒成立,求得m2+2m<8,进而求得m的范围.【解答】解:≥2=8若恒成立,则使8>m2+2m恒成立,∴m2+2m<8,求得﹣4<m<2故选D【点评】本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力,属于基础题.6.若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.7.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增,f(1)=1,f()=﹣1,可判断分析.【解答】解:∵函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=﹣1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(),故选:C.【点评】本题考查了函数的性质,函数的零点的判断方法,属于容易题.8.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B. C.D.【考点】解三角形.【专题】计算题;压轴题.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B【点评】本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题9.已知c>0,设p:函数y=c x在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的值域为R,如果“p且q”为假命题,“p或q为真命题,则c的取值范围是()A.B.C.D.(﹣∞,+∞)【考点】复合命题的真假;指数函数的单调性与特殊点;对数函数的值域与最值.【专题】计算题;压轴题.【分析】如果P∧Q为假命题,P∨Q为真命题,则“p”、“q”中一个为真命题、一个为假命题.然后再分类讨论即可求解.【解答】解:∵如果P∧Q为假命题,P∨Q为真命题,∴p、q中一个为真命题、一个为假命题①若p为真命题,q为假命题则0<c<1且 c>,即<c<1②若p为假命题,q为真命题则c>1且c≤,这样的c不存在综上,<c<1故选A.【点评】由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p 真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.10.给定条件p:|x+1|>2,条件q:>1,则¬q是¬p的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义结合不等式的解法进行判断即可.【解答】解:由|x+1|>2得x>1或x<﹣3,¬p:﹣3≤x≤1,由>1,得﹣1==>0,解得2<x<3,即¬q:x≥3或x≤2,则¬q是¬p的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质求出等价条件是解决本题的关键.11.已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,设a=f(﹣),b=f(2),c=f(3),则a,b,c的大小关系为()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【考点】函数奇偶性的性质;函数恒成立问题.【专题】函数的性质及应用.【分析】根据条件求出函数f(x)在(1,+∞)上的单调性,然后根据函数f(x+1)是偶函数,利用单调性即可判定出a、b、c的大小.【解答】解:解:∵当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,∴当1<x1<x2时,f (x2)﹣f (x1)>0,即f (x2)>f (x1),∴函数f(x)在(1,+∞)上为单调增函数,∵f(1+x)=f(1﹣x),∴函数f(x)关于x=1对称,∴a=f(﹣)=f(),又函数f(x)在(1,+∞)上为单调增函数,∴f(2)<f()<f(3),即f(2)<f(﹣)=<f(3),∴a,b,c的大小关系为b<a<c.故选:A.【点评】本题考查了函数性质的应用,主要考查了函数单调性的判断以及运用单调性比较函数值的大小,同时考查了函数的对称性的应用,是函数性质的一个综合考查.属于基础题.12.已知log(x+y+4)<log(3x+y﹣2),若x﹣y<λ恒成立,则λ的取值范围是()A.(﹣∞,10] B.(﹣∞,10) C.[10,+∞)D.(10,+∞)【考点】简单线性规划.【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的范围,再根据最值给出λ的最大值.【解答】解:由题意得,即.画出不等式组表示的可行域如下图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有极大值z=3+7=10.z=x﹣y的取值范围是(﹣∞,10).若x﹣y<λ恒成立,则λ≥10,∴λ的取值范围是[10,+∞).故选C.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.二、填空题:本大题共5小题,每小题5分,共25分13.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为1,1 .【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;直线与圆.【分析】求出函数的导数,求得切线的斜率,由已知切线方程,可得切线的斜率和切点,进而得到a,b的值.【解答】解:y=x2+ax+b的导数为y′=2x+a,即曲线y=x2+ax+b在点(0,b)处的切线斜率为a,由于在点(0,b)处的切线方程是x﹣y+1=0,则a=1,b=1,故答案为:1,1.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,注意切点在切线上,也在曲线上,属于基础题.14.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8= 3 .【考点】等差数列的性质.【专题】计算题.【分析】利用等差数列的性质:下标之和相等的两项的和相等及等差中项的性质即可解决.【解答】解:∵{a n}为等差数列,a5=3,a6=﹣2,∵m+n=p+q(m、n、p、q∈N*),a m+a n=a p+a q,∴a3+a4+…+a8=(a3+a8)+(a4+a7)+(a5+a6)=3(a5+a6)=3.故答案为:3.【点评】本题考查等差数列的性质,考查学生理解应用等差数列性质的能力,属于基础题.15.三角形△ABC的外接圆半径为1,圆心O,已知3+4+5=,则•= .【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】把已知的向量等式变形,两边平方后得到,把代入•后展开得答案.【解答】解:∵3+4+5=,∴5=﹣(3+4),∴,即25=25+24,∴,则•==﹣(3+4)•()=.故答案为:﹣.【点评】本题考查平面向量的数量积运算,解答此题的关键是把已知的向量等式变形,是中档题.16.若△ABC的面积为,BC=2,C=60°,则边AB的长度等于 2 .【考点】正弦定理.【专题】解三角形.【分析】利用三角形面积公式列出关系式,把已知面积,a,sinC的值代入求出b的值,再利用余弦定理求出c的值即可.【解答】解:∵△ABC的面积为,BC=a=2,C=60°,∴absinC=,即b=2,由余弦定理得:c2=a2+b2﹣2abcosC=4+4﹣4=4,则AB=c=2,故答案为:2【点评】此题考查了余弦定理,三角形面积公式,熟练掌握余弦定理是解本题的关键.17.已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.【考点】数列与函数的综合.【专题】综合题;压轴题.【分析】根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.【解答】解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:【点评】本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.三、解答题:解答应写出文字说明,证明过程或演算步骤.本大题共5小题,共65分18.已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【专题】三角函数的求值;三角函数的图像与性质.【分析】(1)把x=代入函数f(x)的解析式中,化简后利用特殊角的三角函数值即可求出对应的函数值;(2)分别把x=3α+和x=3β+2π代入f(x)的解析式中,化简后利用诱导公式即可求出sinα和cosβ的值,然后根据α和β的范围,利用同角三角函数间的基本关系求出cosα和sinβ的值,然后把所求的式子利用两角和的余弦函数公式化简后,将各自的值代入即可求出值.【解答】解:(1)把x=代入函数解析式得:f()=2sin(×﹣)=2sin=;(2)由f(3α+)=,f(3β+2π)=,代入得:2sin[(3α+)﹣]=2sinα=,2sin[(3β+2π)﹣]=2sin(β+)=2cosβ=sinα=,cosβ=,又α,β∈[0,],所以cosα=,sinβ=,则cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.【点评】此题考查学生掌握函数值的求法,灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.19.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【考点】一元二次不等式的解法;函数的定义域及其求法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a 的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2﹣x﹣a2﹣a<0,求解集即可.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【点评】本题考查了函数的性质与应用以及不等式的解法与应用问题,解题时应根据题意,适当地转化条件,从而获得解答问题的途径,是综合性题目.20.设函数f(x)=x3﹣3ax+b(a≠0).(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;(Ⅱ)求函数f(x)的单调区间与极值点.【考点】利用导数求闭区间上函数的最值;导数的几何意义;利用导数研究函数的单调性.【分析】(1)已知函数的解析式f(x)=x3﹣3ax+b,把点(2,f(2))代入,再根据f(x)在点(2,f(2))处与直线y=8相切,求出a,b的值;(2)由题意先对函数y进行求导,解出极值点,然后再根据极值点的值讨论函数的增减性及其增减区间;【解答】解:(Ⅰ)f′(x)=3x2﹣3a,∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,∴(Ⅱ)∵f′(x)=3(x2﹣a)(a≠0),当a<0时,f′(x)>0,函数f(x)在(﹣∞,+∞)上单调递增,此时函数f(x)没有极值点.当a>0时,由,当时,f′(x)>0,函数f(x)单调递增,当时,f′(x)<0,函数f(x)单调递减,当时,f′(x)>0,函数f(x)单调递增,∴此时是f(x)的极大值点,是f(x)的极小值点.【点评】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.21.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【考点】等差数列的通项公式;数列的求和.【专题】综合题.【分析】(I)根据等差数列的通项公式化简a2=0和a6+a8=﹣10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①﹣②后,利用a n的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式.【解答】解:(I)设等差数列{a n}的公差为d,由已知条件可得,解得:,故数列{a n}的通项公式为a n=2﹣n;(II)设数列{}的前n项和为S n,即S n=a1++…+①,故S1=1,=++…+②,当n>1时,①﹣②得:=a1++…+﹣=1﹣(++…+)﹣=1﹣(1﹣)﹣=,所以S n=,综上,数列{}的前n项和S n=.【点评】此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题.22.已知函数f(x)=ax2﹣(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出导数,求出f(1)及f′(1)的值,代入点斜式方程即可得到答案;(2)确定函数的定义域,求导函数,分类讨论,确定函数的单调性,利用函数f(x)在区间[1,e]上的最小值为﹣2,即可求a的取值范围;(3)设g(x)=f(x)+2x,则g(x)=ax2﹣ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增,由此可求a 的取值范围.【解答】解:(1)当a=1时,f(x)=x2﹣3x+lnx,f′(x)=2x﹣3+,因为f'(1)=0,f(1)=﹣2,所以切线方程为y=﹣2;(2)函数f(x)=ax2﹣(a+2)x+lnx的定义域为(0,+∞),当a>0时,f′(x)=2ax﹣(a+2)+(x>0),令f'(x)=0,即f′(x)=,所以x=或x=.当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=﹣2;当1<<e,即<a<1时,f(x)在[1,e]上的最小值是f()<f(1)=﹣2,不合题意;当≥e,即0≤a≤时,f(x)在(1,e)上单调递减,所以f(x)在[1,e]上的最小值是f(e)<f(1)=﹣2,不合题意.综上可得a≥1;(3)设g(x)=f(x)+2x,则g(x)=ax2﹣ax+lnx,对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等价于g(x)在(0,+∞)上单调递增.而g′(x)=2ax﹣a+=,当a=0时,g′(x)=,此时g(x)在(0,+∞)单调递增;当a≠0时,只需g'(x)≥0在(0,+∞)恒成立,因为x∈(0,+∞),只要2ax2﹣ax+1≥0,则需要a≥0,对于函数y=2ax2﹣ax+1,过定点(0,1),对称轴x=,只需△=a2﹣8a≤0,即0<a≤8.综上可得0≤a≤8.【点评】本题考查导数知识的运用,考查函数的单调性与最值,考查导数的几何意义,考查恒成立问题,正确求导是关键.21。