数学史知识点
大学数学史考试知识点

大学数学史考试知识点数学史是研究数学科学发生发展及其规律的科学,它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。
以下是大学数学史考试中常见的一些知识点:一、古代数学1、古埃及数学古埃及人在数学方面有着重要的贡献。
他们发明了象形数字,并能够进行简单的四则运算。
在几何方面,他们能够计算三角形、矩形和梯形的面积,还知道圆的面积近似计算公式。
古埃及人在建筑和测量中应用了这些数学知识。
2、古巴比伦数学古巴比伦数学使用六十进制,他们的数学成果主要记录在泥板上。
他们能够解一元二次方程,并且有了较完整的乘法表和平方表。
在几何方面,他们能够计算各种图形的面积和体积。
3、古希腊数学古希腊数学是古代数学的巅峰之一。
毕达哥拉斯学派提出了毕达哥拉斯定理(勾股定理),并对整数的性质进行了研究。
欧几里得的《几何原本》是古希腊数学的重要著作,它建立了严密的几何体系,通过公理化方法,从少数几个公理出发,推导出众多的几何定理。
阿基米德在计算几何图形的面积和体积方面有杰出贡献,他还通过穷竭法求出了一些曲线图形的面积和体积。
二、中世纪数学1、印度数学印度数学在中世纪取得了重要进展。
他们发明了十进制数字系统,并将其传播到了阿拉伯地区,最终传遍了全世界。
印度数学家还研究了不定方程和三角学。
2、阿拉伯数学阿拉伯数学家在吸收了古希腊、印度等数学成果的基础上,做出了自己的贡献。
花拉子米的《代数学》是阿拉伯数学的重要著作,书中首次给出了一元二次方程的一般解法。
三、近代数学1、解析几何的创立笛卡尔和费马分别独立地创立了解析几何。
解析几何的出现将代数方法引入几何研究,实现了数与形的结合,为微积分的创立奠定了基础。
2、微积分的创立牛顿和莱布尼茨几乎同时创立了微积分。
微积分的创立是数学史上的一次重大飞跃,它极大地推动了数学和科学的发展。
3、概率论的发展概率论在近代逐渐发展起来。
数学史知识点

数学史知识点数学是一门古老而重要的学科,有着丰富的历史知识点。
本文将介绍数学史中的一些重要知识点。
1.古代数学的起源古代数学起源于古埃及和美索不达米亚地区,约在公元前3000年左右。
这些古代文明的数学家主要研究算术和几何学,例如他们发展了一套记数系统和计算方法,创建了简单的几何图形。
2.古希腊数学古希腊是数学发展的重要阶段,著名的数学家包括毕达哥拉斯、欧几里得、阿基米德等。
欧几里得的《几何原本》被认为是古希腊几何学的巅峰之作,系统地阐述了几何学的基本原理和定理,至今仍然是数学教学的基础。
3.印度数学古印度的数学家在代数学和三角学方面做出了重要贡献。
他们发展出了一种将零及其运算纳入数学体系的符号系统,并提出了二次方程的解法。
印度数学家还独立发现了三角函数及其应用。
4.阿拉伯数学阿拉伯世界在中世纪时期继承了希腊和印度的数学传统,并通过阿拉伯数学家的努力将其传播到欧洲。
阿拉伯数学家发展了代数学和算术学,并引入了十进制计数法和小数表示法,这对现代数学的发展起到了重要作用。
5.近代数学近代数学的发展与科学革命和工业革命密切相关。
牛顿和莱布尼茨独立发现了微积分学,为物理学和工程学提供了重要的数学工具。
18世纪的欧拉是数学家中的巨人,他在各个领域都有杰出的贡献,包括复数理论、图论和解析数论等。
6.现代数学20世纪是数学发展的黄金时代,出现了一大批杰出的数学家。
庞加莱提出了拓扑学的概念,霍普夫证明了费马大定理,哥德尔证明了不完备定理,图灵创立了计算机科学等。
这些重要的发现和理论为现代科学和技术的发展提供了基础。
通过了解数学史中的这些重要知识点,我们能够更好地理解数学的发展历程和基本原理。
数学的进展不仅仅是数学家个人的努力,还与社会、文化和科学的进步密切相关。
数学史的研究可以激发我们对数学的探索兴趣,促进我们对数学的深入理解和应用。
期末 数学史知识提要

《数学简史》知识提要1 数学史的意义及研究对象:数学史是研究数学概念、数学方法和数学思想的产生、发展及其规律的科学。
主要对象包括:重要数学成果、重大数学事件和重要数学人物,及其与社会、政治、经济和一般文化的联系。
2 数学文化的特点数学史在整个人类文明史上有着特殊地位,这是由数学的文化特点决定的。
数学文化特点有以下几个方面:(1)数学以抽象的形式,追求高度精确、可靠的知识。
(2)数学追求最大限度的一般性模式特别是一般性算法的倾向。
(3)数学是创造性活动的结果,追求艺术和美的特征。
3历史上对数学的认识:亚里斯多德:量的科学;笛卡儿:顺序与度量的科学;恩格斯:空间形式与数量关系;美国学者:关于模式的科学。
第二章古代希腊数学主题:论证数学的形成与发展1论证数学的开端:论证数学的鼻祖:泰勒斯(前625-前547)和毕达哥拉斯(前580-前500)。
(1)泰勒斯:发现了许多几何命题(圆被直径平分……);开创了几何命题的逻辑论证;天文测量。
他的逸闻趣事具有很好的教育意义。
(2)毕达哥拉斯及其学派致力于哲学与数学的研究,提出了“万物皆数”是信念,推动了证明的逻辑信念的形成。
主要成果:发现毕达哥拉斯定理及其数组;几何定理的证明;正多边形(正五和正十边形)与正多面体作图;形数(把数看成形进行研究);完全数(一个整数互为另一个的不包括自身的因数之和);亲和数(两个整数互为另一个的因数(不包括自身)之和);不可公度量(实质是证明了2是无理数)的发现。
(注:什么是“可公度量”?对于任何两条给定的线段,总能找到某第三线段,以它为单位线段能将给定的两条线段划分为整数段。
这样的两条线段为“可公度量”,即有公共度量的度量单位。
这是古希腊毕达哥拉斯学派对世界任何量都能表示成两个整数比信念的反映。
)3亚历山大时期(全盛时期)主要代表人物:欧几里得、阿基米德和阿波罗里奥斯(1)欧几里得:主要代表作《原本》(又称为《几何原本》)。
他用公理化方法对当时的数学知识作了系统化、理论化的总结。
数学史知识点

数学史知识点1.数学是研究现实世界的空间形式与数量关系的科学。
2.古希腊三大著名的几何问题是:A 、 化圆为方,即作一个与给定的圆面积相等的正方形;B 、 倍立方体,即求作一个立方体,使其体积等于已知立方体的两倍;C 、 三等分角,即分任意角为三等分。
3.九章算术是中国古典数学最重要著作。
4.刘徽的数学成就最突出的是“割圆术”和体积理论。
5.祖冲之圆周率上下限为1415927.31415926.3<<π。
6.《数书九章》的作者是秦九韶7.变量数学的第一个里程碑是解析几何的发明。
8.欧拉是史上最多产的数学家。
9.高斯一生至少给出过二次互反律8个不同的证明。
高斯1801年发表了《算术研究》后,数论作为现代数学的一个重要分支得到了系统的发展。
10.《数书九章》明确的、系统的叙述了求解一次同余方程组的一般解法。
11.非欧几何的发明首先由罗巴切夫斯基发表。
罗巴切夫斯基最早最系统地发表非欧几何的研究成果。
12.1900年法国数学家希尔伯特提出23个数学问题。
13.1994年英国数学家wilson 证明了费马大定理。
14.Cantor (康托尔)系统发展了集合论。
15.宋元数学最突出的成就之一是高次方程的数值求解。
16.宋世杰的代表著作是“算学启蒙”和“四元玉鉴”。
黎曼1854年创立了更广泛的几何是黎曼几何。
17.统一几何理论是德国数学家克莱因。
18.我国数学家陈景润在哥德巴赫猜想中取得世界领先的成果。
19.我国元代数学著作《四元玉鉴》的作者是朱世杰20.就微分学与积分学的起源而言积分学早于微分学21.在现存的中国古代数学著作中,最早的一部是《周髀算经》22.简单多面体的顶点数V 、面数F 及棱数E 间有关系V+F-E=2这个公式叫 欧拉公式23.中国古典数学发展的顶峰时期是宋元时期24.最早使用“函数”(function)这一术语的数学家是莱布尼茨25.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是波尔查诺26.古埃及的数学知识常常记载在纸草书上27.大数学家欧拉出生于瑞士28.首先获得四次方程一般解法的数学家是费拉利29.《九章算术》的“少广”章主要讨论开方术30.最早采用位值制记数的国家或民族是美索不达米亚31.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、完备性、独立性。
数学 历史 知识点总结

数学历史知识点总结第一部分:数学的古代历史数学的历史可以追溯到远古时代,最早的数学知识产生于人类最初的文明社会。
在古代,数学主要是与宗教、天文、建筑和商业等相关联。
古埃及人和美索不达米亚人是最早有数学知识的民族之一。
在古埃及,他们用数学知识解决了水文学问题,进行土地测量,并且建立了一套数学体系。
在美索不达米亚,人们用数学知识解决了土地测量、建筑和商业问题。
古印度人也在数学领域取得了一定的成就,诸如《苏尔达莱数》就是印度数学的一个重要成就。
此外,古希腊人也在数学领域取得了一定的成就,例如毕达哥拉斯学派提出的毕达哥拉斯定理就是古希腊数学的重要成就。
第二部分:数学的中世纪历史在中世纪,数学得到了快速发展。
在古印度的数学知识通过阿拉伯人传入西方后,欧洲的数学得到了巨大的发展。
一些著名的数学家如欧几里德、阿基米德、笛卡尔等相继出现。
同时,阿拉伯数学家的工作也在数学史上留下了浓墨重彩的一笔。
第三部分:数学的近代历史在近代,数学得到了空前的发展。
17世纪,微积分学的发明推动了数学的一次巨革。
微积分学的发明使得人们能够用数学语言更好地描述自然界的规律,从而推动了科学的发展。
同时,数学的其他分支如代数学、几何学、概率论等也得到了快速的发展。
著名的数学家如牛顿、莱布尼茨、高斯等相继出现,在数学领域取得了卓越的成就。
第四部分:数学的现代历史在现代,数学得到了前所未有的发展。
20世纪是数学发展的黄金时期。
在这个时期,数学的多个领域取得了空前的发展。
在代数学领域,人们发明了抽象代数学,从而使得代数学的研究范围得到了巨大的扩展。
在几何学领域,人们发现了非欧几何学,从而使得几何学的研究范围得到了巨大的扩展。
在概率论领域,人们发明了随机过程,从而使得概率论的研究范围得到了巨大的扩展。
同时,数学的应用也得到了前所未有的发展。
数值分析、计算数学、运筹学等新的数学学科相继出现,为现代科学和技术的发展奠定了数学基础。
第五部分:数学的未来发展在未来,数学将继续发展。
教资数学史重点2024

引言概述:教资数学史是教育考试中的一个重要考点,了解数学史的发展对于理解数学思想、方法和理论具有重要意义。
本文将重点介绍教资数学史的相关内容,包括数学的起源、数学在古代的发展、数学在中世纪的发展、数学在近代的发展以及数学在现代的发展。
通过对这五个大点的详细阐述,希望能够帮助读者更好地掌握教资数学史的核心知识,并为教育考试做好准备。
正文内容:一、数学的起源1.数学的定义和作用2.数学在古代的起源3.古代数学的发展特点4.古希腊数学的贡献5.古代数学在中国和印度的发展二、数学在古代的发展1.古代数学的主要内容2.古代数学家的代表人物和贡献3.古代数学思想的特点4.古代数学在天文学和地理学中的应用5.古代数学的传承与影响三、数学在中世纪的发展1.中世纪数学的特点与背景2.中世纪数学家的代表人物和贡献3.中世纪数学的研究内容和方法4.中世纪数学中的重要定理和方程式5.中世纪数学对科学方法的影响四、数学在近代的发展1.近代数学的背景和特点2.近代数学的主要研究领域和方向3.近代数学的发展与科学技术的关系4.近代数学家的代表人物和贡献5.近代数学的重大突破和发展趋势五、数学在现代的发展1.现代数学的定义和特点2.现代数学的研究领域和学科体系3.现代数学的理论与应用4.现代数学的发展与社会进步的关系5.现代数学家的代表人物和贡献总结:通过对教资数学史的重点内容进行介绍和阐述,我们可以看到数学的发展历程中涌现了无数杰出的数学家和重要的数学成果。
从古代到现代,数学经历了从实用到抽象的转变,从个别问题到整体理论的发展,给人类社会的科学技术进步作出了重要贡献。
因此,我们应该重视教资数学史的学习和研究,加深对数学本质的理解,提高数学教育水平。
同时,我们也要关注数学史的现代应用,与其他学科进行交叉融合,不断创新和发展数学的理论与方法,为解决实际问题和促进社会进步做出更大的贡献。
数学简史知识点总结

数学简史知识点总结数学作为一门学科,其起源可以追溯到古代文明时期。
在古代,数学是一种最古老的科学,它是人们在处理物质和社会生活中遇到的问题时产生的。
从最早的计数和计量开始,发展到代数、几何、分析等各个方面。
1. 埃及数学最早的数学发源地可以追溯到古埃及。
埃及人通过观测月亮的周期,建立了一些简单的数学知识,比如计算土地面积和建筑物的面积。
在古埃及,数学知识主要用于地产测量、商业计算等方面。
2. 美索不达米亚数学美索不达米亚人也是古代数学的重要贡献者。
他们发明了一种类似于现代计算机的工具——巴比伦卡片,用来记录商业交易和计算税收。
美索不达米亚人也研究了三角学、代数和几何等数学知识。
3. 希腊数学希腊数学是古代数学史上的巅峰之作。
希腊数学家毕达哥拉斯提出了著名的毕达哥拉斯定理,奠定了几何学的基础。
欧几里得在《几何原本》中系统地整理了希腊数学的成果,将数学系统化为公理化体系。
希腊数学为后世数学的发展奠定了坚实基础。
4. 印度数学古印度数学家在几何、代数、三角学等领域都有重要的成就。
比如,古印度人发明了一种基于十进制的计数系统,提出了零的概念。
他们还研究了分数、代数方程、无穷级数等数学问题。
5. 中国数学中国古代数学主要包括算术、代数、几何和天文学。
中国古代数学家在算术运算、代数方程、解析几何等方面都有独特的贡献。
中国人还发明了中国剩余定理、勾股定理等数学知识。
二、近代数学的发展17世纪以后,欧洲的数学开始迅速发展,形成了现代数学的基础。
近代数学的发展主要包括代数、几何、分析、概率论等领域。
1. 代数学代数学是数学中的一个主要分支,它研究代数方程和代数结构。
代数学的主要发展包括代数方程的求解、群论、环论、域论等方面。
2. 几何学几何学是数学的古老分支,它研究空间和图形的性质和变换规律。
近代几何学的主要发展包括解析几何、非欧几何、微分几何等领域。
3. 分析学分析学是数学中的一个重要分支,它研究函数、极限、微分、积分等概念及其应用。
数学史知识点及答案

数学史知识点及答案正文:数学作为一门古老而重要的学科,在人类历史的发展中起着举足轻重的作用。
它不仅仅是一种工具,更是一种思维方式和解决问题的方法。
在数学的长时间发展过程中,不断涌现出一系列重要的数学理论和定理。
本文将介绍一些数学史的重要知识点和对应的答案。
1. 费马大定理费马大定理是数学史上的一座丰碑,由法国数学家费尔马在17世纪提出。
它阐述了当n大于2时,对于方程xⁿ + yⁿ = zⁿ没有整数解。
虽然费马在提出该定理后并未给出详细的证明,但这一问题引发了许多数学家的兴趣,并且一直成为数学界最具吸引力的问题之一。
2. 黄金分割黄金分割是一个神秘而美丽的数学概念,它常常出现在自然界和艺术中。
黄金分割比值约等于1.6180339887。
它可以通过求解 x^2 = x + 1 的正根得到。
黄金分割具有独特的美学吸引力,因此广泛应用于建筑设计、艺术创作和金融领域等。
3. 平方根的发现平方根的发现是古代数学中的一个重要成就。
最早的平方根发现可以追溯到巴比伦文化中的孟德尔逊法则。
而古希腊数学家毕达哥拉斯提出了勾股定理,揭示了直角三角形中平方根的关系。
此后,数学家们不断发展并完善了关于平方根的理论,最终形成了我们今天所熟知的平方根运算规则。
4. 导数和微积分导数和微积分是现代数学的重要分支,它们在17世纪由牛顿和莱布尼兹独立发展而成。
导数可以用于计算函数的变化率和曲线的斜率,微积分则是对连续变化的量进行研究的数学工具。
导数和微积分在物理学、工程学以及经济学等领域具有广泛的应用。
5. 贝尔特拉米数贝尔特拉米数是数学中的一个特殊数列,由意大利数学家贝尔特拉米引入。
该数列的前几个项为0、1、2、1、2、1、2……它的规律是每隔两个数重复一次1和2。
贝尔特拉米数被广泛研究,并应用于数论等领域。
6. 黎曼猜想黎曼猜想是数论中的一个重要问题,由德国数学家黎曼在19世纪提出。
该猜想关于素数的分布规律,即描述素数分布的函数具有与素数分布相关的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●中世纪的中国数学1.周髀算经在现存的中国古代数学著作中,《周髀算经》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。
(我国最早记载勾股定理,中国历史上最早完成勾股定理证明的数学家是三国时期的赵爽。
)我国古代著作《周髀算经》中的“髀”是指竖立的表或杆子。
2.九章算术第一章“方田”:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完整法则。
后者比欧洲早1400多年。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。
这是世界上最早的多位数和分数开方法则。
它奠定了中国在高次方程数值解法方面长期领先世界的基础。
第四章“少广”:已知面积、体积,反求其一边长和径长等;第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;(《九章算术》中的“阳马”是指一种特殊的棱锥)第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。
今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。
西方直到15世纪末以后才形成类似的全套方法。
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。
这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。
这是世界上最早的完整的线性方程组的解法。
在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。
这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。
这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。
外国则到7世纪印度的婆罗摩及多才认识负数。
第九章“勾股”:利用勾股定理求解的各种问题。
其中的绝大多数内容是与当时的社会生活密切相关的。
提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。
在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。
勾股章还有些内容,在西方却还是近代的事。
例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。
●印度与阿拉伯的数学1.首先使用符号“0”来表示零的国家或民族是印度。
2.印度古代数学著作《计算方法纲要》的作者是马哈维拉。
3.阿拉伯数学家花拉子米的《还原与对消计算概要》通常被称作《代数学》。
它第一次给出了二次方程的一般解法,并用几何方法对这一解法给出了证明。
4.“代数学”一词起源于阿拉伯人数学家花拉子米《还原与对消计算概要》的著作。
5.创造并首先使用“阿拉伯数码”的国家或民族是印度,而首先使用十进位值制记数的国家或民族则是中国。
●微积分1.就微分学与积分学的起源而言积分学早于微分学。
2.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是开普勒。
3.微积分创立于17世纪,由牛顿所作的《流数简论》标志着微积分的诞生。
牛顿的“流数术”中,“正流数术”是指微分,“反流数术”是指积分。
4.微分符号“d”、积分符号“∫”的首先使用者是莱布尼茨。
5.历史上第一篇系统的微积分文献《流数简论》的作者是牛顿,第一个公开发表微积分论文的数学家是莱布尼茨。
6.德沙格和帕斯卡等是微积分的开创者。
7.最早使用“函数”(function)这一术语的数学家是莱布尼茨。
8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是波尔查诺。
9.被称为“现代分析之父”的数学家是魏斯特拉斯,被称为“数学之王”的数学家是高斯。
高斯:是德国数学家、物理学家和天文学家。
数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。
一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。
高斯的学术地位,历来被人们推崇得很高。
他有“数学王子”、“数学家之王”的美称。
10.拉格朗日在《解析函数论》一书中,主张用拉格朗日定理来定义导数,以此作为整个微分、积分演算的出发点而将微积分归结为“代数运算”。
11.法国几何学家庞斯列对射影几何的发展作出了杰出的贡献,在他的研究中,有两个基本原理扮演了重要角色。
首先是连续性原理,另一个是对偶原理。
12.哥德巴赫猜想是德国数学家哥德巴赫于18世纪在给数学家欧拉的一封信中首次提出的。
13.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫欧拉公式。
欧拉:瑞士数学家和物理学家。
他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。
欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。
他是把微积分应用于物理学的先驱者之一。
14.除了瑞士籍数学家欧拉外,在18世纪推进微积分及其应用的欧陆数学家中,首先应该提到法国学派,其代表人物有克莱洛、达郎贝尔、拉格朗日、蒙日、拉普拉斯等。
15.费马对微积分诞生的贡献主要在于其发明的求极值的方法。
●非欧几何1.“非欧几何”理论的建立源于对欧几里得几何体系中第五公设的证明,最先建立“非欧几何”理论的数学家是罗巴切夫斯基。
2.罗巴契夫斯基所建立的“非欧几何”假定过直线外一点,至少可以做两条直线与已知直线平行,而且在该几何体系中,三角形内角和小于两直角。
3. 欧氏几何、罗巴契夫斯基几何都是三维空间中黎曼几何的特例,其中欧氏几何对应的情形是曲率恒等于零,罗巴契夫斯基几何对应的情形是曲率为负常数。
●一些常识问题1.提出“集合论悖论”的数学家是罗素。
2.“纯数学的对象是现实世界的空间形式与数量关系.”给出这个关于数学本质的论述的人是恩格斯。
3.中国最古的算书《算数书》出土于1984年之交在湖北江陵张家山247号墓。
4.2006年,在西班牙马德里举行第25届国际数学家大会上,华裔科学家陶哲轩因为他对偏微分方程、组合数学、谐波分析和堆垒数论方面的贡献,获得被誉为“数学界的诺贝尔奖”的菲尔兹奖。
5.被誉为中国人工智能之父,在几何定理的机器证实取得重大突破,并获得首届国家最高科学技术奖的数学家是吴文俊。
6.1900 年,希尔伯特在巴黎国际数学家大会上提出的闻名数学问题共有23个。
7.现代电子计算机诞生于20世纪,对现代电子计算机的设计作出最大贡献的两位数学家是冯.诺依曼和阿兰.图灵。
8.第一台能做加减运算的机械式计算机是数学家帕斯卡于1642年发明的,使现代电子计算机技术走上康庄大道的EDVAC方案(即“101页报告”)则是数学家冯.诺伊曼提出的。
9.《几何基础》的作者是希尔伯特,该书所提出的公理系统包括五组公理。
●埃及数学1.古埃及的数学知识常常记载在纸草书上。
2.古埃及数学的知识,主要来源于莱茵德纸草书和莫斯科纸草书。
3.数学史上三大数学危机是:无理数的发现、无穷小是“0”吗?、悖论的产生。
4. 最早采用位值制记数的国家或民族是美索不达米亚。
5. .在代数和几何这两大传统的数学领域,古代美索不达米亚的数学成就主要在苏美尔人还会分数、加减乘除四则运算和解一元二次方程,发明了10进位法和16进位法。
他们把圆分为360度,并知道π近似于3。
甚至会计算不规则多边形的面积及一些锥体的体积。
方外,他们能够卓有成效地处理相当一般的解一元二次方程。
●古希腊数学1.欧几里得欧几里得,古希腊数学家,被称为“几何之父”。
他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。
欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。
两千年来有关欧几里得几何原本第五公设的争议,导致了非欧几何的诞生。
(五条公理 1.等于同量的量彼此相等; 2.等量加等量,其和相等; 3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。
五条公设 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。
)2.阿基米德阿基米德,古希腊哲学家、数学家、物理学家。
阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。
阿基米德流传于世的数学著作有10余种,多为希腊文手稿。
阿基米德曾说过:给我一个支点,我可以翘起地球。
这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
3.以“万物皆数”为信条的古希腊数学学派是毕达哥拉斯学派。
4.古希腊的三大闻名几何尺规作图问题是化圆为方、倍立方体、三等分角。
5.古希腊开论证几何学先河的是爱奥尼亚学派(代表人物:泰勒斯)6.古希腊数学家丢番图的《算术》是一本问题集,特别以不定方程的求解而著称。
所谓“不定方程”是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
7. 《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为帕波斯。