数字信号处理作业之语音识别小论文

数字信号处理作业之语音识别小论文
数字信号处理作业之语音识别小论文

绪论

语言是人类交流信息的基本手段,在人们日益扩大的交流中占据着重要地位。在如今高度发达的信息社会中用数字化的方法进行语音的传送、储存识别、合成、增强等是整个数字化通信网中最重要、最基本的组成部分之一随着信息科学技术的飞速发展,语音信号处理的研究也日益显示出它的要性,并取得了重大进展。大体上说,语音信号处理技术可以分为以下四个面:即语音编码,语音合成、说话人识别和语音识别等。语音压缩编码是压语音信号便于传输通信和保密;语音合成系统是模仿和代替人口的发音功能语音识别系统则是模仿或代替人耳的听觉功能,说话人识别系统属于生物识技术的一种,是一项根据语音波形中反映说话人生理和行为特征的语音参数识别说话人身份的技术。与语音识别不同的是,说话人识别利用的是语音信中的说话人信息,而不考虑语音中的字词意思,它强调一说话人的个性;而音识别的目的是识别出语音信号中的言语内容,并不考虑说话人是谁,它强共性。随着现代数字通讯、多媒体系统、信息高速公路等技术的应用和发展己经越来越深入地影响并改变着我们每个人地生活和工作方式,这同时也对音信号处理的研究工作提出了更高的要求,它在各方面的进展也令人瞩目。

1.语音识别概述

语音识别是试图使机器能“听懂”人类语音的技术。语音识别的作用是将语音转换成等价的书面信息,也就是让计算机听懂人说话。作为一门交叉学科,语音识别又是以语音为研究对象,是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到计算机、信号处理、生理学、语言学、神经心理学、人工智能等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信

1.1国外研究历史及现状

语音识别的研究工作可以追溯到20世纪50年代。1952年AT&T贝尔实验室的Audry系统,是第一个可以识别十个英文数字的语音识别系统。20世纪60年代末、70年代初出现了语音识别方面的几种基本思想,其中的重要成果是提出了

信号线性预测编码(LPC)技术和动态时间规整(DTW)技术,有效地解决了语音信号的特征提取和不等长语音匹配问题;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。20世80年代语音识别研究进一步走向深入:其显著特征是HMM 模型和人工神经网络(ANN)在语音识别中的成功应用。90年代,在计算机技术、电信应用等领域飞速发展的带动下,迫切要求语音识别系统从实验室走向实用。最具代表性的是IBM的ViaV oice和Dragon公司的Dragon Dictate系统。这些系统具有说话人自适应能力,新用户不需要对全部词汇进行训练,便可在使用中不断提高识别率。

1.2 国内研究历史及现状

我国在语音识别研究上也投入了很大的精力,国内中科院的自动化所、声学所以及清华大学等科研机构和高校都在从事语音识别领域的研究和开发。国家863智能计算机专家组为语音识别技术研究专门立项,我国语音识别技术的研究水平已经基本上与国外同步。

2. 语音识别的流程

根据对输出观测值概率的不同描述,HMM(隐式马尔可夫链)可分为离散HMM(DHMM)和连续HMM(CHMM),两者相似,不同的是CHMM使用连续概率密度函数计算状态概率。而DHMM则使用的是离散的矢量量化(vector quantization,VQ)计算状态概率。在基于DHMM的非特定人语音识别过程中语音信号先被分成若干音框(帧),每个音框用一个特征向量参数表示,然后将语音特征参数向量的时间序列矢量化,此时每一个音框的语音信号变成VQ码本,用码本训练HMM,最后测试识别率。

3. 语音信号分析方法分类时域特征

直接从时域信号计算得到,反应了语音信号时域波形的特征。如短时平均能量、短时平均过零率、共振峰、基音周期等。

频域及倒谱域特征由时域信号进行频谱变换得到,反映语音信号的频域特性包括傅里叶频谱、倒谱以及利用了语音信号的时序信息的时频谱。听觉特征指不

直接对声道模型进行研究,而是从人类听觉系统对语音的感知特性来刻画语音信号的特征。

4. 短时分析技术

语音信号是非平稳时变信号语音信号的特性是随时间而变化的幸运的是具有短时平稳性短时间范围内其特性基本保持不变(缓慢变换),即短时相对平稳——准平稳过程短时分析技术即在对语音信号进行分析时,将语音信号分为一段一段,利用平稳信号的分析方法对每一分段进行处理每一分段成为一“帧”:一般10~30ms为一帧短时分析的不足对语音识别,应采用HMM来分析,以处理语音信号的瞬变和非平稳特性

5. 基于Mel频率的倒谱MFCC

生理支持

根据人类听觉系统的特性,人耳分辨声音频率的过程犹如一种取对数的功能,基于此,出现了Mel频率的倒谱系数(MFCC)MFCC: Mel-Frequency Cepstrum Coefficients.

语音识别MFCC参数提取:

在语音识别(Speech Recognition)和语者辨识(Speaker Recognition)方面,最常用到的语音特征就是[梅尔倒频谱系数](Mel-scale Frequency Cepstral Coefficients,简称MFCC),此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音识别。下面简单的介绍一下求解MFCC的过程。

5.1 音框化(Frame blocking)

先将N个取样点集合成一个观测单位,称为音框(Frame),通常N的值256或512,涵盖的时间约为20~30ms 左右。为了避免相邻两音框的变化过大,所以我们会让两相邻因框之间有一段重迭区域,此重迭区域包含了M个取样点,通常M的值约是N 的一半或1/3。通常语音识别所用的音频的取样频率为8 KHz或16 KHz,8KHz 来说,若音框长度为256 个取样点,则对应的时间长度是256/8000*1000 = 32 ms。

5.2 汉明窗(Hamming window )

将每一个音框乘上汉明窗,以增加音框左端和右端的连续性(请见下一个步骤的说明)。假设音框化的讯号为S(n),n = 0,…N -1。那么乘上汉明窗后为S'(n) = S(n)*W(n),此W(n) 形式如下

5.3 快速傅利叶转换(Fast Fourier Transform , or FFT )

由于讯号在时域(Time domain )上的变化通常很难看出讯号的特性,所以通常将它转换成频域(Frequency domain )上的能量分布来观察,不同的能量分布,就能代表不同语音的特性。所以在乘上汉明窗后,每个音框还必需再经过 FFT 以得到在频谱上的能量分布。

乘上汉明窗的主要目的,是要加强音框左端和右端的连续性,这是因为在进行 FFT 时,都是假设一个音框内的讯号是代表一个周期性讯号,如果这个周期性不存在,FFT 会为了要符合左右端不连续的变化,而产生一些不存在原讯号的能量分布,造成分析上的误差。当然,如果我们在取音框时,能够使音框中的讯号就已经包含基本周期的整数倍,这时候的音框左右端就会是连续的,那就可以不需要乘上汉明窗了。但是在实作上,由于基本周期的计算会需要额外的时间,而且也容易算错,因此我们都用汉明窗来达到类似的效果。

5.4 三角带通滤波器组(Triangular Bandpass Filters )

将能量频谱能量乘以一组 20个三角带通滤波器,求得每一个滤波器输出的对数能量(Log Energy )。必须注意的是:这20个三角带通滤波器在梅尔频率(Mel Frequency )上是平均分布的,而梅尔频率和一般频率 f 的关系式如下:

Mel (F )= 2595 * log )7001(10F

梅尔频率代表一般人耳对于频率的感受度,由此也可以看出人耳对于频率 f 的感受是呈对数变化的: 在低频部分,人耳感受是比较敏锐 。在高频部分,人耳的感受就会越来越粗糙 。

三角带通滤波器有两个主要目的:

对频谱进行平滑化,并消除谐波的作用,突显原先语音的共振峰。因此一段

语音的音调或音高,是不会呈现在 MFCC 参数内,所以,用 MFCC 为特征的语音识别系统,并不会受到输入语音的音调不同而有所影响。

将傅立叶转换结果经三角带通滤波器组进行滤波。

)(k B m 表示第m 个频带的三角带通滤波器

??

?

?

???

?

?

<≤≤--≤≤--<=++++----k f k k f f f k f k k f f f f k f k k B m m m m m m m m m m m m m 11111111,0,,,0)( M m ≤≤1 其中m f 是第m 个频带的中心,这M 个三角形带通滤波器在美尔(Mel-frequency)上是平均分配的。

下面方程式求每一个滤波器输出的对数能量

?

?????=∑≤≤-)()(log )(21k B k X m Y m f k f m m

5.5 离散余弦转换(Discrete cosine transform , or DCT )

将滤波器输出的能量作离散余弦(Discrete Cosine Transform , DCT)计算梅尔频率倒频谱系数(Mel-frequency Cepstral Coefficients , MFCC)

离散余弦计算公式:

L n M m n m Y n C M

m ,...,1,])21(cos[)(][1=-=∑

其中L 大致取12左右。

5.6 对数能量(Log energy )

一个音框的音量(即能量),也是语音的重要特征,而且非常容易计算。因此我们通常再加上一个音框的对数能量(定义为一个音框内讯号的平方和,再取以 10 为底的对数值,再乘以 10),使得每一个音框基本的语音特征就有 13

维,包含了 1 个对数能量和 12 个倒频谱参数。(若要加入其他语音特征以测试辨识率,也可以在此阶段加入,这些常用的其他语音特征,包含音高、过零率、共振峰等。)

5.7 差量倒频谱参数(Delta cepstrum )

虽然已经求出 13 个特征参数,然而在实际应用于语音识别时,我们通常会再加上差量倒频谱参数,以显示倒频谱参数对时间的变化。它的意义为倒频谱参数相对于时间的斜率,也就是代表倒频谱参数在时间上的动态变化,公式如下:

()()()()L m t C t C t C t C M M

m m M M M M m m ,...,2,1,2)(1212=?--+=

+?=?∑∑∑∑==-=-=τττττττττ

ττ

这里 M 的值一般是取 2 ,t 代表音框的数目,cm(t)指第t 框的倒谱参数。 因此,如果加上差量运算,就会产生 26 维的特征向量;如果再加上差差量运算,就会产生 39 维的特征向量。一般我们在 PC 上进行的语音识别,就是使用 39 维的特征向量。

6. 矢量量化,矢量量化的关键问题是如何获取VQ 码本,本文采用聚类算法-LBG 算法。

7. 用MATLAB 实时采集信号程序

首先将录音放到程序中的路径下,运行即可。运行结果如下:

语音库语者 1 与语者 1 匹配成功

语音库语者 2 与语者 2 匹配成功

语音库语者 3 与语者 2 匹配成功

语音库语者 4 与语者 4 匹配成功

语音库语者 5 与语者 5 匹配成功

语音库语者 6 与语者 6 匹配成功

语音库语者 7 与语者 7 匹配成功

语音库语者 8 与语者 8 匹配成功

语音库语者 9 与语者 9 匹配成功

8. 结论:

运行结果表明该说话人识别系统的识别能力是比较理想的,识别率为88%,语音库3识别不成功的原因主要有两个,一方面3的录音本身噪音相对大些,导致系统很难识别,另一方面,识别系统的算法还不是很理想,导致识别准确率不是100%。

程序如下:

function speaker_rec

%%%%

code = train('D:\tools\work\',9);

test('D:\tools\work\',9, code);

%*************************************************************** *********

function code = train(traindir, n)

%% 训练语音库里的声音样本,为每个人建立一个VQ码本

%% code=train(train,n)

%% 训练前,应将语音库中的语音文件用1:n的数字标记

% Input:

% traindir :样本语音库的路径

% n :样本语音库中语音文件的个数

%

% Output:

% code : trained VQ codebooks, code{i} for i-th speaker

k = 16; %VQ算法的最大迭代次数

for i = 1:n

file = sprintf('%s%d.wav', traindir, i) ;

[s, fs] = wavread(file);

s=s(1:30000,1);

index = find(s == 0); %避免除0

s(index) = 1e-17;

v = MFCC(s, fs); % Compute MFCC's

code{i} = vqlbg(v, k); % Train VQ codebook

end

%*************************************************************** **********

function test(testdir, n, code)

%用于对测试语音库中的文件进行测试

%建库的时候应该给语音文件按阿拉伯数字进行编码,以方便程序读取

% Input:

% testdir :测试语库的路径

% n :测试语音库中语音文件的个数

% code : codebooks of all trained speakers

for k = 1:n % 读取测试库中的文件

file = sprintf('%s%d.wav', testdir, k);

[s, fs] = wavread(file);

s=s(30000:60000,1); %读取文件中的样本点,改变数值即可获

取语音资料中的不同段

index = find(s == 0); %避免除0

s(index) = 1e-17;

v =MFCC(s, fs); % Compute MFCC's

distmin = inf;

k1 = 0;

for l = 1:length(code) % each trained codebook, compute distortion

d = disteu(v, code{l}); % 测试语音与码本进行逐一匹配(计算欧氏距离)

dist = sum(min(d,[],2)) / size(d,1);

if dist < distmin

distmin = dist;

k1 = l;

end

end

msg = sprintf('语音库语者%d 与语者%d 匹配成功', k, k1);

disp(msg);

end

%*************************************************************** **********

function d = disteu(x, y)

%%计算两个矩阵列之间的欧氏距离

% DISTEU Pairwise Euclidean distances between columns of two matrices %

% Input:

% x, y: Two matrices whose each column is an a vector data.

%

% Output:

% d: Element d(i,j) will be the Euclidean distance between two % column vectors X(:,i) and Y(:,j)

%

% Note:

% The Euclidean distance D between two vectors X and Y is:

% D = sum((x-y).^2).^0.5

[M, N] = size(x);

[M2, P] = size(y);

if (M ~= M2)

error('Matrix dimensions do not match.')

end

d = zeros(N, P);

if (N < P)

copies = zeros(1,P);

for n = 1:N

d(n,:) = sum((x(:, n+copies) - y) .^2, 1);

end

else

copies = zeros(1,N);

for p = 1:P

d(:,p) = sum((x - y(:, p+copies)) .^2, 1)';

end

end

d = d.^0.5;

%*************************************************************** **********

function r = vqlbg(d,k)

%%采用LBG算法获取VQ码本

%%该算法程序来源:程序员联合开发网

% VQLBG Vector quantization using the Linde-Buzo-Gray algorithme

%

% Inputs: d contains training data vectors (one per column)

% k:算法最大的迭代次数

%

% Output: r contains the result VQ codebook (k columns, one for each centroids)

e = .01;

r = mean(d, 2);

dpr = 10000;

for i = 1:log2(k)

r = [r*(1+e), r*(1-e)];

while (i == 1)

z = disteu(d, r);

[m,ind] = min(z, [], 2);

t = 0;

for j = 1:2^i

r(:, j) = mean(d(:, find(ind == j)), 2); %mean为MathWorks的库函数x = disteu(d(:, find(ind == j)), r(:, j));

for q = 1:length(x)

t = t + x(q);

end

end

if (((dpr - t)/t) < e)

break;

else

dpr = t;

end

end

end

%*************************************************************** ***********

%MFCC.m

%本文件用于计算MFCC倒谱系数(共可获得26维参数)

%输入: s为用声卡采集的信号

%输出:C为计算出的倒谱系数

function C=MFCC(s,FS)

%*************************************************************** *********

%将信号先音框化后加汉明窗(n为音框宽m为音框距)

m = 100;

n = 256;

l = length(s);

nbFrame = floor((l - n) / m) + 1;

for i = 1:n

for j = 1:nbFrame

M(i, j) = s(((j - 1) * m) + i);

end

end

h = hamming(n);

M2 = diag(h) * M;

for i = 1:nbFrame

frame(:,i) = fft(M2(:, i)); %得各个音框的频谱

end

%*************************************************************** ***********

%% 用在melf频带上均布的三角带通滤波器组对频谱能量进行滤波

%将HZ转换美尔坐标

melf=2595*log10(1+FS/2/700);

melf_width=melf/21;

i=[0:21];

tem_melf=melf_width*i;

f_tem=(10.^(tem_melf/2595)-1)*700;

% f_tem=round(f_tem); %划分频率段f_tem(2:21)即为20个中心频率

for i=2:21

fm(i)=f_tem(i); %fm为第m个频带的中心end

fm(22)=FS/2;

fm(1)=0;

bm=zeros(20,n/2+1);

j=1:n/2;

k(2:n/2+1)=FS/2/(n/2)*j;

for i=2:21

for j=1:n/2+1

if k(j)

bm1(j)=0;

else if fm(i-1)<=k(j) & k(j)<=fm(i)

bm1(j)=(k(j)-fm(i-1))/(fm(i)-fm(i-1));

else if fm(i)

bm1(j)=(fm(i+1)-k(j))/(fm(i+1)-fm(i));

else

bm1(j)=0;

end

end

end

end

bm(i-1,:)=bm1;

end

n2 = 1 + floor(n / 2);

z = bm * abs(frame(1:n2, :)).^2;

c = dct(log(z)); %c为倒谱系数

c=c(1:12,:); %取前12维倒谱系数

%*************************************************************** ***********

%%计算音框的对数能量

tem_frame=frame(1:n2,:);

for i=1:nbFrame

tem_frame(:,i)=tem_frame(:,i).^2;

sum_frame(i)=sum(tem_frame(:,i));

end

c_energy=10*log10(sum_frame); %c_energy为第十三维参数c13=zeros(12,nbFrame);

c13(:,1:nbFrame)=c(:,1:nbFrame);

c13(13,:)=c_energy; %c13为十三维参数

%*************************************************************** ***********

%%计算差量倒谱系数

%%计算一阶差分

M=2;

tao=1:M;

tem=tao.^2;

tem=sum(tem)*2;

c26_tem=zeros(13,nbFrame+4);

c26=zeros(26,nbFrame);

tem1=zeros(13,2);

tem2=zeros(13,nbFrame);

c26_tem(:,3:nbFrame+2)=c13(:,1:nbFrame);

for i=1:nbFrame

for j=1:2

tem1(:,j)=(c26_tem(:,i+2+j)-c26_tem(:,i+2-j))*j/tem;

end

tem2(:,i)=tem1(:,1)+tem1(:,2);

end

c26(14:26,:)=tem2(1:13,:); %c26为一阶差分后的26维参数c26(1:13,:)=c13(1:13,:);

C=c26;

%*************************************************************** ***********

数字信号处理论文-带通滤波器

本文分析了国内外数字滤波技术的应用现状与发展趋势,介绍了数字滤波器的基本结构,在分别讨论了IIR与FIR数字滤波器的设计方法的基础上,指出了传统的数字滤波器设计方法过程复杂、计算工作量大、滤波特性调整困难的不足,提出了一种利用MATLAB信号处理工具箱(Signal Processing Toolbox)快速有效的设计由软件组成的常规数字滤波器的设计方法。给出了使用MATLAB语言进行程序设计和利用信号处理工具箱的FDATool工具进行界面设计的详细步骤。利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。本文还介绍了如何利用MATLAB环境下的仿真软件Simulink对所设计的滤波器进行模拟仿真。 1.1数字滤波器的研究背景与意义 当今,数字信号处理[1] (DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。 数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。上述这些信号大部分是模拟信号,也有小部分是数字信号。模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。例如,对数字信号经行滤波以限制他的频带或滤除噪音和干扰,或将他们与其他信号进行分离;对信号进行频谱分析或功率谱分析以了解信号的频谱组成,进而对信号进行识别;对信号进行某种变换,使之更适合于传输,存储和应用;对信号进行编码以达到数据压缩的目的,等等。 数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。在所有的电子系统中,使用最多技术最复杂的要算数字滤波器了。数字滤波器的优劣直接决定产品的优劣。 1.2数字滤波器的应用现状与发展趋势 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

数字信号处理期末论文

题目:基于DSP的FFT程序设计的研究 作者届别 系别专业 指导老师职称 完成时间2013.06

内容摘要 快速傅里叶变(Fas Fourier Tranformation,FFT)是将一个大点数N的DFT分解为若干小点的D F T的组合。将用运算工作量明显降低,从而大大提高离散傅里叶变换(D F T) 的计算速度。因各个科学技术领域广泛的使用了FFT 技术它大大推动了信号处理技术的进步,现已成为数字信号处理强有力的工具,本论文将比较全面的叙述各种快速傅里叶变换算法原理、特点,并完成了基于MATLAB的实现。 关键词:频谱分析;数字信号处理;MATLAB;DSP281x

引言: 1965年,库利(J.W.Cooley)和图基(J.W.Tukey)在《计算数学》杂志上发表了“机器计算傅立叶级数的一种算法”的文章,这是一篇关于计算DFT的一种快速有效的计算方法的文章。它的思路建立在对DFT运算内在规律的认识之上。这篇文章的发表使DFT的计算量大大减少,并导致了许多计算方法的发现。这些算法统称为快速傅立叶变换(Fast Fourier Transform),简称FFT,1984年,法国的杜哈梅尔(P.Dohamel)和霍尔曼(H.Hollmann)提出的分裂基快速算法,使运算效率进一步提高。FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 随着科学的进步,FFT算法的重要意义已经远远超过傅里叶分析本身的应用。FFT算法之所以快速,其根本原因在于原始变化矩阵的多余行,此特性也适用于傅里叶变换外的其他一些正交变换,例如,快速沃尔什变换、数论变换等等。在FFT的影响下,人们对于广义的快速正交变换进行了深入研究,使各种快速变换在数字信号处理中占据了重要地位。因此说FFT对数字信号处理技术的发展起了重大推动作用。 信号处理中和频谱分析最为密切的理论基础是傅立叶变换(Fouriertransform,FT)。快速傅立叶变换(FFT)和数字滤波是数字信号处理的基本内容。信号时域采样理论实现了信号时域的离散化,而离散傅里叶变换理论实现了频域离散化,因而开辟了数字技术在频域处理信号的新途径,推进了信号的频谱分析技术向更广的领域发展。 1.信号的频谱分析 如果信号频域是离散的,则信号在时域就表现为周期性的时间函数;相反信号在时域上是离散的,则该信号在频域必然表现为周期的频率函数。不难设想,一个离散周期序列,它一定具有既是周期又是离散的频谱。有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。因而有限长序列的离散傅里叶变换的定义为:x(n)和X(k)是一个有限长序列的离散傅里叶变换对。

数字信号处理论文

DSP技术在生物信号检测中的应用 【摘要】论述了生物信号的基本特征和生物医学信号的检测方法,详细阐述了生 物医学信号检测中的干扰和噪声,其来源、抑制、与处理方法。说明了DSP技术及其在生物医学中的应用,重点介绍了DSP的数据处理部分和USB2.0的通讯接口。利用 DSP 的高性能数据处理能力 ,使得从微弱信号中提取生物信号并检测,保证较高的精度成为可能,并利用其USB2.0高速接口,实现了与 PC之间即插即用和高速,可靠的通信。 【关键词】生物医学信号检测数字信号处理通用串行总线【Abstract】Biological signal and the basic characteristics of biomedical signal detection method are discussed in this thesis, biomedical signal detection of interference and noise are thoroughly elaborated, including its source, inhibition, and processing method. We made a description of the DSP technology and its application in biomedicine area and focus on the data processing portion of DSP and a USB2.0 communication interface. Using the powerful data processing capability of DSP, it is possible for us to extract the biological signal from weak signal and make sure it’s high precision. By using the high-speed USB2.0 interface, PNP and high speed, reliable communication to PC is realized. 【Key words】Biomedical Signal Detection DSP USB 1 引言 生物医学信号的采集和处理是生物医学工程的一个重要领域,也是近年来迅速发展的数字信号处理技术的一个重要应用方面。由于人体的脉象、心跳等信号具有信号微弱,噪声干扰严重、随机性强等特点,因此对于脉象、心跳等生物医学信号的采集和处理具有十分重要的意义。该系统通过预处理电路对信号进行放大和滤波,放大有用信号、滤除噪声和工频干扰等,然后送入AD 进行采集,最后通过DSP 进行后续处理。实验证明该系统可以成功检测到脉象和心跳信号,并具有精度高,电路结构简单、系统功耗低等特点。 生物信号检测是检测技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,技术分支,它利用电子学、信息论和物理学的方法,和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是如何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 2 DSP技术的基本介绍 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信

数字图像处理论文

数字图像处理论文 一、数字图像处理的概念与发展概况 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。 二、图像处理的目的 一般地,图像处理需要完成一下一项或几项任务。 (1)提高图像的视觉质量以提供人眼主观满意度或较满意的效果。例如,图像的增强、恢复、几何变换、代数运算、滤波处理等,有可能使受到污染、干扰等因素产生的低清晰度、变形图像等的质量得到有效改善。 (2)提取图像中目标的某些特征,以便于计算机分析或机器人识别。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。 (3)为了存储和传输庞大的图像和视频信息,常常对这类数据进行有效的变换、编码和压缩。如统计编码、预测编码和正交变换等方法。 (4)信息的可视化。信息可视化结合了科学可视化、人机交互、数据挖掘、图像技术、图形学、认知科学等诸多学科的理论和方法,是研究人、计算机表示的信息以及它们相互影响的技术。 (5)信息安全的需要。主要反映在数字图像水印和图像信息隐藏方面。这是新世纪图像工程出现的新热点之一。 三、图像处理的任务与常用方法 图像处理的任务是获取客观世界的景象并转化为数字图像后,进行增强、复原、重建、变换、编码、压缩、分割等处理,从而将一幅图像转化为另一幅具有新意义的图像。图像处理的主要任务与常用方法分成以下几类。 (1)图像获取与数字化。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像信号,再由模拟/数字转换器(ADC)得到原始的数字图像信号。图像的获取也称图像的采集。原始图像的质量高会大大减轻后期处理的负担。 (2) 图像增强和图像复原。图像增强的作用是对视觉不满意的图像进行改

数字信号处理应用论文

摘要:介绍了DSP技术(器件)的主要特点.总结了DSP在家电、办公设备、控制和通信领域的主要应用及其发展趋势。 关键词:数字信号处理;音频/视频;控制;通信 DSP数字信号处理技术(Digital Signal Processing)指理论上的技术;DSP数字信号处理器(Digital Sig—hal Processor)指芯片应用技术。因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品。两者结合起来就成为解决实际问题和实现方案的手段DsPs一数字信号处理解决方案。DSP运用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理,具有精确、灵活、可靠性好、体积小、易于大规模集成等优点。DSP芯片自从1978年AMI公司推出到现在,其性能得到了极大的提高。 1 DSP的特点 1.1 修正的哈佛结构 DSP芯片采用修正的哈佛结构(Havardstructure),其特点是程序和数据具有独立的存储空间、程序总线和数据总线,非常适合实时的数字信号处理口]。同时,这种结构使指令存储在高速缓存器中(Cache),节约了从存储器中读取指令的时间,提高了运行速度。如美国德州仪器公司——TI(Texas Instruments)的DSP芯片结构是基本哈佛结构的改进类型。 1.2 专用的乘法器 一般的算术逻辑单元AI U(Arithmetic and Logic Unit)的乘法(或除法)运算由加法和移位实现,运算速度较慢。DSP设置了专用的硬件乘法器、多数能在半个指令周期内完成乘法运算,速度已达每秒数千万次乃至数十亿次定点运算或浮点运算,非常适用于高度密集、重复运算及大数据流量的信号处理。如MS320C3x系列DSP芯片中有一个硬件乘法器:TMS320C6000系列中则有两个硬件乘法器。 1.3 特殊的指令设置 DSP在指令系统中设置了“循环寻址”(Circular addressing)及“位倒序”(bit—reversed)等特殊指令,使寻址、排序及运算速度大大提高引。另外,DSP指令系统的流水线操作与哈佛结构相配合,把指令周期减小到最小值,增加了处理器的处理能力。尽管如此,DSP芯片的单机处理能力还是有限的,多个DSP芯片的并行处理已成为研究的热点。 2 DSP在家电、办公设备中的应用 2.1高清晰度电视 传统电视采用线性扫描的信号处理方式,画面像素最高仅4O~5O万个,会带来画质的损失,而DSP数字超微点阵(Digital SuperMicro Pixe1)技术,超越传统的线性扫描,进入由“点”组成的微显示数字技术层面,从模拟的“线”飞跃到数字的“点”。DSP是逐点优化的。它运用全新的逐点扫描技术,修复并优化每一个点的质量,消降图像边缘模糊现象,细节部分的锐利度成倍提高。 2.2 A/V(Audio/Video)设备 家庭影院主要由数字化A/V(Audio/Video)设备组成,DSP不仅带来环绕声,而且提供虚拟各种现场效果。VCD(VideoCompact Disc)、DVD(Digital Video Disc)、MD(Minidiskette)、DAB(Digital Audio Brod—casting)、DVB(Digital Video Box)等数字音视频产品中,DSP的价值主要体现在音频的Hi—Fi(HighFideli—ty)处理上。目前,对MPEG(Moving Picture Expe Group)音频Layer2、I ayer3等用c语言仿真研究,在此基础上用C549实现了MP3解码器的采样;用’C6201和’C6701分别实现MP3编码器和MPEG一2AAC编解码器。MPEG 一2AAC重建的音质超过MP3和AC一3将成为直播卫星、地面DAB和SW、Mw、AM 广

基于DTW算法的语音识别系统实现

基于DTW算法的语音识别系统实现 作者:吴晓平, 崔光照, 路康 作者单位:郑州轻工业学院信息与控制工程系,河南省,郑州市,450002 刊名: 电子工程师 英文刊名:ELECTRONIC ENGINEER 年,卷(期):2004,30(7) 被引用次数:13次 参考文献(5条) 1.祝晓阳;卢中宁;崔光照数字信号处理芯片TMS320VC5402的语音接口设计[期刊论文]-郑州轻工业学院学报(自然科学版) 2002(02) 2.陈志鑫;郭华伟基于TMS320C54xDSP的实时语音识别系统[期刊论文]-半导体技术 2001(04) 3.张勇C/C++语言硬件程序设计 2003 4.楼顺天基于MATLAB的系统分析与设计 2000 5.赵力语音信号处理 2003 引证文献(13条) 1.石太佳.王晓君基于LPMCC的语音识别系统实现[期刊论文]-电声技术 2010(1) 2.舒鹏飞.颜卫.徐魁基于ADSP的语音识别系统[期刊论文]-科协论坛(下半月) 2009(7) 3.吕涛.刘百芬.燕贤青一种基于定点DSP的语音识别算法实现[期刊论文]-华东交通大学学报 2008(6) 4.张钢.朱铮涛.何淑贤应用DTW的语音(声纹)鉴别技术研究[期刊论文]-中国测试技术 2007(2) 5.白志强.唐永哲基于动态时间规整的飞控系统故障诊断[期刊论文]-计算机仿真 2007(1) 6.王佑民.江城.吴丰博用FPGA实现基于内容的音频检索系统[期刊论文]-中国制造业信息化 2007(17) 7.何燕玲.马建国声控机器人的特定人孤立词汉语识别系统设计[期刊论文]-西南科技大学学报(自然科学版)2006(1) 8.杨占军.杨英杰.王强基于DSP的语音识别系统的设计与实现[期刊论文]-东北电力大学学报(自然科学版)2006(2) 9.王振浩.杜凌艳.李国庆.高树永动态时间规整算法诊断高压断路器故障[期刊论文]-高电压技术 2006(10) 10.高丙朋基于DSP的小词汇量语音识别系统[学位论文]硕士 2006 11.贺翠英说话人识别研究及DSP实现[学位论文]硕士 2006 12.白志强飞行控制系统故障检测研究与仿真软件开发[学位论文]硕士 2006 13.田强基于Sphinx汉语语音评价系统探讨[学位论文]硕士 2005 本文链接:https://www.360docs.net/doc/7c4435369.html,/Periodical_dzgcs200407007.aspx

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

语音识别字符分割算法_原创.

5.设计方法 5.1概述 5.2硬件系统的设计 语音信号预处理 (1)预加重 预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱,以便于频谱分析或声道参数分析。在计算机里用具有6dB/频程升高频特性的预加重数字滤波器来实现,一般是一阶的FIR数字滤波器: 为预加重系数,值接近于l,在0.9和1之间,典型值为0.94。 预加重的DSPBuilder实现: 为了便于实现,将上式中的一阶FIR预加重滤波器用差分方程表示为: 其中,为原始语音信号序列,N为语音长度,上面的公式显示其在时域 上的特性。又因为0.94接近于15/16,所以将上面的式子变为 除以16可以用右移4位来实现,这样就将除法运算化简为移位运算,降低了计算复杂度。在后面的模块设计中,也乘以或者除以一些这样的数,这些数为2的幂次,都可以用移位来实现。 预加重的硬件实现框图如下: 预加重实现框图 DSP Builder中的图形建模为:

预加重滤波器的DSPBuilder结构图 (2)分帧 语音信号是一种典型的非平稳信号,其特性随时间变化,其在很短的时间内是平稳的,大概为1小20ms,其频谱特性和物理特征可近似的看做不变,这样就可以采用平稳过程的分析处理方法来处理。 分帧的DSP Builder实现: 语音信号在10到20ms之间短时平稳(这样可以保证每帧内包含1一7个基音周期),也就是说选取的帧长必须介于10到20ms之间,此外,在MFCC特征提取时要进行FFT变换,FFT点数一般为2的幂次,所以本文中选择一帧长度为16ms,帧移为1/2帧长,这样一帧就包含了16KHz*16ms=256个点,既满足短时平稳,又满足FFT变换的要求。 由于采集的语音是静态的,语音长度已知,很容易计算出语音的帧数,但是在硬件上或实时系统中,语音长度是无法估计的,而且还要考虑存储空间的大小和处理速度,采用软件实现时的静态分帧方法是行不通的,可以利用硬件本身的特点进行实时的动态分帧。 为了使帧与帧之间平滑过渡,保持连续语音流的自相关性和过渡性,采用交叠分帧的算法。帧移取1/2帧长,即128个数据点当作一个数据块。FIFO1大小为一帧语音长度,分成两个数据块,预加重后的数据写入这个FIFO。为了实现帧移交叠,在FIFO1读数据时,同时再用FIFO2保存起来,当FIFO的一块数据读完以后,紧接着从FIF22读出这一块的副本。写入的一块数据,相当于被重复读出2次,所以FIFO1的读时钟频率设计为写时钟频率的2倍,而FIFOZ的读写时钟频率和FIFO1的读时钟频率相同。分帧以后的数据在图中按时间标号为1、2、2、3.··…,1、2为第一帧,2、3为第二帧,以此类推。

信号处理结课论文与作业

数字信号处理技术在电力系统中的发展现状和趋势 摘要:为了适应现代电力系统的要求,先进的数字信号处理技术被应 用到电力系统中,充分发挥了其快速强大的运算和处理能力以及并行 运行的能力,满足了电力系统监控的实时性和处理算法的复杂性等更 高的要求。本文首先简要介绍了电力系统和数字信号处理技术;然后 详细阐述了数字信号处理技术在电力系统中的应用,包括傅里叶变换、 小波变换、现代谱分析、相关分析、数学形态学,并介绍了数字信号 处理技术在电力系统应用中的现状和趋势。 关键词:数字信号处理,电力系统 Abstract: In order to meet the requirements of modern electric power system, the advanced digital signal processing technology is applied to the electric power system. this technology has gave full play to its fast computation and processing capacity and the ability to run in parallel, and it satisfies some higher requirements, such as the real time monitoring of electric power system and the complexity of handle algorithm. This article first briefly introduced the electric power system and digital signal processing technology; And then expounds the application of digital signal processing technology in power system, including Fourier transform, wavelet transform, the modern spectrum analysis, correlation analysis and mathematical morphology, and digital signal processing technology is introduced in the present situation and trend of power system applications. Keywords: digital signal processing, electric power system 1、引言 现代电力系统通过联网已经发展成供电区域辽阔和容量巨大的系统,作为国民经济发展的源动力,我国的电力系统正以空前的规模和速度扩大。随着互联电力系统的增长,尤其是长江三峡工程的崛起,超远距离输电的互联大电网的安全成为更加关心和突出的问题。电力系统是一个庞大的、瞬变的多输入输出的系统,为了保证其安全运行,需要实时地监视各节点的运行状况,及时发现电力系统的不正常状态及故障状态通知运行人员,或快速地进行控制和处理。这要求在电网各节点都要有数据采集单元,将测得的电力系统运行参数转化为数字量,进行分析和控制就地解决问题,或者通过远方通信送往调度中心进行处理。电力系统监视和控制的参数要求实时性较强,不仅包括频率、电压、

《数字信号处理与应用》课程论文

《数字信号处理与应用》课程论文题目:基于DSP和FPGA的通用数字信号 处理系统设计 系部 专业 学号 姓名 2014年6月7日

基于DSP和FPGA的通用数字信号处理系统设计 摘要 随着电子设备结构和功能的日益复杂,对其内部使用的数字信号处理系统在体积和功耗方面提出了更高的要求?结合以上背景,设计了一种体积小?功耗低的通用数字信号处理系统?该系统利用DSP配合FPGA为硬件架构,以TMS320VC5509ADSP为数据处理核心,通过FPGA对USB?ADC和DAC等外围设备进行控制,并可实现频谱分析?数字滤波器等数字信号处理算法?硬件调试结果表明,该系统满足设计要求,可应用于实际工程和课堂教学等多个领域? 关键词:数字信号处理低功耗DSP FPGA

目录 一引言 (1) 二系统主要功能和技术指标 (2) 三硬件设计 (3) 3.2.1DSP最小系统设计 (3) 3.2.2程序存储器设计 (4) 3.3.1USB通信接口设计 (4) 3.3.2信号发生电路设计 (5) 3.3.3信号采集电路设计 (6) 3.3.4语音电路设计 (7) 四软件设计 (8) 五系统测试 (10) 六结论 (11) 参考文献 (12)

一引言 随着计算机技术和电子技术的高速发展,数字信号处理理论和方法已成为众多研究领域的重要研究基础,被广泛应用在航空航天?自动化控制?通信等领域?然而,数字信号处理系统功能日益齐全,结构也越来越复杂,导致其体积和功耗不断增加,对电子设备的运行造成了严重的影响?因此,减小数字信号处理系统的体积和功耗,对降低整个电子系统的运营成本?提高系统可靠性具有重要意义? TI公司5000系列的数字信号处理器TMS320VC5509A具有较快的数字信号处理能力,同时具有低功耗?封装小?价格低等优点,被广泛的应用于数字信号处理领域中?本文充分利用了TMS320VC5509A的以上优势,同时结合FPGA的并行控制能力,实现了体积小?功耗低的通用数字信号处理系统?

数字信号处理课程论文

数字信号处理课程认识论文 对数字信号处理的认识? 对于数字信号处理,从课堂内容来看,是一门理论性强,概念抽象的学科。 我们先从一个具体的例子来具象认识一下数字信号处理的应用。数字图像处理是数字信号处理的一个重要应用。一些科幻电影里我们可以经常看到一些指纹识别解锁的片段。其中的指纹识别对比环节其实很大程度上都是基于数字信号处理的理论。当你把手指放到识别区,设备首先获取指纹图像、然后会对指纹图像进行预处理、提取指纹特征和指纹特征匹配。为了得到比较准确的指纹特征点,指纹图像预处理一般要经过图像增强、滤波去掉噪声、计算方向图、二值化和细化等过程。这都是数字信号处理的应用。其实,数字信号处理是一门独立的信息科学学科。在语言处理、图像处理、雷达、航空航天、地质勘探、通信、生物医学工程等领域广泛应用。 信号处理分为模拟信号处理和数字信号处理两种。模拟信号是在指时间连续、幅度连续的信号。数字信号是在时间和幅度上都是离散的信号。数字信号处理是将信号以数字的方式表示并处理的理论和技术;用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科;有关数字滤波技术、离散变换快速算法和谱分析方法。 对数字信号处理课程的认识? 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,数字信号处理的核心算法是离散傅里叶变换,是离散傅里叶变换使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅里叶变换,快速傅里叶变换的出现大大减少了离散傅里叶变换的运算量。所以在数字信号处理课程中对于Z变换、离散傅里叶变换以及快速傅里叶变换是学习的重点和基础。 数字信号处理和数字系统与原来的模拟信号和模拟系统有很大不同,在处理方法上,模拟系统是用模拟器实现的,数字系统则是通过运算方法实现。为了弄清楚信号与系统的基本概念,所以把离散时间系统与信号放在第一章的位置。 数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。在信号处理过程中,所处理的信号往往混有噪声,从接收的信号中消除或减弱噪声是信号传输和处理中十分重要的问题。根据有用信号和噪声的不同特性,消除或减弱噪声,提取有用信号的过程称为滤波,实现这种功能的系统叫做滤波器。离散的时间LTI系统也称作数字滤波器。学习数字滤波器的基本结构有助于我们更好地了解数字信号处理理论。 课程最后介绍无限冲激响应滤波器的设计和有限冲激滤波器的设计。一些书里还会介绍运用MATLAB表示和实现型号的基本运算和数字滤波器的设计。 离散时间信号与系统

语音识别综述

山西大学研究生学位课程论文(2014 ---- 2015 学年第 2 学期) 学院(中心、所):计算机与信息技术学院 专业名称:计算机应用技术 课程名称:自然语言处理技术 论文题目:语音识别综述 授课教师(职称): 研究生姓名: 年级: 学号: 成绩: 评阅日期: 山西大学研究生学院 2015年 6 月2日

语音识别综述 摘要随着大数据、云时代的到来,我们正朝着智能化和自动化的信息社会迈进,作为人机交互的关键技术,语音识别在五十多年来不仅在学术领域有了很大的发展,在实际生活中也得到了越来越多的应用。本文主要介绍了语音识别技术的发展历程,国内外研究现状,具体阐述语音识别的概念,基本原理、方法,以及目前使用的关键技术HMM、神经网络等,具体实际应用,以及当前面临的困境与未来的研究趋势。 关键词语音识别;隐马尔科夫模型;神经网络;中文信息处理 1.引言 语言是人类相互交流最常用、有效的和方便的通信方式,自从计算机诞生以来,让计算机能听懂人类的语言一直是我们的梦想,随着大数据、云时代的到来,信息社会正朝着智能化和自动化推进,我们越来越迫切希望能够摆脱键盘等硬件的束缚,取而代之的是更加易用的、自然的、人性化的语音输入。语音识别是以语音为研究对象,通过对语音信号处理和模式识别让机器自动识别和理解人类口述的语言。 2.语音识别技术的发展历史及现状 2.1语音识别发展历史 语音识别的研究工作起源与上世纪50年代,当时AT&T Bell实验室实现了第一个可识别十个英文数字的语音识别系统——Audry系统。1959年,J.W.Rorgie和C.D.Forgie采用数字计算机识别英文元音及孤立字,开始了计算机语音识别的研究工作。 60年代,计算机应用推动了语音识别的发展。这时期的重要成果是提出了动态规划(DP)和线性预测分析技术(LP),其中后者较好的解决了语音信号产生模型的问题,对后来语音识别的发展产生了深远的影响。 70年代,LP技术得到了进一步的发展,动态时间归正技术(DTW)基本成熟,特别是矢量量化(VQ)和隐马尔科夫(HMM)理论的提出,并且实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。 80年代,实验室语音识别研究产生了巨大的突破,一方面各种连接词语音识别算法被开发,比如多级动态规划语音识别算法;另一方面语音识别算法从模板匹配技术转向基于统计模型技术,研究从微观转向宏观,从统计的角度来建立最佳的语音识别系统。隐马尔科夫模型(HMM)就是其典型代表,能够很好的描述语音信号的时变性和平稳性,使大词汇量连

现代通信技术论文整理

现代通信技术 论文题目:关于现代通信技术的思考年级: 2 0 0 9 级 班级:通信一班 学号:0 0 9 0 9 0 4 6 姓名:张婕

关于现代通信技术的思考 摘要:在现代信息社会,人们的交流方式在不断的提高,现代通信技术也获得了很大的的发展,通信的发展现状以及市场对之提出的要求使通信技术的美好发展前景日渐清晰,通信技术对社会、经济、生活等等的作用也是功不可没的。 关键词:通信技术社会经济发展前景 引言 通信技术正发生着百年未遇的巨大变化。目前,现代通信已由原先单纯的信息传递功能逐步深入到对信息进行综合处理,如信息的获取、传递、加工等各个领域。特别是随着通信技术的迅速发展,如卫星通信、光纤通信、数字程控交换技术等的不断进步,以及卫星电视广播网、分组交换网、用户电话网、国际互联网络等通信网的建设,通信作为社会发展的基础设施和发展经济的基本要素,越来越受到世界各国的高度重视和大力发展。 1.通信技术对生活的影响 科学技术是第一生产力,既然是生产力,就会对社会有决定作用。技术是整个社会系统的组成部分,与社会的经济、文化和社会生活紧密相关。特别是当今的高技术,它对社会经济、对社会生活质量、对社会关系的改变等,都有决定性的作用和影响。 通信业是个高技术行业,技术对产业的贡献率很高。由于新技术的使用,运营商不仅提高了服务质量,同时还开发出了如数据业务、视频业务、短信业务等新服务品种,多方面的满足消费者需要。技术的进步也使得制造成本、维护成本下降,低廉的价格吸引到了更大的消费群,消费的总量在上升。良好的市场前景还使得各大厂商加大投入进行研发生产,以上这些都使得通信业的经济规模不断膨胀。 通信技术作为信息技术的重要组成部分,共同使人类进入了虚拟时代、数字时代。通信技术的进步还改变了人们的某些生活方式。比如:过去人们要上邮局寄信,现在在家发E-mail 就行了;过去老师给学生面对面讲课,现在远程教育成为可能,这使得有更多的人能够接受到良好的教育。还有家庭办公、远程医疗、网络购物等原来看起来不可思议的事,现在借助于网络都已经实现。 目前世界上的强国如美国、日本等无疑都是科技大国。科技实力强,经济发展的速度就快,从而提高一个国家的国际地位。一个综合实力强的资本主义大国又往往以先进技术为筹码,在政治上提出对发展中国家不平等的条件。通信技术对政治的影响最集中的表现于军事

数字信号处理论文

数字信号处理论文 This manuscript was revised by JIEK MA on December 15th, 2012.

东华大学研究生课程论文封面 立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名:沈曾天 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。 2015年数字信号处理发展与思考 摘要 当前我国的科学技术正处在不断发展阶段,一些较为先进的技术已经在人们的生活中得到了广泛应用,其中数字信号处理技术在这一进步中就表现的较为突出。数字信号处理技术是当前数字化时代的一个比较重要的技术,它主要就是将视频以及图片和声音等进行模拟信息转换成数字信息的一种技术。本文主要就是对这一数字信号的处理技术的发展现状进行深入的分析研究,希望通过此次的努力能够对实际起到一定的指导作用。【关键词】数字信号处理、技术、发展 一、引言

今年,我国的通讯以及计算机等先进技术得到了进一步飞速的发展,所涉及的领域也愈来愈大,从大的角度分析来看,当前的数字信号处理技术己经将理论转换成了实用性较强的应用型技术,其组成部分主要包含了数字信号处理理论以及硬件技术和软件技术等方面,数字信号处理技术对人们的生活已经产生了很重要影响。 二、数字信号处理的基本概述 数字信号处理技术的特点分析 对于数字信号处理技术其最为本质的就是对数据的转换以及提取,也就是把信息从各种复杂的环境当中加以提取,随之再进行对其转换,从而能够成为方便于人识别的这样一种形式。在数字信号处理技术自身有着较为鲜明的特点,其中最为主要的有高速度以及高准确率的运算能力。这一技术的主要运算方法便是通过流水线结构以及较为独特的寻扯模式等。在硬件乘法累加操作方面主要就是指在一个指令周期内进行实现一次乘法和一次加法,而在实际的操作中其速度高达800Mb/s。另外就是这一技术有着稳定性的特点,这一技术是采取二值逻辑所以在环境的适应能力方面相对较强。还能够在软件的作用下对处理的参数进行修改,所以在灵活性方面也较强。 数字信号处理技术的重要性分析 在当前的发展过程中,由于新技术的进步,对于现阶段的诸多领域的生产生活都起到了重要的作用,而数字信号处理技术的发展也比较的迅速,在销售价格方面也在不断的降低,当前所采用的技术结构以及总线和

基于DTW算法的语音识别原理与实现

广州大学机械与电气工程学院 数字语音信号处理 基于DTW算法的语音识别原理与实现 院系: 机电学院电子与通信工程 姓名: 张翔 学号: 2111307030 指导老师: 王杰 完成日期: 2014-06-11

基于DTW算法的语音识别原理与实现 [摘要]以一个能识别数字0~9的语音识别系统的实现过程为例,阐述了基于DTW算法的特定人孤立词语音识别的基本原理和关键技术。其中包括对语音端点检测方法、特征参数计算方法和DTW算法实现的详细讨论,最后给出了在Matlab下的编程方法和实验结果,结果显示该算法可以很好的显示特定人所报出的电话号码。 [关键字]语音识别;端点检测;MFCC系数;DTW算法 Principle and Realization of Speech Recognition Based on DTW Algorithm Abstract With an example of the realization of a 0~9 identifiable speech recognition system, the paper described the basic principles and key technologies of isolated word speech recognition based on DTW algorithm, including method of endpoint detection, calculation of characteristic parameters, and implementation of DTW algorithm. Programming method under Matlab and experimental results are given at the end of the paper.,and the results show that the algorithm can well display the phone number of the person reported. Keyword speech recognition; endpoint detection; MFCC parameter; DTW algorithm 一、引言 自计算机诞生以来,通过语音与计算机交互一直是人类的梦想,随着计算机软硬件和信息技术的飞速发展,人们对语音识别功能的需求也更加明显和迫切。语音识别技术就是让机器通过识别和理解过程把人类的语音信号转变为相应的文本或命令的技术,属于多维模式识别和智能计算机接口的范畴。传统的键盘、鼠标等输入设备的存在大大妨碍了系统的小型化,而成熟的语音识别技术可以辅助甚至取代这些设备。在PDA、智能手机、智能家电、工业现场、智能机器人等方面语音识别技术都有着广阔的前景。 语音识别技术起源于20世纪50年代,以贝尔实验室的Audry系统为标志。先后取得了线性预测分析(LP)、动态时间归整(DTW)、矢量量化(VQ)、隐马尔可夫模型(HMM)等一系列关键技术的突破和以IBM的ViaVoice、Microsoft的V oiceExpress为代表的一批显著成果。国内的语音识别起步较晚,1987年开始执行国家863计划后语音识别技术才得到广泛关注。具有代表性的研究单位为清华大学电子工程系与中科院自动化研究所模式识别国家重点实验室,中科院声学所等。其中中科院自动化所研制的非特定人连续语音听写系统和汉语语音人机对话系统,其准确率和系统响应率均可达90%以上。 常见的语音识别方法有动态时间归整技术(DTW)、矢量量化技术(VQ)、隐马尔可夫模型(HMM)、基于段长分布的非齐次隐马尔可夫模型(DDBHMM)和人工神经元网络(ANN)。

相关文档
最新文档