人教九年级数学实数有关概念、运算及二次根式 讲解与联系

合集下载

九年级上册二次根式知识点

九年级上册二次根式知识点

九年级上册二次根式知识点作为初中数学的重要部分,二次根式是需要我们掌握的一个重要概念。

在九年级上册,我们将学习并深入理解二次根式的性质、运算以及应用。

下面,我将为大家总结九年级上册二次根式的知识点。

一、二次根式的定义二次根式是指具有形如√a(其中a为一个非负实数)的数。

其中,√称为根号,a称为被开方数,√a称为二次根式。

二、二次根式的性质1. 非负性:二次根式的结果不小于0,即√a≥0。

2. 排除负号:我们规定根号不能取负值,即√a≠-√a。

3. 分解因数:对于任何正实数a,有√a = √(n² × m),其中n²是a 的一个因数。

三、二次根式的化简当被开方数能够分解成两个因数的乘积时,我们可以通过分解因数的方法将二次根式化简。

例如√12 = √(4 × 3) = √4 × √3 = 2√3。

四、二次根式的运算1. 加减运算:二次根式的加减运算需要满足根号下的数相等,才能进行运算。

例如√5 + √5 = 2√5,2√3 - √3 = √3。

2. 乘法运算:二次根式的乘法运算可以将根号下的数相乘,并将结果放在根号下。

例如√2 × √3 = √6。

3. 除法运算:除法运算需要使用有理化的方法,即通过将除数和被除数分别乘上其共轭式的形式来进行运算。

例如,(√5 + √3)/ (√5 - √3) = (√5 + √3)×(√5 + √3)/ [(√5 - √3) × (√5 + √3)] = 8 + 2√15。

五、二次根式的应用1. 几何应用:在几何学中,二次根式经常用于计算图形的边长、面积、体积等。

2. 物理应用:在物理学中,二次根式可以用于计算电流、电压、速度、力等相关问题。

3. 经济应用:在经济学中,二次根式可以用于计算平均收益、成本、利润率等。

六、二次根式的拓展1. 无理数的定义:二次根式属于无理数,即不能表示为两个整数之比的实数。

【人教版】初中数学九年级知识点总结:二次根式

【人教版】初中数学九年级知识点总结:二次根式

【人教版】初中数学九年级知识点总结二次根式二次根式是初中数学的基础性内容,也是考试的常考点。

这一部分知识是在学完了八年级的反比例函数、勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

因此,对于这种基础性的知识希望同学们能够牢固的掌握。

一、目标与要求对于本章内容,学习后应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1)是非负数;(2);(3);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。

二、知识框架三、重点1.a≥0a≥0)是一个非负数,2=a(a≥0)(a≥0)•及其运用。

2.二次根式乘除法的规定及其运用。

a≥0,b≥0)a≥0,b≥0)及它们的运用。

a≥0,b>0a≥0,b>0)及利用它们进行运算。

5.最简二次根式的概念。

6.二次根式的加减运算的运用。

7.二次根式的乘除、乘方等运算规律;四、难点1.a ≥02=a (a ≥0(a ≥0)的理解及应用。

2.a ≥0)是一个非负数,用探究的方法导出2=a (a ≥0)。

3.二次根式的乘法、除法的条件限制。

4.会判断这个二次根式是否是最简二次根式。

5.利用最简二次根式的概念把一个二次根式化成最简二次根式。

五、知识点、概念总结 1.二次根式定义:一般形如√ā(a≥0)的代数式叫做二次根式。

当a≥0时,√ā表示a 的算术平方根;当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)2.二次根式概念:式子√ā(a≥0)叫二次根式。

√ā(a≥0)是一个非负数。

其中,a 叫做被开方数。

3.二次根式的性质(1))0()(2≥=a a a )0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab (4))0,0(≥≥=b a ba b a 4.二次根式√ā的几何意义(1)a≥0 ; √ā≥0 [ 双重非负性 ](2) c=√a 2+b 2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。

九年级数学二次根式的概念、二次根式的乘除法知识精讲

九年级数学二次根式的概念、二次根式的乘除法知识精讲

初三数学二次根式的概念、二次根式的乘除法【本讲主要内容】二次根式的概念、二次根式的乘除法 1. 二次根式的概念 2. 二次根式的性质 3. 二次根式的乘法 4. 二次根式的除法【知识掌握】【知识点精析】一. 二次根式的概念:1. 定义:式子a a ()≥0叫做二次根式.注意:(1)根式定义中的a ≥0是定义的一个重要组成部分,不可省略;因为负数没有平方根,所以当a <0时,a 没有意义.如-2不是二次根式,()-22是二次根式,当a ≤0时,-a 是二次根式.(2)被开方数a 可以是数,也可以是代数式. 2. 最简二次根式(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式. (2)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简. ②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上. “三化”即化去被开方数的分母.二. 二次根式的性质:1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的X 围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的X 围是非负数. (3)a 2和()a 2的运算结果都是非负的.三. 二次根式的乘法ab a b a b =⋅≥≥()00,积的算术平方根,等于积中各因式的算术平方根的积.注意:(1)a b ≥≥00,是公式成立的必要重要条件.如()()-⨯-≠-⋅-4949 (2)公式中的a b ,可以是数,也可以是代数式,但必须是非负的.四. 二次根式的除法1.a baba b =≥>(,)00 商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 2. 分母有理化(1)把分母中的根号化去,叫做分母有理化.(2)分母有理化的依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式. (3)有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.常用的互为有理化因式有如下几种类型: ①a a 与;②a b a b +-与; ③a b a b +-与; ④a b c d a b c d +-与. (4)分母有理化时分母要先化简.【解题方法指导】例1. x 为何值时下列式子有意义? (1)21x + (2)-+15x (3)x x+-13 分析:要使二次根式有意义,被开方数必须是非负数. 解:(1)根据二次根式定义,得21012x x +≥∴≥-(2)根据二次根式定义,得-+≥∴+<∴<-1505005x x x ()分母不能为 (3)根据二次根式定义,得x x+-≥130 ∴+≥->⎧⎨⎩x x 1030或x x +≤-<⎧⎨⎩1030∴≥-<⎧⎨⎩x x 13或x x ≤->⎧⎨⎩13(空集)∴-≤<13x例2. 计算: (1)()62;(2)()352;(3)()82-a 解:(1)()662=(2)()()35359545222=⨯=⨯= (3)()882-=-a a点评:此例体现了公式()a a 2=的应用.对于(3)题()82-a ,其运算是先开平方、再乘二次方,所以题目本身已隐含了80-≥a .例3. 计算: (1)44176⨯;(2)-⨯⨯-4259169() (3)23483415⨯;(4)162436a a ⨯;(1)解法一:原式=⨯⨯=⨯=⋅=⨯=44444442442442882222 解法二:原式=⨯⨯⨯=⨯⨯=⨯⨯=11411161142114288222(2)解:原式=⨯⨯=⨯⨯425916925313222() =⋅⋅=253131303222()点评:运算时,(1)被开方数的积不要计算成一个结果,应是化简成幂的积的形式,以便于开方、化简;(2)被开方数的负因子要计算成正因子,才能用公式.(3)23483415⨯=⨯⨯=⨯⨯⨯=⨯⨯=2334481512163351243565 (4)162436163246a a a a ⨯=⨯⋅=⨯⨯=⨯⨯=12646126262a a a .例4. 化简. (1)19681;(2)27424c a b ;(3)385a ;(4)12a b a b ->()解法一:(1)原式==19681149(2)原式==⨯=27493232324222c a bc ab ab c ()解法二:(1)原式==()1491492 (2)原式=⋅=()323323222ab c ab c(3)原式=⋅⋅=a a a a 42321646注意:化去分母时,被开方数的分子、分母只要同乘2即可,若同乘8就太繁了. (4)原式=⨯--=--43232()()()a b a b a b a b 点评:化去被开方数的分母时,不能忘掉分子中开得尽方的因数的化简.例5. 把x yx y --分母有理化.解法一:原式=---=---=-()()()x y x y x y x y x yx yx y 2解法二:原式=--=-()x y x yx y 2(x y -中隐含条件x y ->0,故x y x y -=-()2) 同样,55555101010101022====()(),例6. 化简:1235133552735773+++++++++()()()()分析:联想分式中逆用分式加、减法,得到分子为1而分母也很简单的式子. 解:原式=+++++++++++()()()()()()()()1335133557735773=+++++++=-+-+-+-=11313515717312315375371() 点评:如果要直接化为同分母或先有理化分母,都太繁琐,但是,注意到数学中的公式总是双向的,如果根据题目的结构特点,灵活地逆用公式,在解题时便能左右逢源,得心应手.建议只能从左到右地运用公式而不习惯逆用(即由右到左)或变用公式的同学,对这几个题目多加分析,以求从熟悉、模仿到主动在解题中运用逆向思维的方法.例7. (2001年某某省中考题)填空题: 化简a a b a a ab-+的结果是________.分析:因为分母是含字母的根式,可能使a ab -=0,所以不可将分子、分母同乘以分母的有理化因子.但是,如果注意到分子、分母可以分解为乘积的形式,也许可以解决问题. 解:由所给算式知a b >≥00, ∴原式=-+=+-+=-a a b a a b a a b a b a a b a b ()()()()()【考点突破】【考点指要】二次根式的概念及其运算在中考说明中是C 级知识点,它们常与整式、分式、综合在一起,以选择题、填空题、计算题等题型出现在中考题中,大约占有4—8分左右.解决这类问题需熟练掌握二次根式的概念和运算法则.【典型例题分析】 例1. 选择题: (1)(2006年某某省中考题)函数y x =-1中,自变量的取值X 围是() A. x ≥1 B. x >1 C. x >0 D. x ≠1 (2)(2003年某某市中考题)选择题:如果()x x -=-222,那么x 的取值X 围是()A. x ≤2B. x <0C. x ≥2D. x >2(3)选择题:若a a a a 2211-=-,则a 的取值X 围是() A. a a >≠01且 B. a ≤0 C. a a ≠≠01且D. a <0(4)(1996年某某省中考题)选择题:若ab ≠0,则等式--=-a b b ab 531成立的条件是()A. a b >>00,B. a b ><00,C. a b <>00,D. a b <<00,分析:正确运用二次根式性质的前提是被开方数的非负性(在分母上则不能为零). 解:(1)要使x -1有意义,x -≥10,∴≥x 1 答案:选A .(2)等式()x x -=-222成立的条件是x -≥20,即x ≥2 故选C .(3)由a a aa 2211-=-,得 ||()a a a a 111-=- 即-⋅-=-||a a a a 1111于是,-=||a a1∴<a 0.故选D .(4)等式--=-a b bab 531变形为--=-1133||b ab b ab , 这个等式成立的条件是 ->=-⎧⎨⎩ab b b 0||即ab b <<⎧⎨⎩0 ∴><a b 00且故选B .点评:正确运用二次根式性质的前提是掌握公式中被开方式中字母的取值X 围,而且这个X 围必须使每个二次根式都有意义,因本例的问题是找使公式能成立的条件,所以是逆向求字母的取值X 围,这种方法常归结为求不等式组的解的问题.★最简根式 例2. 选择题: (1)(2004年某某市中考题)下列二次根式中,最简二次根式是()A.12B. 8C. y 3D. a 21+ (2)(2002年某某市中考题)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4D. a 4(3)下列根式中,最简二次根式是()A. 23aB. aa3 C. a b b a D. a a b 423+(4)(2001年某某省中考题)下列二次根式:2xy ,8,ab2,35xy ,x y +,12,其中最简二次根式共有()A. 2个B. 3个C. 4个D. 5个分析:紧扣最简二次根式的条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.解:(1)因为12中含有分母,822232=⋅=⋅和y y y 的被开方数中含开得尽方的因数或因式,它们都不是最简二次根式,只有a 21+满足最简二次根式的条件,故选D . (2)选C . (3)选B .(4)只有2xy x y 和+是最简二次根式,故选A .点评:判断一个二次根式是不是最简二次根式,必须抓住由“两条”刻画的“最简”含义,先看被开方数的因数是不是整数,因式是不是整式,再看被开方数是不是含有能开得尽方的因数或因式,如果“两条”都满足的就是最简二次根式,否则就不是最简二次根式.★对错难辨例3. (2001年某某市中考题)阅读下面的文字后,回答问题.小明和小芳解答题目“先化简下式,再求值:a a a +-+122,其中a =9”时,得到了不同的答案.小明的解答是:原式=+-=+-=a a a a ()()1112;小芳的解答是:原式=+-=+-=-=⨯-=a a a a a ()()1121291172; (1)__________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________. 答案:(1)小明(2)a a 2=||点评:本例中,小明的错误是同学最容易出现的错误,如a a a a 22=-=-,(),42=±,等等.纠正办法是:①明确“a ”表示算术平方根;②明确算术平方根的非负性,即a a ≥≥00(),也就是说a 只能是正数或0,而不可能是负数;③在化简a 2时,应利用公式a a 2=||过渡,稍作停留,冷静下来,看清算术根的实质,再去掉绝对值符号(需分类讨论时再分类写出答案),即可确保万无一失.★隐含条件例4. (1)(2002年市顺义区中考题)把二次根式a a-1化简,正确的结果是() A. -aB. --aC. -aD. a(2)(2001年某某省中考题)化简二次根式a a a -+12的结果是() A. --a 1B. ---a 1C. a -1D. --a 1分析:紧紧抓住:对于a ,只有当a ≥0时,a 才表示a 的算术平方根. 解:(1)显然a ≠0,由->10a,得a <0 ∴-=-=⋅-=⋅-=--=--a a a a a a a aa a a a a a a 122||故选B .点评:①因为二次根式a 隐含条件“a ≥0”,所以本题隐含了一个条件->10a②a a a a ||()()=>-<⎧⎨⎩1010(2)显然a ≠0.由a a aa 2201010>-+≥-+≥,,得() ∴≤-∴=-+=⋅-+=⋅-+a aa a a a a a a a 111122原式()()()|| =---=---aa a a 11 故选B . 点评:在化简二次根式a 2的问题中,要把根式的性质a a 2=||与绝对值||a 的概念结合起来,形成一条“等式链”:a a a a a a 200==≥-<⎧⎨⎩||(),()在具体解题时,强调在这个“等式链”的中间一环——||a 处“暂停”,以便由||a 再考虑a 的符号,以保证最后结果为非负数. ★对错难辨例5. (1)(2002年某某省中考题)选择题:化简132+.甲、乙两位同学的解法如下:甲:13232323232+=-+-=-()()乙:132323232323232+=-+=+-+=-()()对于甲、乙两位同学的解法,正确的判断是()A. 甲、乙的解法都正确B. 甲正确、乙不正确C. 甲、乙的解法都不正确D. 甲不正确、乙正确(2)选择题:有理化分母:x yx y-+小聪和小明的解法如下:小聪的解法:原式=--+-()()()()x y x y x y x y=---=-()()x y x y x yx y小明的解法:原式=-+()()x y x y22=+-+=-()()x y x y x yx y对于小聪、小明的解法,正确的判断是()A. 小聪、小明的解法都正确B. 小聪正确、小明不正确C. 小聪、小明的解法都不正确D. 小聪不正确、小明正确分析:在作二次根式的除法时,通常把除法写成分数的形式,所得的商应是分母中不含根号的式子.如果分母中含有根号,就要把分母中的根号化去.至于怎么“化去”分母中的根号,既可以采用根式的除法运算,也可以在分子、分母上同乘以分母的有理化因式,只要能使分母变成有理式(但分母的值不能为零!) 解:(1)甲的解法是在分子、分母上同乘以分母()32+的有理化因式()32-,使分母变成了有理式1,所得的商是分母中不含根式的式子.所以,甲的解法正确.乙的解法是把分子1变成()32-后分解变形,变成()()3232+-,利用二次根式的除法运算(实际上是“约分”),也把分母变成了有理式1,所得的商也是分母中不含根式的式子,所以,乙的解法也正确. 故选A .(2)首先注意题目的隐含条件:由已知的算式可知,应该有x >0且y >0.但是,x y 、之间的大小关系,在已知算式中没有特别地表明,所以,x y 、之间的关系应该有:x y x y ≠=或.由此可见,小聪的解法不正确.错误的原因是:如果x y =,那么x y -=0,分子、分母就不能同乘以分母()x y +的有理化因式()x y -.小明的解法是正确的.因为他把分子x y -分解变形:由x y x y x y x y x y >>-=-=+-0022,,得()()()(),然后应用根式的除法运算使分母中的根号化去,符合分母有理化的标准,而且在这个过程中,保持分母不为零.所以,小明的解法正确. 故选D . 点评:本题表现的是分母有理化的两种基本方法以及应该注意的地方.在作二次根式的除法时,特别是除式的两个根式的和的情形,如本例两个小题那样,为了化简或计算上避免作除数是近似小数的除法运算,要使所得的商是分母中不含根式的式子,就要化去分母中的根号(这个过程就是分母有理化),基本方法一是分子、分母同乘以分母的有理化因式,使分母变为有理式;二是通过分子的分解变形约去分母中的根号.这是代数中的基本功,一定要熟练掌握.当然,由于所给式子结构形式的其他特点,也可以采用其他的办法进行分母有理化.★化简求值例6. (1)(2002年某某省某某市中考题)当x =-21时,求x x x x x x x +-++⋅-++13114322的值. 分析:先化简,再代入求值.解:x x x x x x x +-++⋅-++13114322 =+-++⋅+-++=+--+=+x x x x x x x x x x x x x 131111311111()()()()∴当x =-21时原式=-+==12111222(2)(2002年某某市中考题)填空题:已知x =+21,则代数式:x x x x x x x x -+--÷--++121221222的值等于______. 解:原式=-+--⋅++--x x x x x x x x 121212222 =-+-+-⋅++-=-+-=+-x x x x x x x x x x x x x 1211112111112()()()()()∴当x =+21时原式=+++-=+=+211211212212()(3)(2001年某某省某某市中考题)已知a =+123,求a a a a a a a2226221--+--+-的值. 分析:“目标”中有a a 221-+,化简时应由已知推知a -1的正负.解:由a =+=-<123231,得a -<10∴原式=+-+---()()()()a a a a a a 232112=----=-+--=+-a a a a a a a a a a31131113||()()a =-∴=-++-=23232331,原式点评:本题因化简()a -12需要将123+进行分母有理化,得到a =-<231,一方面解决了a -<10,从而()()a a -=--112,使原式顺利化简,另一方面又在最后求值计算a a +1时正好用上了,再注意到由已知即得123a=+,使计算合理、正确、迅速.这个题目设计巧妙,考查了有理式变形(因式分解、约分)和根式变形(化简()a -12、分母有理化),以及计算的灵活性、合理性,是一个多功能的好题.【综合测试】一. 选择题:1. (某某市)下列二次根式中,最简二次根式是() A. 22xB. b 21+C. 4aD.1x2. (某某省)在下列式子中,正确的是() A. -=-5533 B. -=-3606.. C. ()-=-13132D. 366=± 3. (市某某区)化简1231-的结果为()A. 231+B. 231-C.23111- D. 23111+ 4. (某某市)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4 D. a 45. (某某市)化简132-的结果是()A. 32-B. 32+C. --32D. -+326. (某某市)下列二次根式中,属于最简二次根式的是()A. x2B. 8C. x 2D. x 21+7. (某某回族自治区)已知a =+132,b =-32,那么a 与b 的关系为()A. a b =B. a b +=0C. ab =1D. ab =-18. (某某市)-a 3化简的结果为()A. -a aB. a a -C. --a aD. a a 9. 在根式2823512xy ab xy x y ,,,,,+中,最简二次根式的个数是() A. 2B. 3C. 4D. 510. (2001某某)能使等式xx xx -=-22成立的x 取值X 围是()A. x ≠2B. x ≥0C. x >2D. x ≥2二. 填空题:1. (某某省)若x <5,则()x -=52_______.2. (某某市)若14<<x ,则化简()()x x -+-4122的结果是________.3. (某某市)计算⋅---+)3223(1313()3223+=_________.4. (某某市)已知x =-152,则x x -1的值等于_______. 5. (某某省)已知,实数a b ,在数轴上对应点的位置如图所示,化简:b b a --=()2_______.a 0 b6. (某某市)已知x ≤1,化简124422-+--+=x x x x _______.三. 当x 是何实数时,下列各式分别为二次根式? (1)21x +;(2)-52x ; (3)1-||x ;(4)x x 244-+四. 化简:1. ()()()x x x ---<<810810222. ()()x y x yx y ---<13. a ab ab b ab a b 2240+⋅+⋅<<()4. ()()m n mnm mn n n m 222220--+>>5. |()|||()x x x x --+-<22112五. 求代数式的值:1. (某某市)先化简,再求值:()1112+÷-x x x,其中x =22. (市东城区)已知a b =-=+152152,,求b a ab ++2的值. 3. (某某省)先化简,再求值:()()()2121212a a a +-+-,其中a =-512六. (某某市)化简352+,甲、乙两同学的解法如下:甲:3523525252+=-+-()()()=-52;乙:352525252+=+-+()()=-52对于他们的解法,正确的判断是() A. 甲、乙的解法都正确B. 甲的解法正确,乙的解法不正确C. 乙的解法正确,甲的解法不正确D. 甲、乙的解法都不正确七. 把代数式()x y x y---1根号外的因式移到根号内,并化简.某同学这样解:原式=---=--=-()()x y x yx y y x 2问:他做得对吗?如果不对,就指出错误的原因,并写出正确的解法.八. 已知a b =51,是a 的小数部分,求a b21-的值.【综合测式答案】一. 1. B 2. A 3. D 4. C5. B6. D7. B8. C9. A10. C二. 1. 5-x 2. 33. 34-4. 45. a6. -1三.解:(1)要使21x +为二次根式,必须210x +≥,即x ≥-12∴当x ≥-12时,21x +为二次根式. (2)要使-52x 为二次根式,必须-≥502x ,即x 20≤,而x 2是非负的,得x =0.∴当x =0时,-52x 为二次根式.(3)要使1-||x 为二次根式,必须10-≥||x ,得||x ≤1,即-≤≤11x .∴当-≤≤11x 时,1-||x 为二次根式.(4)要使x x 244-+为二次根式,必须04x 4x 2≥+-,而x x x 22442-+=-(),不论x 取何实数,()x -22是非负的,即()x -≥202.∴x 取任意实数时,x x 244-+都为二次根式.说明:通过本例我们应进一步明确a a ()≥0的意义.不是对任意的实数a a ,都有意义,只有当a 有意义时,它才叫做二次根式.四. 1. 原式=---=---=--+=-||||()x x x x x x x 810810810218 2. 原式=-----=--()()()x y x y x y y x3. 原式=++⋅=+=+()()()|()|a ab ab b ab a b a b ab a b 22222442=-+=--22222ab a b a b ab ()4. 原式=+--=-+()()(()m n m n n m)mn m n mn5. 原式=--+-=-++-=|()()|||x x x x x x 2212220五. 1. 原式=+⋅+-=-x x x x x x 11111()() 当x =2时,原式=-=+121212. a =-=+15252,b =+=-15252原式=+=++-+-==()()()()()a b ab 2225252525225120 3. 原式=++--4414122a a a ())1a 2(22a 41a 41a 4a 422+=+=+-++= 当a =-512时,原式52)115(2=+-=六. A七. 解:他做得不对.错误的原因是他没有考虑到原式成立的隐含条件是-->10x y,即x y -<0.因为把根号外的代数式移到根号内时,实际上是在逆用“等式链”a a a a a a 200==≥-<⎧⎨⎩||()()也就是说,应先考虑移到根号内的代数式的正、负,注意只能把正因式平方后移到根号内.正确的解法:由所给代数式知-->10x y,故x y -<0.∴原式=---()y x y x1=---=--()y x y x y x 2说明:如果你不能看出某同学解法的问题,就可以把具体的数代入算算看,例如取x y ==37,(思考:为什么不取x y ==73,呢?)那么,一方面,由题目的原式=---=-=-()371374142;另一方面,由这位同学解得的结果得原式=-=734=2.由此可见,这位同学做错了.八. 解:由495164<<,得7518<< ∴a 的小数部分b =-517 ∴-=--=-+-a b 2151215175125175149 272751251-=+-=。

二次根式的概念与运算

二次根式的概念与运算

二次根式的概念与运算二次根式是数学中的一个重要概念,它与根式和平方根密切相关。

在本文中,我们将介绍二次根式的定义、运算法则以及一些常见的例题,帮助读者更好地理解和运用二次根式。

一、二次根式的定义二次根式是指形如√a的根式,其中a是一个非负实数。

在二次根式中,√称为根号,a称为被开方数。

二次根式有以下几个基本特点:1. 当被开方数a为非负实数时,二次根式有意义,结果为一个实数;2. 当被开方数a为负实数时,二次根式无意义,即不存在实数解。

二、二次根式的运算法则1. 二次根式的相加减法则:对于两个二次根式,若它们的被开方数相同,则它们可以直接相加或相减。

例如:√2 + √2 = 2√2;5√3 - 2√3 = 3√32. 二次根式的乘法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行乘法运算,并将结果相乘。

例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行除法运算,并将结果相除。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的化简在进行二次根式的运算过程中,我们常常需要对二次根式进行化简,使得结果更简洁。

在化简二次根式时,可以利用以下的方法:1. 因式分解法:将被开方数进行因式分解,然后利用乘法法则将二次根式化简。

例如:√(8) = √(2 × 2 × 2) = 2√22. 合并同类项法:对于具有相同根号下的数的二次根式,可以合并为同一个二次根式。

例如:5√3 + 3√3 = 8√3四、二次根式的应用举例下面我们来举一些常见的二次根式的应用例题,帮助读者更好地理解和运用二次根式的概念和运算法则。

例题一:计算下列各式的值,并化简结果:√12 + 2√3解:首先对被开方数进行因式分解:√12 = √(2 × 2 × 3) = 2√3将化简后的结果代入原式:2√3 + 2√3 = 4√3例题二:化简下列各式:5√6 - √24解:对被开方数进行因式分解:√24 = √(2 × 2 × 2 × 3) = 2√6将化简后的结果代入原式:5√6 - 2√6 = 3√6总结:本文介绍了二次根式的定义、运算法则,以及二次根式的化简方法。

九年级数学二次根式知识点

九年级数学二次根式知识点

九年级数学二次根式知识点二次根式是九年级数学中一个比较重要的知识点,也是进一步学习高中数学的基础。

在本文中,我们将对九年级数学中的二次根式进行详细讲解和探讨。

一、二次根式的概念九年级数学中,我们通常会遇到如√2、√3等形式的二次根式。

二次根式指的是具有根号的平方根形式的数值。

在二次根式中,根号下的数被称为被开方数,而根号则表示进行开方运算。

例如,√2即为2的平方根。

但是,√2并不能得到一个精确的有限小数,因此我们通常用无限循环小数√2≈1.414来表示。

这是因为2的平方根是一个无理数,不是可以精确表示的有理数。

二、二次根式的化简在处理二次根式时,我们经常会遇到需要将其进行化简的情况。

化简二次根式可以使其更加简洁,方便进行数学运算。

首先,我们要注意的是二次根式的化简与因式分解是有差异的。

因式分解是将一个多项式分解为多个因子的乘积,而化简二次根式是对根号下的数进行简化。

例如,当我们遇到√18时,可以将18进行因式分解并写成3×3×2的形式。

这样,我们可以得出√18=√(3×3×2)=3√2。

在最后的结果中,我们把含有完全平方数的因子移到根号外面,并用其平方根代替原来的因子。

同样地,我们还可以化简二次根式之间的运算。

例如,当我们需要计算√8 + √32时,可以将其化简为√(4×2)+√(16×2)。

再进一步化简,我们可以得到2√2+4√2=6√2。

这样,我们通过合并同类项,并进行了有理化简。

三、二次根式的运算在九年级数学中,我们经常需要对二次根式进行加减乘除等运算。

下面我们将对这些运算进行探讨。

1. 加法与减法当我们对二次根式进行加法或减法运算时,需要先化简,然后合并同类项。

例如,计算√3+√5。

我们可以化简这个算式为√3+√5,然后观察根号下的数是否相同。

由于3和5不是完全平方数,因此无法合并。

所以,最终的结果为√3+√5。

2. 乘法对于二次根式的乘法运算,我们需要注意的是,当根号外面的系数相同时,我们可以把根号下的数相乘。

人教版数学九年级上册21.1.2《二次根式的概念》说课稿

人教版数学九年级上册21.1.2《二次根式的概念》说课稿

人教版数学九年级上册21.1.2《二次根式的概念》说课稿一. 教材分析人教版数学九年级上册21.1.2《二次根式的概念》这一节,是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行讲解的。

二次根式是数学中的重要概念,对于学生来说是一个新的知识点,也是后续学习数学的基础。

本节课的主要内容是让学生理解二次根式的概念,掌握二次根式的性质和运算方法。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于实数、有理数、无理数等概念已经有了一定的了解。

但是,二次根式作为一个新的概念,对于学生来说还是有一定的抽象性。

因此,在教学过程中,我将会注重引导学生通过实际例子来理解和掌握二次根式的概念和性质。

三. 说教学目标1.让学生理解二次根式的概念,能够正确识别二次根式。

2.让学生掌握二次根式的性质,能够运用性质进行简单的运算。

3.培养学生的数学思维能力,提高学生解决问题的能力。

四. 说教学重难点1.二次根式的概念的理解和识别。

2.二次根式的性质的掌握和运用。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。

同时,利用多媒体教学手段,如PPT、网络资源等,以丰富教学内容,提高学生的学习兴趣。

六. 说教学过程1.导入:通过复习实数、有理数、无理数等概念,为学生引入二次根式的概念。

2.讲解:详细讲解二次根式的概念,通过实际例子让学生理解和掌握。

3.练习:让学生进行一些相关的练习题,巩固对二次根式的理解和掌握。

4.总结:对本节课的内容进行总结,强调二次根式的性质和运算方法。

七. 说板书设计板书设计要简洁明了,能够清晰地展示二次根式的概念和性质。

可以设计一些图示、列表等,帮助学生理解和记忆。

八. 说教学评价教学评价可以通过学生的课堂表现、作业完成情况、练习题的正确率等方面进行。

同时,还可以通过学生的反馈意见,了解学生对教学内容的掌握程度,以便进行教学反思和改进。

九. 说教学反思在教学结束后,我将会对自己的教学进行反思,看看是否达到了教学目标,学生是否掌握了二次根式的概念和性质。

数学天地二次根式与实数运算

数学天地二次根式与实数运算

数学天地二次根式与实数运算数学天地:二次根式与实数运算数学是一门精确而又广泛应用的学科,其中二次根式与实数运算是数学中的重要概念之一。

本文将介绍二次根式的定义与性质,以及实数运算的基本规则和应用。

一、二次根式的定义与性质1. 二次根式的定义二次根式是指形如√a的数,其中a为一个非负实数。

二次根式的特点是结果是一个实数,且满足以下性质:(1)非负数的二次根式,结果是非负实数;(2)零的二次根式,结果仍为零;(3)负数的二次根式,结果是虚数,无实数解。

2. 二次根式的化简化简二次根式是将根号里的数尽可能提取出来,以便更方便进行实数运算。

常见的化简规则包括:(1)同底数相乘或相除:√a * √b = √(a * b),√a / √b = √(a / b);(2)同底数相加或相减:√a + √b ≠ √(a + b),√a - √b ≠ √(a - b);(3)乘方:(√a)² = a。

二、实数运算的基本规则和应用1. 实数运算的基本四则运算实数运算包括加法、减法、乘法和除法。

其基本规则如下:(1)加法规则:a + b = b + a;(2)减法规则:a - b ≠ b - a;(3)乘法规则:a * b = b * a;(4)除法规则:a / b ≠ b / a。

2. 实数运算的应用实数运算在现实生活中有着广泛的应用,例如:(1)计算金融相关问题:利率计算、投资回报率等;(2)物理学中的力、速度、加速度等问题的计算;(3)几何学中的长度、面积、体积等问题的计算;(4)经济学中的成本、销售额、利润等问题的计算。

总结:本文介绍了数学中的二次根式与实数运算的基本概念与应用。

二次根式是一种特殊的根式,其结果为实数,但在处理负数时会得到虚数。

实数运算是数学运算的基本规则,其四则运算在现实世界中有着广泛的应用。

数学天地广阔而深奥,希望本文能够为读者提供一些有关二次根式与实数运算的基本了解,并能够在实际问题中运用数学的方法解决难题。

人教版九年级数学上册知识点二次根式知识讲解

人教版九年级数学上册知识点二次根式知识讲解

人教版九年级数学上册知识点二次根式知识讲解鉴于数学知识点的重要性 ,小编为您提供了这篇人教版九年级数学上册知识点二次根式知识讲解 ,希望对同学们的数学有所帮助。

I.二次根式的定义和概念:1、定义:一般地 ,形如ā(a0)的代数式叫做二次根式。

当a0时 ,a表示a的算数平方根,0=02、概念:式子ā(a0)叫二次根式。

ā(a0)是一个非负数。

II.二次根式ā的简单性质和几何意义1)a ā0 [ 双重非负性 ]2)(ā)^2=a (a0)[任何一个非负数都可以写成一个数的平方的形式]3) (a^2+b^2)表示平面间两点之间的距离 ,即勾股定理推论。

III.二次根式的性质和最简二次根式1)二次根式ā的化简a(a0)ā=|a|={ -a(a0)2)积的平方根与商的平方根ab=ab(a0 ,b0)a/b=a /b(a0 ,b0)3)最简二次根式条件:(1)被开方数的因数是整数或字母 ,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式。

如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a0)、x+y 等;含有可化为平方数或平方式的因数或因式的有4、9、a^2、(x+y)^2、x^2+2xy+y^2等IV.二次根式的乘法和除法1 运算法那么ab=ab(a0 ,b0)a/b=a /b(a0 ,b0)二数二次根之积 ,等于二数之积的二次根。

2 共轭因式如果两个含有根式的代数式的积不再含有根式 ,那么这两个代数式叫做共轭因式 ,也称互为有理化根式。

V.二次根式的加法和减法1 同类二次根式一般地 ,把几个二次根式化为最简二次根式后 ,如果它们的被开方数相同 ,就把这几个二次根式叫做同类二次根式。

2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3二次根式加减时 ,可以先将二次根式化为最简二次根式 ,再将被开方数相同的进行合并Ⅵ.二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分 ,不要盲目有理化VII.分母有理化分母有理化有两种方法I.分母是单项式如:a/b=ab/bb=ab/bII.分母是多项式要利用平方差公式如1/a+b=a-b/(a+b)(a-b)=a-b/a-bII.分母是多项式要利用平方差公式如1/a+b=a-b/(a+b)(a-b)=a-b/a-b这篇人教版九年级数学上册知识点二次根式知识讲解是精品小编精心为同学们准备的 ,祝大家学习愉快!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 数与代数
第一单元 数与式
第1课时 实数有关概念、运算及二次根式
一、实数、二次根式的有关概念
【要点回顾】
1. 为了表示具有 的量我们引进负数。

2. 和分数统称为有理数, 叫无理数,有理数和无理数统称为 。

3. 整数可分为 和负整数。

分数可分为 。

有理数也可分为:正有
理数、 和 。

0既不是 ,也不是 。

4. 规定了 、 和 的直线叫做数轴。

5. 只有 不同的两个数称为相反数。

绝对值最小的数是 ,互为相反数的两数的和为 ,在数轴上表示互为相反数的两个点位于原点的 ,且到 的距离 。

6. 在数轴上,表示数a 的点与 的距离叫做数a 的绝对值。

︱a ︱=⎪⎩
⎪⎨⎧_____________________________ 7. 等于a ,那么这个数叫做a 的平方根,记作 ,其中a 是 。

正数a 的正的平方根叫做a 的 ;一个正数的平方根有 个,它们是 ,0的平方根和算术平方根都是 ,负数 。

求 的运算叫做开平方。

(a>0)。

8. 如果一个数的 等于a ,那么这个数叫做a 的立方根,求 的运算叫做开立方。

9、二次根式的概念:形如a (a ≥0)的式子,叫做二次根式。

10、二次根式的性质:
(1)2)(a = (a 0) (2)2a =a =⎪⎩
⎪⎨⎧_____________________________
(3)ab = ² (a ≥0,b ≥0); (4)b a = (a ≥0,b ≥0). 11、最简二次根式要满足以下两个条件:(1)被开方数的因数是 数,因式是 式;(2)被开方数中不含能开得尽方的 数或 式。

【自我提升】
填空题。

1.如果+10﹪表示“增加10﹪”,那么“减少8﹪”可以记作 。

2. -3
1的倒数的相反数是 ,绝对值是6的数是 ,|3-2|= 。

3. 4的平方根是 ,16的算术平方根是 ,-27的立方根是 。

4.在实数3.14, -6,-722,2-1,3
π,9中无理数有 。

5、若2m =7,则m= ;若2)(m =7,则m= 。

6、化简:12= ,323= ,38
1-= 。

二、实数、二次根式的运算
【要点回顾】
1、有理数的加减乘除、乘方、开方的法则分别是什么?
①有理数的加法:同号两数相加,取与 相同的符号,并把 相加;绝对值不相等的异号两数相加,取绝对值 的加法的符号,并用 的绝对值减去 的绝对值,互为相反数的两个数相加得 ;一个数同0相加,仍得 。

②有理数的减法:减去一个数等于加上这个数的 。

③有理数的乘法:两数相乘,同号得 ,异号得 ,并把 相乘;任何数与0相乘都得 。

④有理数的除法:除以一个数等于乘以这个数的 ;注意: 不能做除法。

⑤有理数的乘方:求n 个 的因数的积的运算叫做乘方,即 个
n a a a a ⋅⋅⋅=a n
. 其中负数的 次方是负数,负数的 次方是正数;0a = (a ≠0);n a -= (a ≠0,n 是正整数)。

⑥有理数的开方:如果一个数的n 次方(n 是大于1的整数)等于a ,这个数叫做a 的 ;即若a x n =,则x 叫做a 的 。

求一个数的方根的运算叫做开方。

本书主要研究二次、三次方根。

一般地,正数的二次方根有两个,它们互为 ,负数 二次方根,即:正数a 的n 次方根为±a ,其中,a 是正数a 的 ;正数的三次方根是一个 ,负数的三次方根是一个 ,即:a 的三次方根为3a ;0的n 次方根都是 。

2、实数的运算顺序:(1)按照第三级运算(乘方、开方),第二级运算(乘除),第一级运算(加减)的运算顺序进行计算。

(2)在同一级运算中应该从左到右依次计算。

(3)有括号时,应先算括号里
面的,并按照小括号、中括号、大括号的顺序进行运算。

(4)如果符合运算定律和性质,可变更运算顺序。

3、近似数。

近似数的精确度:①0.1(十分位)、0.01(百分位)0.001(千分位)……
②个位、十位、百位、千位……
4、有效数字:从一个近似数的左边第一个不是 的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字。

5、科学记数法:若绝对值大于10的数可以记成a ³10n
的形式,其中a 的范围是 ,n 的取值是 ;绝对值小于1的数也可以记成a ³10n 的形式,其中a 和n 的条件分别是 , 。

6、实数的大小比较;①在数轴上表示的两个数,_______边的数比_______边的数大;
②______大于0;______小于0;_______大于一切负数;两个负数,绝对值大的反而______。

7、运算律:(1)加法交换律:a+b=b+a; (2)加法结合律:(a+b )+c= ;
(3)乘法交换律:a ²b= ; (4)乘法结合律:(a ²b )²c= ; (5)乘法分配律:(a+b )²c= .
8、二次根式的加减:把各个二次根式化成 后,再分别合并同类二交根式。

9、二次根式的乘除:把被开方数相 ,根指数 。

【自我提升】
一、填空题。

1. 将0,-4,π-,2,-3.14,1.5,722-
2. 726亿元,用科学计数法表示为
元;4470米,用科学记数法表示
为 米(保留两位有效数字)。

3. 如图3,点A 、B 在数轴上对应的实数为a 、b ,比较大小:a b ,
-a b,|a+b| 0.且A 、B 之间的距离是 (用含a 、b 的式子表示)。

4. ①若a ²b >0 ,则a >0、b >0;② 若a ²b <0,则a <0、b <0;③若a ²b =0 ,则a =0、b =0; ④若a ²b =0 , 则a =0或b =0。

上面四个命题中正确的命题有 。

5. 若︱a +2︱+(b -1)2
=0,则a +2b 的值为 。

6、计算:3)(23(+-2)= ;(2010-π)0-1= . B A
7、已知实数b a ,在数轴上的对应点如图所示,则=--22a b a )( ;
8.x @y 则(2@6)@8= 。

9、观察算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…….通过观察,用你所发现的规律确定20103的个位数字是 。

二、x 是怎样的实数时,下列各式在实数范围内有意义?
(1); (2);
(3); (4)
三、计算
1. 0)8(-+3⋅tan 30°13--
2.()01260cos 2)21(4π-+︒--+-.。

相关文档
最新文档