一元二次方程根的判别式及其应用

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,b那么x1+x2=-ac,x1x2=a4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系22.根的判别式是指Δ=b2-4ac,而不是指Δ=.b4ac3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根.类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时,(1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <且k ≠1时,方程有两个不相等23的实数根;(2)当-8k +12=0,且k -1≠0,即k =时,方程有两个相等的实数根;23(3)当-8k +12<0,且k -1≠0,即k >时,方程没有实数根.23说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形 B 、等边三角形 C 、直角三角形 D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。

一元二次方程根的判别式在函数中的应用

一元二次方程根的判别式在函数中的应用

第 1 页 共 2 页 一元二次方程根的判别式在函数中的应用一、复习:(一) 根的判别式的含义:24b ac ∆=-(二) 模型: 根的判别式定理及逆定理:(_+∆→←−→根的判别式定理根的判别式定理的逆定理) ()()()⎪⎩⎪⎨⎧≠=++⇔<∆≠=++⇔=∆≠=++⇔>∆没有实数根一元二次方程有两个相等的实数根一元二次方程有两个不相等的实数根一元二次方程000000000222a c bx ax a c bx ax a c bx ax 0⇒∆≥⇔方程有实数根2222222440402424b b ac b b ac ax bx c a x x b ac a a a a --⎛⎫⎛⎫←++=→+=→+=→-≥ ⎪ ⎪⎝⎭⎝⎭时方程才有实数解.二、授新课:根的判别式在函数中的应用 (从函数的角度)1. 用根的判别式可以判定直线与双曲线的交点情况.(从直线与双曲线的交点的个数的角度) 模型:⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆⇒=-+⇔⎪⎩⎪⎨⎧=+=直线与双曲线没有交点点直线与双曲线有一个交点直线与双曲线有两个交00002m bx kx x m y b kx y . 例1:(1)若一次函数1+=kx y 的图象与反比例函数k y x=的图象仅有一个交点时,求k 的值; (2)若一次函数1+=kx y 的图象与反比例函数k y x=的图象仅有两个交点时,求k 的值; (3)若一次函数1+=kx y 的图象与反比例函数k y x =的图象没有交点时,求k 的值; 2. 用根的判别式可以判定直线与抛物线的交点情况.(从直线与抛物线的交点的个数的角度)()⇒=-+-+⇔⎩⎨⎧++=+=022b c x k b ax c bx ax y b kx y ⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆直线与抛物线没有交点点直线与抛物线有一个交点直线与抛物线有两个交000 例2:(1)若直线1+=kx y 与抛物线122++=x x y 仅有一个公共点,求k 的值;(2)若直线1+=kx y 与抛物线122++=x x y 有两个公共点,求k 的值。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系(一)一、知识归纳:1.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是:△=b 2-4ac ,当△>0时;△=0;△<0时方程分别有两个不相等的实数根;有两个相等的实数根;没有实数根。

2.判别式“△”的应用:1)由“△”的符号判定方程根的情况;2)由“△”的符号,证明方程的根可能出现的情况;3)由方程的情况通过“△”的符号,确定方程中参数字母的取值范围。

例1. 关于x 的方程(m -1)x 2-2(m -3)x +m +2=0有实数根...,求m 的取值范围。

解:当m -1≠0时, 该方程为关于x 一元二次方程∵原方程有实数根 ∴0≥∆即Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥即711≤m ,当m-1=0时,该方程变为4x+3=0,它是一元一次方程,有实数根34x =-练习:1.关于x 的方程m 2x 2+(2m+1)x+1=0有两个不相等的实数.........根.,求m 。

(注意二次项系数不为零)2.已知a ,b ,c 为一个三角形的三边,求证方程b 2x 2+(b 2+c 2-a 2)x+c 2=0无实数根。

3.已知方程x 2+2x=k-1没有实数根,求证方程x 2+kx=1-2k 必定有两个不相等的实数根。

4.已知x 1,x 2是关于x 的方程x 2+m 2x+n=0的两个实数根,y 1,y 2是关于y 的方程y 2+my+7=0两个实数根,且x 1-y 1=2, x 2-y 2=2,求m ,n 的值。

3.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1、x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aacb b 242---能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aacb b 242---=a acb b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242---=2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为 x 1+x 2=a b -, x 1x 2=ac 如果把方程ax 2+bx +c =0(a ≠0)的二次项系数化为1,则方程变形为 x 2+ x +ac=0(a ≠0), 则以x 1,x 2为根的一元二次方程(二次项系数为1)是: x 2-( )x +x 1x 2=0(a ≠0)3.一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2它的根与系数的关系是:例1:已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值; 解:设方程的另一个根是x 1,那么5621-=x (为什么?)∴ x 1= 又x 1+2=5k-(为什么?)∴ k= 例2:利用根与系数的关系,求一元二次方程2x 2+3x -1=0的两个根的(1)平方和 (2)倒数和 解:设方程的两个根分别为x 1,x 2,那么x 1+x 2= , x 1x 2=(1)∵ (x 1+x 2)2= x 12+2 +x 22 ∴ x 12+x 22=(x 1+x 2)2-2 = (2)==+212111x x x x例3:求一个一元二次方程,使它的两个根是212313,- 解:所求的方程是x 2-(212313+-)x +( )212⋅=0 (为什么?) 即 x 2+ x- =0 或 6x 2+ x- =0。

一元二次方程根的判别式知识点

一元二次方程根的判别式知识点

一元二次方程根的判别式知识点及应用1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。

(2)一元二次方程ax2+bx+c=0(a≠0)(Δ=b24ac)3、一元二次方程根的判别式的多种应用:一、不解方程,判断一元二次方程根的情况。

二、例1、判断下列方程根的情况三、2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、?已知一元二次方程根的情况,求方程中字母系数所满足的条件。

例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、?证明方程根的性质。

例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。

四、?判断二次三项式能否在实数范围内因式分解。

例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。

五、?判定二次三项式为完全平方式。

例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。

例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。

六、?利用判别式构造一元二次方程。

例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、?限制一元二次方程的根与系数关系的应用。

例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。

一元二次方程根的判别式及根与系数关系的应用

一元二次方程根的判别式及根与系数关系的应用

2023年9月下半月㊀学习指导㊀㊀㊀㊀一元二次方程根的判别式及根与系数关系的应用◉云南省曲靖市马龙区第三中学㊀刘㊀陈㊀㊀摘要:结合五则典例,探讨一元二次方程根的判别式及根与系数的关系在判断三角形的形状㊁求代数式的值㊁构造倍根方程㊁求代数式的最值㊁求参数的值等方面的运用,帮助学生积累数学活动经验,发展学生核心素养.关键词:一元二次方程;判别式;数学活动经验;核心素养㊀㊀一元二次方程根的判别式及根与系数的关系,可用来判断三角形的形状,求代数式的值,构造倍根方程,求代数式的最值,求参数的值等,这些应用一方面体现了根的判别式及根与系数关系的价值,另一方面也使学生体会到了不同数学知识之间的联系,有利于加深学生对这一部分数学知识的理解与掌握.1判断三角形的形状当一元二次方程的系数或它的两个根是三角形的边长时,一元二次方程和三角形之间就有了联系,利用一元二次方程根的情况可以判断三角形的形状[1].例1㊀已知әA B C的三边长分别为a,b,c,方程(a+c)x2+2b x+(a-c)=0是关于x的一元二次方程.(1)当x=-1时,你能确定әA B C的形状吗?为什么?(2)当方程有两个相等的实根时,你能确定әA B C的形状吗为什么?解析:(1)由题意,把x=-1代入方程,得a+c-2b+a-c=0,整理得a=b.因为a,b,c分别为әA B C 三边的长,所以әA B C为等腰三角形.(2)由题意,Δ=(2b)2-4(a+c)(a-c)=0,整得得b2+c2=a2.因为a,b,c分别为әA B C三边的长,所以由勾股定理的逆定理,得әA B C为直角三角形.评注:当三角形的三边为一元二次方程的系数时,三角形的形状与一元二次方程根的情况也有了联系,本题设置的两个问题对此做了很好的诠释.2求代数式的值当m,n是一元二次方程a x2+b x+c=0的两个根时,根据韦达定理,得m+n=-ba,m n=c a.根据方程根的定义,得a m2+b m+c=0,a n2+b n+c=0;反之,aʂ0时,当m,n满足等式a m2+b m+c=0,a n2+b n+c=0时,则m,n是一元二次方程a x2+b x+c=0的两个根.例2㊀问题情境:小明在学习中遇到了这样一道题 已知字母a,b满足a2-2a-1=0,b2-2b-1=0,且aʂb,试求1a+1b的值.小明的解答为:因为字母a,b满足的两个方程形式一致,所以a,b可以看作方程x2-2x-1=0的两根,根据根与系数的关系,得a+b=2,a b=-1,所以1a+1b=a+b a b=2-1=-2.根据小明的解答过程,请解决下列问题:(1)已知不互为倒数的两个字母a,b分别满足2a2+11a+12=0,12b2+11b+2=0,求b a的值.(2)已知x1,x2是方程(m-1)x2+2m x+2=0的两个根,且满足x2x1+x1x2+x1+x2=2.若a,b,c是әA B C的三边长,且c=23,m2+a2m-8a=0.m2+b2m-8b=0.试求m的值以及әA B C的面积.解析:(1)将12b2+11b+2=0两边都除以b2,得2(1b)2+11ˑ1b+12=0.又因为2a2+11a+12=0,所以a与1b为方程2x2+11x+12=0的两根,根据根与系数,得a1b=6.故ba=16.(2)因为x1,x2是方程(m-1)x2+2m x+2=0的两个根,所以x1+x2=-2m m-1,x1x2=2m-1,16Copyright©博看网. All Rights Reserved.学习指导2023年9月下半月㊀㊀㊀m ʂ1.由x 2x 1+x 1x 2+x 1+x 2=2,整理得m 2-3m +2=0,解得m 1=2,m 2=1(舍去).因此可得a 2-4a +2=0,b 2-4b +2=0,则a ,b 为方程x 2-4x +2=0的两根,于是a +b =4,a b =2,所以a 2+b 2=(a +b )2-2a b =12=c 2,根据勾股定理的逆定理,得әA B C 为直角三角形,故S әA B C =12a b =1.所以m 的值为2,әA B C 的面积为1.评注:本题第(2)小题以m 作为联系的纽带,根据第一个方程中根与系数的关系求出m 的值,然后代入关于a ,b 的方程中消去m ,从而显现出a ,b 的本质,再与勾股定理的逆定理结合,使问题转化为几何问题[2].3求代数式的最值利用一元二次方程根与系数的关系可以求与两根有关的代数式的值,也可以求代数式的最值.当一元二次方程有实数根时,根的判别式大于或等于0,可以据此求得字母的取值范围,当所求代数式化为含有该字母的代数式时,就可以求得它的最值.例3㊀一元二次方程根与系数的关系反映了一元二次方程两根之和㊁两根之积与系数之间的数量关系,相应的命题被称为韦达定理,根据韦达定理解决下面问题:(1)已知m ,n 是一元二次方程2x 2-3x +1=0的两个根,试计算m +n 与m n 的值;(2)如果实数m ,n (m ʂn )分别满足方程m 2-m -1=0,n 2-n -1=0,求代数式1m +1n的值;(3)设方程2x 2+4x +m =0的两个根分别是x 1,x 2,你能求出x 21+x 22的最小值吗?解析:(1)由韦达定理,得m +n =32,m n =12.(2)因为实数m ,n 满足m 2-m -1=0,n 2-n -1=0且m ʂn ,所以m ,n 可看作方程x 2-x -1=0的两根.根据韦达定理,得m +n =1,m n =-1.故1m +1n =m +nm n =-1.(3)因为x 1,x 2是方程2x 2+4x +m =0的两个根,所以Δ=42-4ˑ2ˑm ȡ0,即m ɤ2.根据题意,可得x 1+x 2=-2,x 1x 2=m 2,则x 21+x 22=(x 1+x 2)2-2x 1x 2=4-m .由m ɤ2,得4-m ȡ2,所以x 21+x 22的最小值为2.评注:当a ȡb (b 为常数)时,a 有最小值,且最小值为b ;当a ɤb (b 为常数)时,a 有最大值,且最大值为b .4探讨代数式的值能否为定值对于与一元二次方程的根有关的代数式的值能否为定值这类问题,应先假设这个代数式的值能为定值,从而建立方程求得字母的值,然后检验这个值能否满足原方程有实根,使原方程有实根的值就是符合题意的值.例4㊀已知关于x 的方程k x 2+(1-k )x -1=0.(1)若该方程有两个不等实根,求k 的取值范围.(2)设x 1,x 2是方程k x 2+(1-k )x -1=0的两个根,记S =x 2x 1+x 1x 2+x 1+x 2,试问S 的值能为4吗?若能,求出此时k 的值,并说明理由.解:(1)根据一元二次方程的定义和判别式的意义,得k ʂ0且Δ=(1-k )2-4k ˑ(-1)>0,整理,得(1+k )2>0,解得k ʂ0且k ʂ-1.(2)根据题意,得x 1+x 2=-1-k k ,x 1x 2=-1k.假设S =x 21+x 22x 1x 2+x 1+x 2=(x 1+x 2)2-2x 1x 2x 1x 2+x 1+x 2=4,可得(x 1+x 2)2-6x 1x 2+x 1x 2(x 1+x 2)=0,即(1-k )2k2-6(-1k )+(-1k ) (-1-kk )=0,整理得k 2+3k +2=0,解得k 1=-1,k 2=-2.因为k ʂ0且k ʂ-1,所以当k =-2时,S 的值能为4.评注:一元二次方程根与系数的关系是在方程有实根的情况下进行讨论的,所以利用根与系数关系得到的字母的值,一定要看这个值是否在方程有实根时求得的字母取值范围之内.只有在这个取值范围之内的值才是符合题意的值.积累数学活动经验是数学教学的目标之一.以上四种类型有关根的判别式及根与系数关系的应用,有利于学生明白二者之间的依存关系,以及如何利用这两个工具解答相关问题,也有利于学生积累解题经验,促进学生核心素养的发展.参考文献:[1]黄细把.一元二次方程 联姻 三角形[J ].今日中学生,2015(Z 6):25G26.[2]朱亚邦.勾股定理(逆定理)应用的几种场景[J ].中学生数理化(八年级数学)(配合人教社教材),2017(3):16G17.Z 26Copyright ©博看网. All Rights Reserved.。

一元二次方程判别式

一元二次方程判别式

十二、判别式及其应用一、一元二次方程的根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 二、判别式的应用:(1)运用判别式,判定方程实根的个数(2)利用判别式,建立等式、不等式,求方程中参数值或取值范围. (3)通过判别式,证明与方程相关的代数问题.(4)借助判别式,运用一元二次方程必有解的代数模型解代数问题.问题一、利用判别式,判定方程根的个数.例1.关于x 的一元二次方程01)12(2=-+++k x k x 的根的情况是( ). A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断222222.0,||,,()0( )a b c a b c x x b a c x b +>>-<++-+=例2设且那么关于的一元二次方程a 的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断222222.0,||,,()0( )a b c a b c x a x b a c x b +>>->++-+=变式1设且那么关于的方程的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断222222.0,||,,()0( )a b c a b c x x b a c x b +>>-<++-+=变式2设且那么关于的方程a 的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断例3.已知关于x 的方程02)22=++-k x k x (. (1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长为a=1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长;练习1.如果一直角三角形的三边长分别为a 、b 、c ,∠B=90°,那么,关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况是( ). A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断练习2.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值( ). A.6 B.7 C.8 D.922.(31)220.(1):,;(2)6,,,,.x x k x k k k ABC a b c -+++==练习3已知关于的方程求证无论取何实数值方程总有实数根若等腰三角形的一边长另两边恰好是这个方程的两个根求此三角形的周长练习4.已知a>0,b>a+c.判断关于x 的方程02=++c bx ax 的根的情况,并给出必要的说明.问题二、求参数的值或取值范围例4.已知一元二次方程04)2422=+--k x k x (有两个不相等的实数根.则k 的最大整数值为_________.例5.关于x 的一元二次方程012)13(2=-+--m x m mx ,其根的判别式的值为1,求m 的值及该方程的根.例6.已知函数xy 2=和)0(1≠+=k kx y . (1) 若这两个函数的图像都经过点(1,a ),求a 和k 的值; (2) 当k 取何值时,这两个函数的图像总有公共点?例7.对于实数a,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.例8.关于x 的方程a x x =-12仅有两个不同的实根,则实数a 的取值范围是( ).A.a>0B.a ≥4C.2<a<4D.0<a<4练习5.如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).A.k<1B.k ≠0C.k<1且k ≠0D.k>1练习6.如果方程0)4(523=-++-k x k x x 的三个根可以作为一个等腰三角形的三边长,则实数k 的值为_________.练习7.设方程42=+ax x 只有3个不相等的实数根,求a 的值和相应的3个根.问题三、运用一元二次方程必有解的代数模型解代数问题 例9.已知x z y =-33,求证:2y ≥xz 4.例10.已知实数a ,b 满足6)3()3(22=-+-b a ,求ab的最大值.22.,,3330, , .x y x xy y x y x y ++--+===练习8若为实数且则.,,30,a b a b u+-==练习9已知都是正数且求代数式1.;2.; 1.; 2.;3.(2)5 1. 2. 3.1622A C D CB B例例变式变式例练习;练习;练习或;11314.;5.2;6.(1)2,1;(2)0;7.;8.;482 k m a k k k D<===≥≠-例例例且例例1231235.;6.4;7.4,2,22-4,2,22C a x x xa x x x==-=-+=--===+=-练习练习练习当时当时10.3.x=1,y=1;.u=2+例练习8练习9。

一元二次方程根的判别式的六种常见应用

一元二次方程根的判别式的六种常见应用

一元二次方程根的判别式的六种常见应用所以kx2+2x+1=0是一个关于x的一元二次方程。

利用根的判别式,Δ=(2)2-4(k)(1)=4-4k.当Δ<0时,方程没有实数根;当Δ=0时,方程有一个实数根;当Δ>0时,方程有两个不相等的实数根。

所以,答案为C.有两个不相等的实数根。

应用5:利用根的判别式解函数的最值问题6.已知函数f(x)=x2-2x+3,求f(x)的最小值.解:f(x)=x2-2x+3=(x-1)2+2>2.由于平方项非负,所以当且仅当x=1时,(x-1)2=0,f(x)取得最小值3.所以,f(x)的最小值为3.一元二次方程根的判别式有着广泛的应用。

下面介绍其中的六种常见应用。

应用1:利用根的判别式判断一元二次方程根的情况。

例如,已知方程x2-2x-m=0没有实数根,其中m是实数,试判断方程x2+2mx+m(m+1)=0是否有实数根。

解法如下:由于x2-2x-m=0没有实数根,因此判别式Δ1=(-2)2-4·(-m)=4+4m4,因此方程有两个不相等的实数根。

应用2:利用根的判别式求字母的值或取值范围。

例如,已知关于x的方程x2+2mx+m2-1=0,要求不解方程,判别方程根的情况,以及若方程有一个根为3,求m的值。

解法如下:对于方程x2+2mx+m2-1=0,判别式Δ=(2m)2-4·(m2-1)=4+4=8>0,因此方程有两个不相等的实数根。

又因为方程有一个根为3,代入方程可得2m2-7m+5=0,解得m=1或m=5/2.但由于方程的两个根不相等,因此m≠2,因此m=1.应用3:利用根的判别式求代数式的值。

例如,已知关于x的方程mx2-(m+2)x+2=0有两个相等的实数根,求m的值。

解法如下:对于方程mx2-(m+2)x+2=0,判别式Δ=(m+2)2-4m·2=(m-2)2≥0,因此不论m为何值,方程总有实数根。

又因为方程有两个相等的实数根,因此Δ=0,解得m=1.应用4:利用根的判别式解与函数综合问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[( y 2)]2 4( y 2 y 1) 3 y 2 0 y 0
x 代入原方程得: 2 2 x 1ห้องสมุดไป่ตู้ 0 x 1 . x 综上知: 1, y 0 .
2013年4月22日星期一
小结
应用一元二次根的判别式主意几点: 1、判断是否一元二次方程; 2、其次要化为标准形式; 3、最后正确求出判别式的值 与零作比较得出根的情况
一元二次方程根的判别式的应用
平乡县实验中学 庞西宏
2013年4月22日星期一
现行初中数学教材要求学生掌握 一元二次方程的根的判断式及其应 用.本讲主要讲解什么是一元二次 方程根的判别式,它有哪些应用。
2013年4月22日星期一
一、什么是一元二次方程的根的 判断式 ax 2 bx c 0 (a 0) ,用配方法将 一元二次方程
说明:在求判断式时,务必先把方程变形为一元二 次方程的一般形式.
2013年4月22日星期一
【例2】已知关于x的一元二次方程 3 x 2 2 x k 0 , 根据 下列条件,分别求出K的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相等 的实数根 (3) 方程有实数根; (4) 方程无实数根
(3) 当 b 4ac 0 时,方程没有实数根.
2013年4月22日星期一
二、一元二次方程的根的判断式 的应用
【例1】不解方程,判断下列方程的实数根的个数:
(1)2 x 2 3 x 1 0 (2)4 y 2 9 12 y (3)5( x 2 3) 6 x 0
2013年4月22日星期一
谢 谢!
2013年4月22日星期一
2013年4月22日星期一
【例3】已知实数 x , y 、满足 x 2 y 2 xy 2 x y 1 0 , 试求 x , y 的值. 解:把方程看作是关于 x 的方程,整理得:
x 2 ( y 2) x y 2 y 1 0
由于 x 是实数,所以此方程有实数根,因此:
其变形为:
b 2 b 2 4ac (x ) 2a 4a 2
(1) 当 b2 4ac 0 时,方程有两个不相等的实数根:
b b 2 4ac x 2a
b2 4ac 0 时,方程有两个相等的实数根: (2) 当
x1,2
2
b 2a
根的判别式
b2 4ac
相关文档
最新文档