2011届高考数学第一轮巩固与练习题37
2011届高三数学一轮巩固与练习:数列

巩固1.下列说法正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1k D .数列0,2,4,6,…可记为{2n }解析:选C.由数列的定义可知A 、B 错误;数列{n +1n }的第k 项为k +1k =1+1k ,故C 正确;数列0,2,4,6,…的通项公式为a n =2n -2,故D 错.综上可知,应选C.2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5=( )A .108 B.1108 C .161 D.1161解析:选D.a 1=1,a 2=a 12a 1+3=15,a 3=a 22a 2+3=117,a 4=a 32a 3+3=153,a 5=a 42a 4+3=1161.3.(2008年高考江西卷)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:选A.因为a n +1=a n +ln(1+1n ), 从而有a n =a n -1+ln nn -1a n -1=a n -2+ln n -1n -2⋮ ⋮ a 2=a 1+ln2累加得a n +1=a 1+ln(n +1n .n n -1.n -1n -2 (2)1)=2+ln(n +1), ∴a n =2+ln n ,故应选A.4.数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.解析:由已知,a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=0+2+4+…+2(n -1)=n (n -1).答案:n (n -1)5.数列53,108,17a +b ,a -b 24,…中,有序数对(a ,b )可以是________.解析:从上面的规律可以看出⎩⎪⎨⎪⎧a +b =15a -b =26,解上式得⎩⎪⎨⎪⎧a =412b =-112.答案:(412,-112)6.写出满足条件的数列的前4项,并归纳出通项公式: (1)a 1=0,a n +1=a n +(2n -1)(n ∈N *); (2)a 1=3,a n +1=3a n (n ∈N *).解:(1)由条件得a 1=0,a 2=0+1=1=12, a 3=1+(2×2-1)=4=22, a 4=4+(2×3-1)=9=32, 归纳通项公式为a n =(n -1)2.(2)由条件得a 1=3,a 2=3a 1=3, a 3=3a 2=33,a 4=3a 3=34, 归纳通项公式为a n =3n .练习1.已知数列3,7,11,15,…,则53是数列的( ) A .第18项 B .第19项 C .第17项 D .第20项 解析:选B.∵7-3=11-7=15-11=4, 即a n 2-a n -12=4,∴a n 2=3+(n -1)×4=4n -1, 令4n -1=75,则n =19.故选B.2.已知数列的通项a n =⎩⎪⎨⎪⎧3n +1 (n 为奇数)2n -1 (n 为偶数),则a 2009-a 2010等于( )A .2007B .2008C .2009D .2010 解析:选C.a 2009=3×2009+1=6028; a 2010=2×2010-1=4019.故a 2009-a 2010=6028-4019=2009.故应选C. 3.下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n =nn +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中正确命题的个数是( )A .1B .2C .3D .4解析:选A.①错误,如a n +2=a n +a n +1,a 1=1就无法写出a 2; ②错误,a n =n +1n +2;③正确;④两数列是不同的有序数列.故应选A.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38 解析:选C.由已知得a 2=1+(-1)2=2, ∴a 3·a 2=a 2+(-1)3,∴a 3=12, ∴12a 4=12+(-1)4, ∴a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6解析:选B.a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2),=⎩⎪⎨⎪⎧-8 (n =1),-10+2n (n ≥2).∵n =1时适合a n =2n -10,∴a n =2n -10. ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N +,∴k =8,故选B.6.若数列{a n }满足a 1=1,a 2=2,a n =a n -1a n -2(n ≥3且n ∈N *),则a 17=( )A .1B .2 C.12 D .2-987解析:选 C.由已知得a 1=1,a 2=2,a 3=2,a 4=1,a 5=12,a 6=12,a 7=1,a 8=2,a 9=2,a 10=1,a 11=12,a 12=12,即a n 的值以6为周期重复出现,故a 17=12.7.已知数列{a n }的通项a n =nanb +c (a ,b ,c 均为正实数),则a n 与a n +1的大小关系是________.解析:∵a n =na nb +c=a b +c n,cn 是减函数, ∴a n =ab +c n 是增函数,∴a n <a n +1.答案:a n <a n +18.设数列{a n }的前n 项和为S n ,S n =a 1(3n -1)2(对n ≥1恒成立)且a 4=54,则a 1=________.解析:法一:由S 4=S 3+a 4,得a 1(34-1)2=a 1(33-1)2+54, 即a 1(34-33)2=54,解得a 1=2. 法二:由S n -S n -1=a n (n ≥2)可得a n =a 1(3n -1)2-a 1(3n -1-1)2=a 1(3n -3n -1)2=a 1·3n -1, ∴a 4=a 1·33,∴a 1=5427=2. 答案:29.已知数列{a n }的前n 项的乘积为T n =5n 2,n ∈N *,则数列{a n }的通项公式为________.解析:当n =1时,a 1=T 1=512=5;当n ≥2时,a n =T n T n -1=5n 25(n -1)2=52n -1(n ∈N *). 当n =1时,也适合上式, 所以当n ∈N *时,a n =52n -1. 答案:a n =52n -1(n ∈N *)10.已知数列{a n }中,a n ∈(0,12),a n =38+12a 2n -1,其中n ≥2,n ∈N +,求证:对一切正整数n 都有a n <a n +1成立.证明:a n +1-a n =38+12a n 2-a n=12(a n -1)2-18,∵0<a n <12,∴-1<a n -1<-12. ∴18<12(a n -1)2<12. ∴12(a n -1)2-18>0.∴a n +1-a n >0,即a n <a n +1对一切正整数n 都成立.11.(2010年邯郸模拟)已知数列{a n }满足前n 项和S n =n +1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2). ∴b n =⎩⎪⎨⎪⎧1n (n ≥2),23(n =1).(2)∴c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1<0,∴{c n }是递减数列.12.已知数列{a n }的前n 项和为S n =n 2+pn ,数列{b n }的前n 项和为T n =3n 2-2n .(1)若a 10=b 10,求p 的值.(2)取数列{b n }的第1项,第3项,第5项,…,构成一个新数列{c n },求数列{c n }的通项公式.解:(1)由已知,a n =S n -S n -1=(n 2+pn )-[(n -1)2+p (n -1)] =2n -1+p (n ≥2),b n =T n -T n -1=(3n 2-2n )-[3(n -1)2-2(n -1)] =6n -5(n ≥2). ∴a 10=19+p ,b 10=55. 由a 10=b 10,得19+p =55, ∴p =36.(2)b 1=T 1=1,满足b n =6n -5. ∴数列{b n }的通项公式为b n =6n -5.取{b n}中的奇数项,所组成的数列的通项公式为b2k-1=6(2k-1)-5=12k-11.∴c n=12n-11.。
2011届高考数学第一轮复习章节练习题371

高三数学章节训练题34《圆锥曲线与方程》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1.若椭圆经过原点,且焦点为12(1,0),(3,0)F F ,则其离心率为 ( )A .34 B .23 C .12 D .142.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是( )A .()0,0123322>>=+y x y x B .()0,0123322>>=-y x y x C .()0,0132322>>=-y x y x D .()0,0132322>>=+y x y x 3.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A .2B .332 C . 2 D .4 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D . 22(1)(01)y x x =--<≤5.直线2y k =与曲线2222918k x y k x += (,)k R ∈≠且k 0的公共点的个数为 ( )A . 1B . 2C . 3D . 46.曲线221(6)106x y m m m+=<--与曲线221(59)59x y m m m +=<<--的 ( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同 二、填空题:(本大题共4小题,每小题5分,满分20分)7.椭圆221123x y +=的两个焦点为12,F F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的______________倍.8.如图把椭圆2212516x y +=的长轴AB 分成8等 分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是 椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|=.9.已知两点(5,0),(5,0)M N -,给出下列直线方程:①530x y -=;②53520x y --=;③40x y --=.则在直线上存在点P 满足||||6M P P N =+的所有直线方程是_______.(只填序号)10.以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,k PB PA =+||||,则动点P 的轨迹为椭圆;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③到定直线ca x 2-=和定点)0,(c F -的距离之比为)0(>>a c c a 的点的轨迹是双曲线的左半支;④方程02722=+-x x 的两根可分别作为椭圆和双曲线的离心率;其中真命题的序号为 (写出所有真命题的 三、解答题:(本大题共2小题,满分30分)11.(本小题满分14分)已知抛物线28y x =,是否存在过点(1,1)Q 的弦AB ,使AB 恰被Q平分.若存在,请求AB 所在直线的方程;若不存在,请说明理由.12.(本小题满分16分)设,x y R ∈,,i j为直角坐标平面内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++ ,(2)b xi y j =+- ,且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于,A B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.高三数学章节训练题34《圆锥曲线与方程》答案一、 选择题1、C2、D3、C4、A5、D6、A 2.D .由PA BP 2=及,A B分别在x 轴的正半轴和y 轴的正半轴上知,3(,0),2A x (0,3)B y ,3(,3)2AB x y =- ,由点Q 与点P 关于y 轴对称知,(,)Q x y -,OQ =(,)x y -,则2233(,3)(,)31(0,0)22OQ AB x y x y x y x y ⋅=-⋅-=+=>> 二、填空题7.7倍.由已知椭圆的方程得123,(3,0),(3,0)a b c F F ===-.由于焦点12F F 和关于y 轴对称,所以2PF 必垂直于x 轴.所以21||P PF PF ===,所以21||7||PF PF =.8.35. 设P 1(x 1,y 1),P 2(x 2,y 2),…,P 7(x 7,y 7),所以根据对称关系x 1+x 2+…+x 7=0,于是 |P 1F|+|P 2F|+…+|P 7F|=a+ex 1+a+ex 2+…+a+ex 7=7a+e(x 1+x 2+…+x 7)= 7a=35,所以应填35.9.②③. 由||||6MP PN -=可知点P 在双曲线221916x y -=的右支上,故只要判断直线与双曲线右支的交点个数.因为双曲线的渐近线方程为43y x =±,直线①过原点且斜率5433>,所以直线①与双曲线无交点;直线②与直线①平行,且在y 轴上的截距为523-故与双曲线的右支有两个交点;直线③的斜率413<,故与双曲线的右支有一个交点.10.④三、解答题11.假设存在这样的直线,则直线的斜率一定存在,设为k ,点1122(,),(,)A x y B x y 在抛物线上,所以21122288y x y x ⎧=⎪⎨=⎪⎩,两式作差得,121212()()8()y y y y x x +-=-,即121212()()8y y y y x x -+=-,解得4k =,故直线方程为14(1)y x -=-,即43y x =-.经验证,直线符合条件.12.(1)由||||8a b +=,84=>,设12(0,2),(0,2)F F -则动点M 满足1212||||84||MF MF F F +=>=,所以点M 在椭圆上,且椭圆的4,2,a c b ===所以轨迹C 的方程为2211612y x +=.(2)设直线的斜率为k ,则直线方程为3y kx =+,联立方程组22311612y kx y x =+⎧⎪⎨+=⎪⎩消去y得:22(43)18210k x kx ++-=,22(18)84(43)0k k ∆=++>恒成立,设1122(,),(,)A x y B x y ,则1212221821,4343k x x x x k k+=-=++.由AP OB = ,所以四边形OAPB 为平行四边形.若存在直线l ,使四边形OAPB 为矩形,则OA OB ⊥,即212121212(1)3()90OA OB x x y y k x x k x x ⋅=+=++++= ,解得4k =±,所以直线l的方程为3y x =+,此时四边形OAPB 为矩形.。
2011年高考数学一轮复习精品学案(人教版A版)§9.7 抛物线--答案

§9.7 抛物线1.抛物线的标准方程、类型及其几何性质 (0>p ):2.①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p,=B A y y 2p -,||AB =p x x B A ++1.答案 ⎪⎭⎫ ⎝⎛a 161,0; 2.答案 4; 3.答案 y 2=8x; 4.答案 4; 5.答案 2例1 解 将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部.设抛物线上点P 到准线l :x =-21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小,最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 坐标为(2,2).例2解 ①若抛物线开口方向向下,设抛物线方程为x 2=-2py(p >0),这时准线方程为y =2p , 由抛物线定义知2p-(-3)=5,解得p =4, ∴抛物线方程为x 2=-8y, 这时将点A (m,-3)代入方程,得m =±26.②若抛物线开口方向向左或向右,可设抛物线方程为y 2=2ax (a ≠0),从p =|a|知准线方程可统一成x =-2a的形式,于是从题设有⎪⎩⎪⎨⎧==+9252am m a, 解此方程组可得四组解⎪⎩⎪⎨⎧==29111m a ,⎪⎩⎪⎨⎧-=-=29122m a ,⎪⎩⎪⎨⎧==21933m a ,⎪⎩⎪⎨⎧-=-=21944m a . ∴y 2=2x,m =29;y 2=-2x,m =-29;y 2=18x,m =21;y 2=-18x,m =-21.例3(1)证明 由题意设A ⎪⎪⎭⎫ ⎝⎛p x x 2,211,B ⎪⎪⎭⎫ ⎝⎛p x x 2,222,x 1<x 2, M ()p x 2,0-. 由x 2=2py 得y =p x 22,则y ′=p x,所以k MA =px 1,k MB =p x 2. 2分因此,直线MA 的方程为y +2p =px 1(x -x 0),直线MB 的方程为y +2p =p x 2(x -x 0).所以,p x 221+2 p =px1 (x 1-x 0),①p x 222+2 p =px 2(x 2-x 0). ② 5分由①、②得221x x +=021x x x -+,因此,x 0=221x x +,即2x 0=21x x +. 所以A 、M 、B 三点的横坐标成等差数列. 8分(2)解 由(1)知,当x 0=2时,将其代入①、②,并整理得:x 21-4x 1-4p 2=0,x 22-4x 2-4 p 2=0,所以,x 1、x 2是方程x 2-4x -4 p 2=0的两根, 10分因此,x 1+x 2=4,x 1x 2=-4 p 2,又k AB =12212222x x p x p x --=p x x 221+=p x 0,所以k AB =p2.12分由弦长公式得:|AB|=21k +212214)(x x x x -+=241p+21616p +.又|AB|=410,所以p =1或p =2,因此所求抛物线方程为x 2=2y 或x 2=4y. 16分1.答案2172.解 设抛物线的方程为y 2=2 p x(p >0),其准线为x =-2p.设A (x 1,y 1),B(x 2,y 2), ∵|AF|+|BF|=8,∴x 1+2p +x 2+2p=8,即x 1+x 2=8-p. ∵Q (6,0)在线段AB 的中垂线上,∴|QA|=|QB|.即(x 1-6)2+y 12=(x 2-6)2+y 22,又y 12=2px 1,y 22=2px 2,∴(x 1-x 2)(x 1+x 2-12+2p)=0.∵AB 与x 轴不垂直,∴x 1≠x 2, 故x 1+x 2-12+2p =8- p -12+2 p =0, 即p =4.从而抛物线的方程为y 2=8x. 3.解 (1)由题意可得直线l 的方程为y =21x +45, ① 过原点垂直于l 的直线方程为y =-2x.② 解①②得x =-21.∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上,∴-2p =-21×2, p =2.∴抛物线C 的方程为y 2=4x. (2)设A(x 1,y 1),B(x 2,y 2),N(x,y),由题意知y =y 1. 由·+ p 2=0,得x 1x 2+y 1y 2+4=0, 又y 12=4x 1,y 22=4x 2,解得y 1y 2=-8,③ 直线ON :y =22x y x ,即y =24y x. ④ 由③、④及y =y 1得点N 的轨迹方程为x =-2(y ≠0). 1.答案x 2=8y; 2.答案2a ;3.答案29; 4.答案相等; 5.答案-43; 6.答案6; 7.答案3+22; 8.答案319.解 因为一直角边的方程是y =2x, 所以另一直角边的方程是y =-21x.由⎪⎩⎪⎨⎧==px y xy 222,解得⎪⎩⎪⎨⎧==p y p x 2,或⎩⎨⎧==00y x (舍去), 由⎪⎩⎪⎨⎧=-=px y x y 2212,解得⎩⎨⎧-==p y p x 48,或⎩⎨⎧==00y x (舍去),∴三角形的另两个顶点为⎪⎭⎫⎝⎛p p,2和(8 p,-4p ).∴22)4()82(p p p p ++-=213.解得p =54,故所求抛物线的方程为y 2=58x.10.解由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p =2c.抛物线方程为y 2=4cx.∵抛物线过点⎪⎭⎫ ⎝⎛6,23,∴6=4c·23.∴c =1,故抛物线方程为y 2=4x.又双曲线2222b y a x -=1过点⎪⎭⎫⎝⎛6,23, ∴22649b a -=1.又a 2+b 2=c 2=1.∴221649a a --=1.∴a 2=41或a 2=9(舍). ∴b 2=43,故双曲线方程为4x 2-342y =1.11.(1)解 由已知得2 p =8,∴2p=2,∴抛物线的焦点坐标为F (2,0),准线方程为x =-2. (2)证明 设A (x A ,y A ),B (x B ,y B ),直线AB 的斜率为k =tan α,则直线方程为y =k(x -2), 将此式代入y 2=8x,得k 2x 2-4(k 2+2)x +4k 2=0,故x A +x B =22)2(4k k +,记直线m 与AB 的交点为E (x E ,y E ),则x E =2B A x x +=22)2(2k k +,y E =k(x E -2)=k 4, 故直线m 的方程为y -k 4=-k 1⎪⎪⎭⎫ ⎝⎛+-2242k k x ,令y =0,得点P 的横坐标x P =2242k k ++4, 故|FP|=x P -2=22)1(4k k +=α2sin 4,∴|FP|-|FP|cos2α=α2sin 4(1-cos2α)=αα22sin sin 24⋅=8,为定值.12.解 (1)设M (x,y )为轨迹上任意一点,A (0,b ),Q(a,0)(a ≥0), 则=(x,y -b ),=(a -x,-y), ∵=-23,∴(x ,y -b )=-23(a -x ,-y ), ∴⎪⎪⎩⎪⎪⎨⎧=---=y b y x a x 23)(23,从而⎪⎪⎩⎪⎪⎨⎧-==yb x a 2131.∴A ⎪⎭⎫ ⎝⎛-y 21,0,且=⎪⎭⎫ ⎝⎛-2,3y , =⎪⎭⎫ ⎝⎛y x 23,. ∵·=0,∴⎪⎭⎫⎝⎛-2,3y ·⎪⎭⎫ ⎝⎛y x 23,=0,即3x -43y 2=0,∴y 2=4x,故M 点的轨迹方程为y 2=4x.(2)轨迹C 的焦点为F (1,0),准线为l:x =-1,对称轴为x 轴.设直线m 的方程为y =k(x -1)(k ≠0), 由⎪⎩⎪⎨⎧=-=xy x k y 4)1(2⇒ky 2-4y -4k =0,设G (x 1,y 1),H(x 2,y 2),则由根与系数的关系得,y 1y 2=-4,又由已知=(-1,y 1),=⎪⎪⎭⎫ ⎝⎛222,4y y , ∴(-1)×y 2-y 1×422y =-y 2-421y y ·y 2=-y 2+y 2=0,∴OE ∥OH ,故O ,E ,H 三点共线.。
2011届高考数学一轮复习测评卷13.4

2011年《新高考全案》高考总复习第一轮复习测评卷第十三章 第四讲一、选择题1.若变量y 与x 之间的相关系数r =-0.936 2,查表得到相关系数临界值r 0.05=0.801 3,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .它们的线性关系还要进一步确定D .不确定 [答案] B2.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据( )A .K 2>3.841B .K 2<3.841C .K 2>6.635D .K 2<6.635[解析] 比较K 2的值和临界值的大小,95%的把握则K 2>3.841,K 2>6.635就约有99%的把握.[答案] A3.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的线性回归方程为( )A.y ∧=x +1 B.y ∧=x +2 C.y ∧=2x +1D.y ∧=x -1[解析] 画散点图,四点都在直线y ∧=x +1上. [答案] A4.如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )[解析]图A中的点不成线性排列,故两个变量不适合线性回归模型,故选A.[答案] A5.观察下列各图,其中两个分类变量关系最强的是()[解析]D选项中主对角线上两个柱形高度之积与副对角线上两个柱形高度之积相差最大,选D.[答案] D6.一位母亲记录了儿子3~9岁的身高,数据如下表.由此建立的身高与年龄的回归模型为y=7.19x+73.93.用这个模型预测这个孩子10岁时的身高,则正确的叙述是() 年龄/岁3456789身高/cm94.8104.2108.7117.8124.3130.8139.0 A.C.身高在145.83 cm左右D.身高在145.83 cm以下[解析]将x=10代入得y=145.83,但这种预测不一定准确,应该在这个值的左右.故选C.[答案] C二、填空题7.下列命题:①用相关指数R 2来刻画回归的效果时,R 2的值越大,说明模型拟合的效果越好; ②对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”可信程度越大;③两个随机变量相关性越强,则相关系数的绝对值越接近1;④三维柱形图中柱的高度表示的是各分类变量的频数.其中正确命题的序号是________.(写出所有正确命题的序号)[答案] ①③④8.若两个分类变量x 和y 的列联表为:则x 与y [解析] x 2=(5+15+40+10)(5×10-40×15)2(5+15)(40+10)(5+40)(15+10)≈18.822,查表知P (x 2≥6.635)≈0.1,∴x 与y 之间有关系的概率约为1-0.1=0.99. [答案] 0.999.若施化肥量x 与水稻产量y 的回归直线方程为y ∧=5x +250,当施化肥量为80 kg 时,预计水稻产量为________.[答案] 650 kg10.根据下面的列联表:得到如下的判断:99%的把握认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为1%;④认为患肝病与嗜酒有关的出错的可能为10%.其中正确的命题为________.[解析] 正确命题为②③. [答案] ②③ 三、解答题11.某体育训练队共有队员40人,下表为跳远和跳高成绩的统计表,成绩分为1~5共5个档次,例如表中所示跳高成绩为4分、跳远成绩为2分的队员为5人,将全部队员的姓名卡混合在一起,任取一张,得该卡对应队员的跳高成绩为x 分,跳远成绩为y 分,设x ,y 为随机变量.(注:没有相同姓名的队员)(1)跳高成绩是否“优秀”与跳远是否“优秀”有没有关系?(2)若跳远成绩相等和跳高成绩相等的人数分别为m 、n .试问:m 、n 是否具有线性相关关系?若有,求出回归直线方程.若没有,请说明理由.(回归相关系数r =∑i =1n(x i -x )(y i -y )∑i =1n (x i -x )2∑i =1n(y i -y )2)[解] (1)根据题中条件,对两变量进行分类,先看跳远成绩“优”的队员有10人,“一般”的有30人;跳高“优”的有15人,“一般”的有25人;于是,列联表如下:假设跳高“优则K 2=80×(15×30-10×25)240×40×25×55=1.455<2.706,显然,没有充分的证据显示跳高“优”与跳远“优”有关. (2)将跳远、跳高成绩及人数整理如下表:易得m =8,n =8,∑i =1k(m i -m)2=30,∑i =1k(n i -n )2=22,∑i =1k(m i -m )(n i -n )=5,那么r =∑i =1k(m i -m )(n i -n )∑i =1k(m i -m)2·∑i =1k (n i -n )2=530×22≈0.194 6,可见变量n 与m 不具有线性相关性.12.某数学教师为了研究学生的性别与喜欢数学之间的关系,随机抽测了20名学生,得到如下数据:(2)根据题(1)系?(3)按下面的方法从这20名学生中抽取1名学生来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取学生的序号.试求:①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.参考公式:K 2=n ×(ad -bc )2(a +b )(c +d )(a +c )(b +d )参考数据:P (K 2≥k )0.025 0.010 0.005 k5.0246.6357.879[解] (1)根据题中表格数据可得2×2列联表如下:男生 女生 合计 喜欢数学 5 3 8 不喜欢数学 1 11 12 合计61420(2)提出假设H 0:性别与是否喜欢数学之间没有关系.根据上述列联表可以求得K 2的观测值为k =20×(5×11-1×3)26×14×8×12≈6.7063.当H 0成立时,P (K 2≥6.635)≈0.010=1%,而这里6.7063>6.635. ∴认为性别与是否喜欢数学之间没有关系的概率是1%,∴该数学教师有99%的把握认为:性别与是否喜欢数学之间有关系.(3)将一个骰子连续投掷两次,事件“朝上的两个数字的乘积”有6×6=36种. ①∵朝上的两个数字的乘积为12的事件有4种:2×6,3×4,6×2,4×3. ∴抽到12号的概率为P 1=436=19.②∵朝上的两个数字的乘积为“无效序号(超过20号)”的事件有6种:4×6,5×5,5×6,6×4,6×5,6×6,∴抽到“无效序号(超过20号)”的概率为P 2=636=16.亲爱的同学请你写上学习心得________________________________________________________________________________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________。
2011年黄冈中学高考数学一轮复习(内部)系列

2011年黄冈中学高考一轮复习(内部)系列:高考数学一轮复习单元测试卷(13)—数形结合思想一、选择题(本题每小题5分,共60分)1.已知集合P={ 0, m},Q={x │Z x x x ∈<-,0522},若P∩Q≠Φ,则m 等于 ( )A .1B .2C .1或25D .1或22.使得点)2sin ,2(cos ααA 到点)sin ,(cos ααB 的距离为1的α的一个值是 ( )A .12π B .6π C .3π-D .4π-3.将函数x x f 2sin :→的图象向右平移B=[-1,1]个单位长度,再作关于x 轴的对称变换,得到y x x R =∈c o s 2,的图象,则f x ()可以是 ( )A .s in xB .c o s xC .2s i n xD .2c o s x4.某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的可用图像表示的是 ( )A .B .C .D .5.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 ( )A .2a πB .22a πC .32a πD .42a π6.已知z ∈C ,满足不等式0<-+z i iz z z 的点Z 的集合用阴影表示为 ( )A .B .C .D .36Cot36Cot 36Cot 36Cot x y O x y O1xy O 1 x y O -7.直角坐标x O y 平面上,平行直线x =n (n =0,1,2,……,5)与平行直线y =n (n =0, 1,2,……,5)组成的图形中,矩形共有 ( )A .25个B .36个C .100个D .225个8.方程11122=---x y y x 所对应的曲线图形是( )A .B .C .D .9.设0<x <π,则函数xxy sin cos 2-=的最小值是( )A .3B .2C .3D .2-310.四面体ABCD 的六条棱中,其中五条棱的长度都是2,则第六条棱长的取值范围是( )A .()2,0B .()32,0C .()32,2D .[)4,211.若直线1+=kx y 与曲线12+=y x 有两个不同的交点,则k 的取值范围是 ( )A .12-<<-kB .22<<-kC .21<<k D .2-<k 或2>k12.某企业购置了一批设备投入生产,据分析每台设备生产的总利润y (单位:万元)与年数x ()N x ∈满足如图的二次函数关系。
2011届高考数学第一轮巩固与练习题43

巩固1.(原创题)抛物线y 2=24ax (a >0)上有一点M ,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为( )A .y 2=8xB .y 2=12xC .y 2=16xD .y 2=20x解析:选A.由题意知,3+6a =5,∴a =13,∴抛物线方程为y 2=8x .2.经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线的方程是( )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0解析:选A.据题意设所求平行直线方程为3x -2y +c =0,又直线过抛物线y 2=2x 的焦点(12,0),代入求得c =-32,故直线方程为6x -4y -3=0.3.(2009年高考山东卷)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B.y 2=ax 的焦点坐标为(a 4,0).过焦点且斜率为2的直线方程为y =2(x -a 4),令x =0得:y =-a 2.∴12×|a |4·|a |2=4,∴a 2=64,∴a =±8. 4.过抛物线y 2=4x 的焦点F 作垂直于x 轴的直线,交抛物线于A ,B 两点,则以F 为圆心、AB 为直径的圆的方程是________.解析:由y 2=4x ,得p =2,F (1,0),∴A (1,2),B (1,-2),∴所求圆的方程为(x -1)2+y 2=4.答案:(x -1)2+y 2=45.设抛物线y 2=mx 的准线与直线x =1的距离为3,则抛物线的方程为________.解析:当m >0时,准线方程为x =-m 4=-2,∴m =8,此时抛物线方程为y 2=8x ;当m <0时,准线方程为x =-m 4=4,∴m =-16,此时抛物线方程为y 2=-16x .∴所求抛物线方程为y 2=8x 或y 2=-16x .答案:y 2=8x 或y 2=-16x6.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF →·RF→=0. 证明:设Q (y 022p ,y 0),则R (-p 2,y 0),直线OQ 的方程为y =2p y 0x , 将x =-p 2代入上式,得y =-p 2y 0, ∴P (-p 2,-p 2y 0).又F (p 2,0), ∴PF →=(p ,p 2y 0),RF →=(p ,-y 0). ∴PF →·RF→=0. 练习1.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4解析:选D.抛物线的焦点为F (p 2,0),椭圆中c 2=6-2=4,∴c =2,其右焦点为(2,0),∴p 2=2,∴p =4.2.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A.1716B.1516C.78 D .0解析:选B.M 到焦点的距离为1,则其到准线距离也为1.又∵抛物线的准线为y =-116,∴M 点的纵坐标为1516.3.(2008年高考北京卷)若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:选D.由题意知,点P 到点(2,0)的距离与P 到直线x =-2的距离相等,由抛物线定义得点P 的轨迹是以(2,0)为焦点,以直线x =-2为准线的抛物线,故选D.4.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于π3的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为( )A .2B .4C .6D .8解析:选B.由已知可得直线AF 的方程为y =3(x -1),联立直线与抛物线方程消元得:3x 2-10x +3=0,解之得:x 1=3,x 2=13(据题意应舍去),由抛物线定义可得:|AF |=x A +p 2=3+1=4.5.如图过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( )A .y 2=32xB .y 2=9xC .y 2=92xD .y 2=3x解析:选D.如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得:|BC |=2a ,由定义得:|BD |=a ,故∠BCD =30°,在直角三角形ACE 中,|AE |=3,|AC |=3+3a ,故有2|AE |=|AC |⇒3+3a =6,从而得a =1,再由BD ∥FG ,则有1p =23⇒p =32,因此抛物线方程为y 2=3x .6.直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且交抛物线C 于A ,B 两点,分别从A ,B 两点向抛物线的准线引垂线,垂足分别为A 1,B 1,则∠A 1FB 1是( )A .锐角B .直角C .钝角D .直角或钝角答案:B7.(2008年高考上海卷)若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =________.解析:y 2=4x 的焦点为(1,0),将点(1,0)代入ax -y +1=0,得a =-1.答案:-18.(2008年高考江西卷)过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则|AF ||FB |=________.解析:如右图,作AA 1⊥x 轴,BB 1⊥x 轴.则AA 1∥OF ∥BB 1,∴|AF ||FB |=|OA 1||OB 1|=|x A ||x B |, 又已知x A <0,x B >0,∴|AF ||FB |=-x A x B, ∵直线AB 方程为y =x tan30°+p 2即y =33x +p 2,与x 2=2py 联立得x 2-233px -p 2=0∴x A +x B =233p ,x A ·x B =-p 2,∴x A x B =-p 2=-(x A +x B 233)2 =-34(x A 2+x B 2+2x A x B )∴3x A 2+3x B 2+10x A x B =0两边同除以x B 2(x B 2≠0)得3(x A x B )2+10x A x B+3=0 ∴x A x B=-3或-13. 又∵x A +x B =233p >0,∴x A >-x B ,∴x A x B >-1, ∴|AF ||FB |=-x A x B=-(-13)=13. 答案:139.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上 ②焦点在x 轴上 ③抛物线上横坐标为1的点到焦点的距离等于6 ④抛物线的通径的长为5 ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能满足此抛物线方程y 2=10x 的条件是________(要求填写合适条件的序号).解析:在①②两个条件中,应选择②,则由题意,可设抛物线方程为y 2=2px (p >0);对于③,由焦半径公式r =1+p 2=6,∴p =10,此时y 2=20x ,不符合条件;对于④,2p =5,此时y 2=5x ,不符合题意;对于⑤,设焦点(p 2,0),则由题意, 满足12·1-02-p 2=-1.解得p =5,此时y 2=10x ,所以②⑤能使抛物线方程为y 2=10x .答案:②⑤10.抛物线顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,6),求抛物线与双曲线方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p =2c .设抛物线方程为y 2=4c ·x ,∵抛物线过点(32,6),∴6=4c ·32.∴c =1,故抛物线方程为y 2=4x .又双曲线x 2a 2-y 2b 2=1过点(32,6),∴94a 2-6b 2=1.又a 2+b 2=c 2=1,∴94a 2-61-a =1. ∴a 2=14或a 2=9(舍).∴b 2=34,故双曲线方程为:4x 2-4y 23=1.11.(2009年高考江苏卷)在平面直角坐标系xOy中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程.解:(1)由题意,可设抛物线C 的标准方程为y 2=2px .因为点A (2,2)在抛物线C 上,所以p =1.因此,抛物线C 的标准方程是y 2=2x .(2)由(1)可得焦点F 的坐标是(12,0),又直线OA 的斜率为22=1,故与直线OA 垂直的直线的斜率为-1.因此,所求直线的方程是x +y -12=0.12.设抛物线过定点A (2,0),且以直线x =-2为准线.(1)求抛物线顶点的轨迹C 的方程;(2)已知点B (0,-5),轨迹C 上是否存在满足MB →·NB→=0的M 、N 两点?证明你的结论.解:(1)设抛物线顶点P (x ,y ),则抛物线的焦点F (2x +2,y ), 由抛物线的定义可得(2x +2-2)2+y 2=4.∴x 24+y 216=1. ∴轨迹C 的方程为x 24+y 216=1(x ≠2).(2)不存在.证明如下:过点B (0,-5)斜率为k 的直线方程为y =kx -5(斜率不存在时,显然不符合题意),由⎩⎨⎧y =kx -5,x 24+y 216=1,得(4+k 2)x 2-10kx +9=0,由Δ≥0得k 2≥94.假设在轨迹C 上存在两点M 、N ,令MB 、NB 的斜率分别为k 1、k 2,则|k 1|≥32,|k 2|≥32,显然不可能满足k 1·k 2=-1,∴轨迹C 上不存在满足MB →·NB →=0的两点.。
2011届高考数学第一轮复习精品试题:圆锥曲线
2011届高考数学第一轮复习精品试题:圆锥曲线第2章 圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程与简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用. §重难点:建立并掌握椭圆的标准方程,能根据条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.经典例题:A 、B 为椭圆22a x +22925a y =1上两点,F2为椭圆的右焦点,假如|AF2|+|BF2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.当堂练习:1.如下命题是真命题的是〔 〕A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线c a x 2=和定点F(c ,0)的距离之比为a c的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线c a x 2=和定点F(c ,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆2.假如椭圆的两焦点为〔-2,0〕和〔2,0〕,且椭圆过点)23,25(-,如此椭圆方程是〔 〕A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x 3.假如方程x2+ky2=2表示焦点在y 轴上的椭圆,如此实数k 的取值X 围为〔 〕A .〔0,+∞〕B .〔0,2〕C .〔1,+∞〕D .〔0,1〕4.设定点F1〔0,-3〕、F2〔0,3〕,动点P 满足条件)0(921>+=+a a a PF PF ,如此点P的轨迹是〔 〕A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有〔 〕 A .一样的离心率 B .一样的焦点C .一样的顶点D .一样的长、短轴6.假如椭圆两准线间的距离等于焦距的4倍,如此这个椭圆的离心率为〔 〕 A .41B .22C .42D . 217.P 是椭圆13610022=+y x 上的一点,假如P 到椭圆右准线的距离是217,如此点P 到左焦点的距离〔 〕A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是〔 〕A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P 〔1,-1〕,F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,如此这一最小值是〔 〕A .25B .27C .3D .410.过点M 〔-2,0〕的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为k1〔01≠k 〕,直线OP 的斜率为k2,如此k1k2的值为〔 〕A .2B .-2C .21D .-2111.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆 4 x 2 + 9 y 2 = 36 有一样的焦点,且过点(-3,2)的椭圆方程为_______________.13.()y x P ,是椭圆12514422=+y x 上的点,如此y x +的取值X 围是________________ . 14.椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,如此椭圆E的离心率等于__________________.15.椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. 〔1〕假如0=⋅PB PA ,求P 点坐标; 〔2〕求直线AB 的方程〔用00,y x 表示〕;〔3〕求△MON 面积的最小值.〔O 为原点〕17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.〔1〕求2211b a+的值; 〔2〕假如椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值X 围.18.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.假如直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.第2章 圆锥曲线与方程 §重难点:建立并掌握双曲线的标准方程,能根据条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.经典例题:不论b 取何实数,直线y=kx+b 与双曲线1222=-y x 总有公共点,试某某数k 的取值X 围.当堂练习:1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 〔 〕 A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,如此k 的取值X 围是〔 〕A .11<<-kB .0>kC .0≥kD .1>k 或1-<k 3. 双曲线14122222=--+m y m x 的焦距是〔 〕A .4B .22C .8D .与m 有关4.m,n 为两个不相等的非零实数,如此方程mx -y+n=0与nx2+my2=mn 所表示的曲线可A B C D 5. 双曲线的两条准线将实轴三等分,如此它的离心率为〔 〕A .23B .3C .34D . 36.焦点为()6,0,且与双曲线1222=-y x 有一样的渐近线的双曲线方程是〔 〕A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.假如a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有〔 〕A .一样的虚轴B .一样的实轴C .一样的渐近线D . 一样的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,如此2ABF ∆〔F2为右焦点〕的周长是〔 〕A .28B .22C .14D .129.双曲线方程为1422=-y x ,过P 〔1,0〕的直线L 与双曲线只有一个公共点,如此L 的条数共有 〔 〕A .4条B .3条C .2条D .1条10.给出如下曲线:①4x+2y -1=0;②x2+y2=3;③1222=+y x ④1222=-y x ,其中与直线y=-2x -3有交点的所有曲线是〔 〕 A .①③B .②④C .①②③D .②③④11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有一样的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,如此AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列〔O 为坐标原点〕.17.动点P 与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-13.〔1〕求动点P 的轨迹方程;〔2〕设M(0,-1),假如斜率为k(k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,假如要使|MA|=|MB|,试求k 的取值X 围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).第2章 圆锥曲线与方程 §重难点:建立并掌握抛物线的标准方程,能根据条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图, 直线y=21x 与抛物线y=81x2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点. 〔1〕求点Q 的坐标;〔2〕当P 为抛物线上位于线段AB 下方〔含A 、B 〕的动点时, 求ΔOPQ 面积的最大值.当堂练习:1.抛物线22x y =的焦点坐标是 〔 〕 A .)0,1(B .)0,41(C .)81,0(D . )41,0(2.抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,如此抛物线方程为〔 〕A .y x 82=B .y x 42=C .y x 42-=D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 〔 〕A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),如此它的方程是 〔 〕A .yx 292-=或x y 342=B .x y 292-=或y x 342= C .y x 342=D .xy 292-= 5.点)0,1(P 到曲线⎩⎨⎧==t y t x 22〔其中参数R t ∈〕上的点的最短距离为〔 〕A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,假如CFBF AF ,, 成等差数列,如此 〔 〕A .321,,x x x 成等差数列B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.假如点A 的坐标为〔3,2〕,F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,如此PF PA + 取得最小值时点P 的坐标是 〔 〕A .〔0,0〕B .〔1,1〕C .〔2,2〕D .)1,21(8.抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,如此关系式2121x x y y 的值一定等于 〔 〕A .4pB .-4pC .p2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,假如线段PF 与FQ 的长分别是q p ,,如此qp 11+〔 〕 A .a 2B .a21C .a 4D .a410.假如AB 为抛物线y2=2px (p>0)的动弦,且|AB|=a (a>2p),如此AB 的中点M 到y 轴的最近距离是 〔 〕A .21aB .21pC .21a +21pD .21a -21p11.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________. 12.圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,如此=p ___________. 13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值X 围是 .14.对于顶点在原点的抛物线,给出如下条件; 〔1〕焦点在y 轴上; 〔2〕焦点在x 轴上; 〔3〕抛物线上横坐标为1的点到焦点的距离等于6;〔4〕抛物线的通径的长为5; 〔5〕由原点向过焦点的某条直线作垂线,垂足坐标为〔2,1〕.其中适合抛物线y2=10x 的条件是(要求填写适宜条件的序号〕 ______.15.点A 〔2,8〕,B 〔x1,y1〕,C 〔x2,y2〕在抛物线px y 22=上,△ABC 的重心与此抛物线的焦点F 重合〔如图〕〔1〕写出该抛物线的方程和焦点F 的坐标; 〔2〕求线段BC 中点M 的坐标; 〔3〕求BC 所在直线的方程.16.抛物线y=ax2-1上恒有关于直线x+y=0对称的相异两点,求a 的取值X 围.17.抛物线x2=4y 的焦点为F ,过点(0,-1)作直线L 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FARB ,试求动点R 的轨迹方程.18.抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C 在点M 的法线.〔1〕假如C 在点M 的法线的斜率为21-,求点M 的坐标〔x0,y0〕;〔2〕设P 〔-2,a 〕为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?假如有,求出这些点,以与C 在这些点的法线方程;假如没有,请说明理由.第2章 圆锥曲线与方程 §1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是〔 〕A 、21B 、33C 、23D 、32)假如直线01)1(=+++y x a 与圆0222=-+x y x 相切,如此a 的值为〔 〕 A 、1,1- B 、2,2- C 、1 D 、1-3)椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,如此△2ABF 的周长为〔 〕〔A 〕10 〔B 〕20 〔C 〕241〔D 〕 4144)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是〔 〕〔A 〕15 〔B 〕12 〔C 〕10 〔D 〕85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,21PF PF⊥,如此△21PF F 的面积为〔 〕〔A 〕9 〔B 〕12 〔C 〕10 〔D 〕86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是〔 〕〔A 〕3〔B 〕11〔C 〕22〔D 〕107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是〔 〕〔A 〕222=-y x 〔B 〕222=-x y 〔C 〕422=-y x 或422=-x y 〔D 〕222=-y x 或222=-x y 8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,如此P 点到左准线的距离为〔 〕〔A 〕6 〔B 〕8 〔C 〕10 〔D 〕129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为〔 〕〔A 〕28 〔B 〕2814-〔C 〕2814+〔D 〕2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,如此双曲线的离心率为〔 〕〔A 〕3〔B 〕26〔C 〕36〔D 〕3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,假如线段PF 与FQ 的长分别为p 、q ,如此11p q +等于〔 〕〔A 〕2a 〔B 〕12a 〔C 〕4a 〔D 〕4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,如此这条弦所在的直线方程是〔 〕〔A 〕02=-y x 〔B 〕042=-+y x 〔C 〕01232=-+y x 〔D 〕082=-+y x13)与椭圆22143x y +=具有一样的离心率且过点〔2,14〕离心率35=e ,一条准线为3=x 的椭圆的标准方程是 。
成都37中高2011级数学基础综合练习(1)
成都37中高2011级基础综合练习(1)姓名:______________一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合=⋂≤-+=>+=B A x x x B x x A 则},06|{},3|12||{2( )A .]2,1()2,3[⋃--B .),1(]2,3(+∞⋃--C .)2,1[]2,3(⋃--D .]2,1()3,(⋃--∞2.函数)0(2)(2≤-=x x x x f 的反函数是( )A .)1(11)(1-≥++=-x x x f B .)1(11)(1-≥+-=-x x x fC .)0(11)(1≥++=-x x x fD .)0(11)(1≥+-=-x x x f3.双曲线,3412222x y bx ay ==-的一条渐近线方程为则双曲线的离心率为 ( )A .35 B .34 C .45 D .474.若βα,表示不同的平面,m 、n 表示不同的直线,则m//α的一个充分条件是 ( )A .ββα⊥⊥m 且B .n m n //且=⋂βαC .α////n n m 且D .ββα⊂m 且// 5.已知函数)10)((≤≤=x x f y 的图象如右图,若,1021<<<x x 则 ( )A .2211)()(x x f x x f < B .2211)()(x x f x x f =C .2211)()(x x f x x f > D .以上都不正确6.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π7.函数)0,3()sin(2)(πθ=+=a x x f 的图象按向量平移后,它一条对称轴为6π=x ,则θ的一个可能值是( ) A .125π B .32π C .6πD .12π8.已知函数),()56(log )(221+∞+-=a x x x f 在上是减函数,则a 的取值范围是( )A .(-∞, 1)B .(3,+∞)C .(-∞,3)D .),5[+∞9.若△ABC 的外接圆的圆心为O ,半径为1,且=⋅=++OB OA OC OB OA 则,0( )A .21 B .0 C .1D .-2110.同时掷三枚均匀的骰子,向上的点数之和为5的概率是 ( )A .1081 B .541 C .361D .18111.函数),()(),,()('b a x f y b a x f y 在在定义域为==上的图象如右图,则函数),()(b a x f 在开区间内的 极小值点有 ( )A .1个B .2个C .3个D .4个12.已知半径为1的圆的圆心在双曲线021222=-=-y x xy 上,当圆心到直线的距离最小时,该圆的方程为( )A .1)2()2(1)2()2(2222=-+-=+++y x y x 或B .1)2()2(22=+++y x C .1)2()2(22=++-y xD .1)2()2(1)2()2(2222=-++=++-y x y x 或二、填空题:本大题共4小题,共16分.13.若方程15922=-+-kykx表示椭圆,则焦点坐标是 .14.若关于x 的不等式=++∞⋃-≥-++b a cx b x a x 则的解集为),,3[)2,1[0))(( .15.已知数列{a n }的首项a 1=1,并且对任意n ∈N *,都有a n >0.设其前n 项和为S n ,若以 )1(21))(,(*+=∈x x y N n S a n n 为坐标的点在曲线运动,则数列{a n }的通项公式为 .16.1,2,3,4,5构成的全排列:5432154321a a a a a a a a a a >><<,则满足条件的排列共有 个.三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足.222ac b c a =-+ (1)求角B 的大小;(2)设m =)2cos ,(sin A A ,n =)1,6(--,求m ²n 的最小值.一个盒子里盛有若干个均匀的红球和白球,从中任取一个球,取到红球的概率为31;若从中任取两个球,取到的球至少有一个是白球的概率为1110.(1)求该盒子中的红球、白球各有多少个?(2)从盒子中任取3个球,求取到的白球个数不少于红球个数的概率.19.(本小题满分12分)如图,四棱锥P —ABCD 的底面是边长为1的正方形,PD ⊥平面ABCD ,若侧面PAB 与侧面PCD 所成的角为45°. (1)求点C 到平面PAB 的距离;(2)侧棱PB 上是否存在一点E ,使PB ⊥平面ACE.若存在, 确定点E 的位置;若不存在,说明理由.20. (本小题满分12分)等差数列{a n }中,首项11=a ,公差d ≠0,已知数列,,,,,321nk k k k a a a a 成等比数,其中5,2,1321===k k k(1)求数列{}{}n n b a ,的通项公式;(2)当2,≥∈+n N n 时,求和:.1212122211-++-+-=n n n k a k a k a S已知函数023)(x cx bx ax x f 点++=处的取得极小值-4,使其导函数0)('>x f 的x 的取值范围为(1,3),求:(1)f (x )的解析式; (2)f (x )的极大值;(3)x ∈[2,3],求x m x f x g )2(6)()('-+=的最大值.22.(本小题满分14分,第一小问满分6分,第二小问满分8分)设不等式组⎩⎨⎧x +y >0,x -y >0表示的平面区域为D .区域D 内的动点P 到直线x +y =0和直线x -y =0的距离之积为1.记点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点F (2,0)的直线与曲线C 交于A ,B 两点.若以线段AB 为直径的圆与y 轴相切,求线段AB 的长.参考答案一、选择题ADCDA CBDDC A A 二、填空题13.(±2,0) 14.-2 15.)(*N n n a n ∈= 16.6 三、解答题17.解:(1)因为ac b c a =-+222,所以212222=-+ac b c a ,……………………2分所以21cos =B …………3分 因为),0(π∈B ,所以3π=B .…………5分(2)A A n m 2cos sin 6--=⋅1sin 6sin22--=A A ,其中)32,0(π∈A ……9分设]1,0(sin ∈=t A , ]1,0(,1622∈--=⋅t t t n m ………………11分 所以,当t=1时,n m ⋅的最小值为-5.……………………12分18.解:(1)设红球m 个,白球n 个,则⎪⎪⎩⎪⎪⎨⎧=-=++11101,3122n m m C C n m m…………………………(4分) 解得m=4,n=8∴红球4个,白球8个………………………………………………………………(6分) (2)设“从盒子中任取3个球,取到的白球个数不少于红球个数”为事件A , 则5542)(312142838=⋅+=C C C C A P因此,从盒子中任取3个球,取到的白球个数不少于红球个数的概率为554219.解:(1)设PG=平面ABP ∩平面PCD∵AB//CD∴AB//平面PCD 又∵AB ⊂平面ABCD ∴PD ⊥AB ,又AB ⊥AD ∴AB ⊥平面PAD , ∴PG ⊥平面PAD∴PG ⊥PA ,PG ⊥PD ,∴∠APD 为侧面PAB 与侧面PCD 所成二面角 的平面角,∴∠APD=45°…………………………(3分) 又AD=1,PD ⊥AD , ∴PD=1 ∵CD//AB∴CD//平面PAB∴点D 到平面PAB 的距离等于点C 到平面PAB 的距离.作DH ⊥PA 于H ,可证DH 为点D 到平面PAB 的距离,,22=DH∴点C 到平面PAB 的距离为22………………………………………………………(6分)(2)存在点E 使PB ⊥平面AEC 连结BD 、PD ⊥平面AC ,又BD ⊥AC , ∴PB ⊥AC若PB ⊥平面ACE ,只需PB ⊥AE ,,332,36,3,1,2=====PE AE PB AB PA∴当32=PBPE 时,PB ⊥平面AEC ……………………………………………………(12分)20.(1)解:,2)41(1)1(25122=⇒+⋅=+⇒⋅=d d d a a a ∴a n =2n -1,∴12-=n k k a n,又等比数列中,公比312==a a a ,所以 13-=n k na ,∴21331211+=⇒=---n n n n k k ………………6分(2)解:121312353331--++++=n n n S nn n n n S 312332353331311321-+-++++=-相减得到:nnnnn n n n n S 322231232313121312323232132121+-=---⨯+=--++++=-所以1313-+-=n n n S21.解:(1)由题意得:)0)(3)(1(323)(2'<--=++=a x x a c bx ax x f∴在(-∞,1)上,f ‘(x )<0;……………………………………………………(1分) 在(1,3)上,f ‘(x )>0;……………………………………………………(2分)选做(3,+∞)上,f ‘(x )<0; 因此,f (x )在x 0=1处取得极小值-4∴a+b+c=-4 ①………………………………………………(3分)⎪⎩⎪⎨⎧=++==++=③c b a f ②c b a f 0627)3(023)1(''①②③联立得:⎪⎩⎪⎨⎧-==-=961c b a∴f (x )=-x 3+6x 2-9x ……………………………………………………(6分) (2)由(1)知f (x )在x=3处取得极大值为:f (3)=0…………(8分) (3))32(3)2(6)39)1(3)(2+--=-+---=mx x x m x x x g …………(10分) ①当2≤m ≤3时,;93)32(3)()(222max -=+--==m m m m g x g ②当m <2时,g (x )在[2,3]上单调递减,2112)2()(max -==m g x g ③当m >3时,g (x )在[2,3]上单调递增,3618)3()(max -==m g x g ………………………………………………………………………………(12分) 22.(Ⅰ)解:由题意可知,平面区域D 如图阴影所示. 设动点P (x ,y ),则|x +y |2⋅|x -y |2=1, 即|x 2-y 2|=2.………………………………4分∵P ∈D .∴x +y >0,x -y >0,即x 2-y 2>0. ∴x 2-y 2=2(x >0).即曲线C 的方程为x 22-y 22=1(x >0).…………6分(Ⅱ)解法一:设A (x 1,y 1),B (x 2,y 2),∴以线段AB 为直径的圆的圆心Q (x 1+x 22,y 1+y 22),∵以线段AB 为直径的圆与y 轴相切,∴半径r =12|AB |=x 1+x 22.即|AB |=x 1+x 2.①……………………………………………………………………8分 ∵曲线C 的方程为x 22-y 22=1(x >0),∴F (2,0)为其焦点,相应的准线方程为x =1,离心率e =2. 根据双曲线的定义可得, |AF |x 1-1=|BF |x 2-1=2, ∴|AB |=|AF |+|BF |=2(x 1-1)+2(x 2-1)=2(x 1+x 2)-22.②…………………12分 由①,②可得,x 1+x 2=2(x 1+x 2)-22.由此可得x 1+x 2=4+22.∴线段AB 的长为4+22.……………………………………………………………14分 (Ⅱ)解法二:∵曲线C 的方程为x 22-y22=1(x >0),∴F (2,0)为其焦点,相应的准线为l :x =1,离心率e =2. 分别过A ,B 作AA '⊥l ,BB '⊥l ,垂足分别为A ',B '. 设AB 中点Q ,过Q 点作QQ '⊥y 轴,垂足为Q '.由双曲线的定义可得,|AF ||AA '|=|BF ||BB '|=2,∴|AF |=2|AA '|,|BF |=2|BB '|.…………………10分 |AB |=|AF |+|BF |=2(|AA '|+|BB '|) 根据梯形中位线性质可得 |AA '|+|BB '|=2(|QQ '|-1).∴|AB |=2⋅2(|QQ '|-1).①…………………………12分 ∵以线段AB 为直径的圆与y 轴相切, ∴|QQ '|=12|AB |.②把②代入①得|AB |=22(12|AB |-1),解得|AB |=4+22.……………………………………………………………………14分 (Ⅱ)解法三:设A (x 1,y 1),B (x 2,y 2). ∵直线AB 过点F (2,0),当AB ⊥x 轴时,|AB |=22,以线段AB 为直径的圆与y 轴相离,不合题意. ∴设直线AB 的方程为y =k (x -2). 代入双曲线方程x 2-y 2=2得,x 2-k 2(x -2)2=2,即(1-k 2)x 2+4k 2x -(4k 2+2)=0, ∵直线与双曲线交于A ,B 两点, ∴k ≠±1.∴x 1+x 2=4k2k 2-1,x 1x 2=4k 2+2k 2-1.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[⎝⎛⎭⎫4k 2k 2-12-4⋅4k 2+2k 2-1]……………………………………………………9分 ∵以线段AB 为直径的圆与y 轴相切,∴圆的半径12|AB |与圆心到y 轴的距离12(x 1+x 2)相等.即12(1+k 2)[⎝⎛⎭⎫4k 2k 2-12-4⋅4k 2+2k 2-1]=12(x 1+x 2).∴12(1+k 2)[⎝⎛⎭⎫4k 2k 2-12-4⋅4k 2+2k 2-1]=12⋅4k 2k 2-1.………………………………………12分 化简得k 4-2k 2-1=0,解得k 2=1+2(k 2=1-2不合,舍去).经检验,当k 2=1+2时,直线与曲线C 有两个不同的交点。
高考理科数学基础知识巩固强化练习试题11版含解析
0
0
=π2+kπ(k∈N),于是 p 是 q 的充分不必要条件.故选 A.
2.[2019 ·广东七校联考 ]由曲线 xy=1,直线 y=x,y=3 所围成
的平面图形的面积为 ( )
32 A. 9
B.2- ln3
C.4+ln3 D.4-ln3
答案: D
解析:
= 4-ln3,故选 D. 3. [2019 ·福建连城二中模拟 ]若 a= 2x2dx, b= 2x3dx, c= 2
2x2-
x4 4
0
2 0
= 8.
故选 B.
7.如图,阴影部分的面积是 ( )
A.32 B.16
32
8
C. 3
D.3
答案: C
解析: 由题意得,阴影部分的面积
1
-13x3- x2+ 3x
-3
32 = 3.
1
S=
(3 - x2-2x)dx =
-3
8.[2019 ·河南商丘一中模拟 ]若 f(x) =x2+2 1 f(x) dx,则 1 f(x) dx
答案: C
解析: 根据定积分的几何意义, 2 4-x2dx 表示以原点为圆心,
0
以 2 为半径的四分之一圆的面积,所以 2 4-x2dx= π.所以 a2 013+a2
0
015=π.因为数列 {an} 为等差数列,所以 a2 013 +a2 015= 2a2 014= a2 012+ a2 016=π,所以 a2 014(a2 012+ 2a2 014+ a2 016)= π2×2π= π2.故选 C.
8 ∴ 1-cos2<3<4,故 c<a<b.故选 D.
4. [2019 ·湖北鄂南高中月考 ]已知数列 {an} 为等差数列,且 a2 013
(超级精品)2011届高考数学一轮复习精品题集分类汇编之函数(39页)
第2章 函数概念与基本初等函数Ⅰ §2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,4-∞C . 4[,)3+∞D .4(,]3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( ) (1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则)f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆=+∈,、. 若13k ∆=,则函数()fx k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.第2章 函数概念与基本初等函数Ⅰ§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射.考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是22,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.
其中,真命题的编号是________(写出所有真命题的编号).
解析:①错,必须是两个相邻的侧面;②正确;③错,反例,可以是斜四棱柱;④正确,对角线两两相等,则此两对角线所在的平行四边形为矩形.
答案:②④
解:
12.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.
解:如图①、②所示的实际图形和直观图.
由②可知,A′B′=AB=a,O′C′=OC=a,在图②中作C′D′⊥A′B′于D′,则C′D′=O′C′=a.
∴S△A′B′C′=A′B′·C′D′=×a×a=a2.
4.(2009年高考福建卷)如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是()
解析:选C.法一:∵体积为,而高为1,故底面积为,选C.
法二:选项A得到的几何体为正方体,其体积为1,故排除A;而选项B、D所得几何体的体积都与π有关,排除B、D;易知选项C符合.
D.平行的直线在中心投影中不平行
解析:选B.中心投影的投影线是从一点出发的,不一定互相垂直.
3.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()
A.a2B.2a2
C.a2D.a2
解析:选B.根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=S,本题中直观图的面积为a2,所以原平面四边形的面积等于=2a2.故选B.
A.cmB.7cm
C.5cmD.10cm
解析:选C.两个完全相同的长方体重叠在一起பைடு நூலகம்三种情况,分别计算三种情况的体对角线为、、,所以最长对角线的长为5.
3.下列结论正确的是()
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:选D.A错误.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.
B错误.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.
C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.
解析:由三视图知,由4块木块组成.
答案:4
8. (2010年温州模拟)把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,其正视图与俯视图如图所示,则侧视图的面积为.
解析:根据这两个视图可以推知折起后二面角C-BD-A为直角二面角,其侧视图是一个两直角边长为的直角三角形,其面积为.
答案:
A.<α<B.<α<
C.<α<πD.π<α<π
解析:选D.设圆锥母线长为R,底面圆的半径为r,
则r=Rsin.又底面周长l=2πr=Rα,
即2πRsin=Rα,∴α=2πsin.
∵<θ<,∴<sin<,
∴π<α<π,故选D.
7.如图所示为长方体木块堆成的几何体的三视图,此几何体共由__________块木块堆成.
所以,圆台的母线长为9 cm.
练习
1.三视图如图的几何体是()
A.三棱锥B.四棱锥
C.四棱台D.三棱台
解析:选B.由三视图知,该几何体是四棱锥,且其中一条棱与底面垂直.
2.下列几种关于投影的说法不正确的是()
A.平行投影的投影线是互相平行的
B.中心投影的投影线是互相垂直的
C.线段上的点在中心投影下仍然在线段上
5. (2009年高考全国卷Ⅱ)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()
A.南B.北
C.西D.下
解析:选B.如图所示.
6.圆锥轴截面的顶角θ满足<θ<,则侧面展开图中中心角α满足()
6.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.
解:抓住轴截面,利用相似比,由底面积之比为1∶16,设半径分别为r、4r.
设圆台的母线长为l,截得圆台的上、下底面半径分别为r、4r.
根据相似三角形的性质得=,解得l=9.
解:如图,过正方体的体对角线作圆锥的轴截面,设正方体的棱长为x,
则OC=x,∴=,,
解得x=120(3-2),
∴正方体的棱长为120(3-2)cm.
11.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=2AB=4.根据已经给出的此四棱锥的正视图,画出其俯视图和侧视图.
D正确.
4.底面半径为2的圆锥被过高的中点且平行于底面的平面所截,则截面圆的面积为__________.
解析:由题意知截面圆的半径为1,所以截面圆的面积为π.
答案:π
5.下面关于四棱柱的四个命题:
①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;
②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;
9.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm,则圆锥的母线长为________cm.
解析:作出圆锥的轴截面如图,利用平行线截线段成比例,则SA′∶SA=O′A′∶OA,即(y-10)∶y=x∶4x,
解得y=13.
即圆锥的母线长为13cm.
答案:13
10.一个正方体内接于高为40 cm,底面半径为30 cm的圆锥中,求正方体的棱长.
巩固
1.(原创题) 已知一个几何体的三视图如图所示,则此几何体的组成为()
A.上面为棱台,下面为棱柱
B.上面为圆台,下面为棱柱
C.上面为圆台,下面为圆柱
D.上面为棱台,下面为圆柱
解析:选C.结合图形分析知上面为圆台,下面为圆柱.
2.两个完全相同的长方体的长、宽、高分别为5 cm、4 cm、3 cm,把它们重叠在一起组成一个新的长方体,在这些长方体中,最长对角线的长度是()