第5章 区间估计与假设检验
计量经济学第5章假设检验

假设检验中的小概率原理
假设检验中的小概率原理
什么小概率? 1. 在一次试验中,一个几乎不可能发生的事
件发生的概率 2. 在一次试验中小概率事件一旦发生,我们
就有理由拒绝原假设 3. 小概率由研究者事先确定
5-17
假设检验中的小概率原理
由以往的资料可知,某地新生儿的平均体重为3190克,从今年的新生儿中随机 抽取100个,测得其平均体重为3210克,问今年新生儿的平均体重是否为 3190克(即与以往的体重是否有显著差异)?
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
5-56
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜单 第2步:选择“函数”点击 第3步:在函数分类中点击“统计”,在函数名的菜单下选
与原假设对立的假设 表示为 H1
5-12
确定适当的检验统计量
什么检验统计量?
1.用于假设检验决策的统计量 2.选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为 Z X 0 n
5-13
规定显著性水平(significant level)
(P-value)
1. 是一个概率值
2. 如果原假设为真,P-值是抽样分布中大
于或小于样本统计量的概率
左侧检验时,P-值为曲线上方小于等于检
验统计量部分的面积
右侧检验时,P-值为曲线上方大于等于检
验统计量部分的面积
3. 被称为观察到的(或实测的)显著性水平
5-44
双侧检验的P 值
区间估计和假设检验

在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。
生物医学研究统计方法 第5章 假设检验思考与练习参考答案

第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。
A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。
正确的结论是( E )。
A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。
A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。
A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。
答:α值是决策者事先确定的一个小的概率值。
P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。
P ≤α时,拒绝0H 假设。
2. 试述假设检验与置信区间的联系与区别。
答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。
置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。
计量经济学----.区间估计和假设检验

即
P[ 2 t se( 2 ) 2 2 t se( 2 )] 1
2 2
8
^
^
^
^
假设检验
检验某一给定的观测是否与虚拟假设(原假设)相符, 若相符,则接受假设,反之拒绝。 当我们拒绝虚拟假设时,我们说该统计量是统计上显 著的,反之则不是统计上显著的。
的临界值 t 2 (n 2) ,则有
ˆ ˆ P{[YF t 2 SE (eF )] YF [YF t 2 SE (eF )]} 1
1 因此,一元回归时 Y 的个别值的置信度为 的 预测区间上下限为 1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
给定,查t分布表得t (n 2) 2 ( )若t -t 2 (n 2), 或t t 2 (n 2),则拒绝原假设 1 H 0: 2 0,接受备择假设H1: 2 0; (2)若 - t 2 (n 2) t t 2 (n 2), 则接受原假设。
30
^
^
应变量Y 区间预测的特点
1、Y 平均值的预测值与真实平均值有误差,主要是 受抽样波动影响
YF Y F t 2
^ ^
1 ( X F X )2 n xi2
Y 个别值的预测值与真实个别值的差异,不仅受抽
样波动影响,而且还受随机扰动项的影响
1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
^
1 ( X F X )2 ˆ SE (YF ) n xi2
Y F 服从正态分布,将其标准化,
^
当
2
2 ei2 (n 2) 代替,这时有 未知时,只得用 ˆ ˆ YF E (YF X F ) t ~ t (n 2) 1 ( X F X )2 ˆ n xi2
假设检验与方差分析

三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?
第5章 区间估计与假设检验

分布(如t分布,F分布,正态分布, χ 2 分布等)。构造出统计
量以后,就可以利用样本数据计算出这个统计量的样本值,再 把这个样本值与给定某一显著水平的临界值进行比较,看它与 临界值是否有显著差别,从而作出判断,决定拒绝还是接受所 作的假设。
, βˆ2
+
δ
)
包含 β2 的概率
Pr(βˆ2 − δ ≤ β 2 ≤ βˆ2 + δ ) = 1−α (5.2.1)
这样的区间称为置信区间(confidence interval);1−α 称为置
信系数(confidence coefficient);而α 称为显著性水平(level of
significance)。置信区间的端点称置信限(confidence limits)也 称临界值(critical values)。
βˆ2 − δ 为置信下限(lower confidence limit)
βˆ2 + δ 为置信上限(upper confidence limit)
(5.2.1)式表示的是:随机区间包含真实 β2的概率为 1−α。
点估计与区间估计:
单一的点估计量可能不同于总体真值,即存在估计误差。点 估计既不能给出误差范围的大小,也没有给出估计的可靠程度。
进行统计假设检验,就是要制定一套步骤和规则,以使决定 接受或拒绝一个虚拟假设(原假设)。一般来说,有两种相互 联系、相互补充的方式:置信区间(confidence interval)和显 著性检验(test of significance)。
§5.6假设检验:置信区间的方法
区间估计与假设检验

"### 参数的区间估计与假设检验之间的区别
参数的区间估计和假设检验从不同的角度回答同一问 题, 它们的统计处理是相通的。 但是它们之间又有区别, 体现 以下三点: 第一, 参数估计解决的是多少 (或 范 围 ) 问题, 假设检验 则判断结论是否成立。前者解决的是定量问题, 后者解决的 是定性问题。 第二, 两者的要求各不相同。区间估计确定在一定概率 保证程度下给出未知参数的范围。 而假设检验确定在一定的 置信水平下, 未知参数能否接受已给定的值。 第三, 两者对问题的了解程度各不相同。进行区间估计 之前不了解未知参数的有关信息。 而假设检验对未知参数的 信息有所了解, 但作出某种判断无确切把握。 因而在实际应用中,究竟选择哪种方法进行统计推断, 需要根据实际问题的情况确定相应的处理方法。 否则将会产
" 拒 绝 域 为 +)J.)0!+#)(-- , 查表 %’#$#"4" 统计量 0’ ,)"" ’ & , %
得 0"$":’!$"(: , 计 算 得 0’)($A::A. 由 此 可 见 统 计 量 的 值 未 落 入 拒绝域中, 因而接受原假设, 认为符合设计要求。
(9!
统计与决策 !""# 年 # 月 (下)
上述关系虽就一特例而言, 但也有普遍意义。由区间估 计可以很容易构造检验函数。 下面来说明怎样由检验函数构 造区间估计。 设 # 是问题
生不同的结论, 做出错误的统计推断。 例 ! 测试某个品牌的汽车的百公里耗油量,假设在正 常的情况下汽车百公里耗油量服从正态分布, 路况以及驾驶 员的技术符合正常要求。现对该批汽车进行测试, 随机选取
+&".!-。
简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。
假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。
本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。
二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。
具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。
2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。
通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。
3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。
三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。
具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。
2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。
例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。
3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.6假设检验:置信区间的方法 双侧或双尾检验 (Two-sided or Two-Tail Test)
ˆ 利用P88页Table 3.2的数据,估计出MPC(边际消费倾向 2 ) 是0.5091。可以造构如下的检验假设:
H 0: 2 0.3
H 1: 2 0.3
在虚拟假设下,MPC是0.3,在对立假设下MPC大于或小于 0.3。虚拟假设是一个简单假设,而对立假设则是一个复合假设; 实际上就是我们所说的双侧假设(two-sided hypothesis)。
对于这种单尾检验,最好的方法是显著性检验方法。
§5.7 假设检验:显著性检验法 检验回归系数的显著性:t检验
显著性检验法(test-of-significance approach)是由R.A.Fisher (费希尔),Negman(尼曼)和Pearson(皮尔逊)合作发明的, 它是利用样本结果,来证实一个虚拟假设的真伪的一种检验程 序。 t分布的来历: student
决策规则:构造一个 2 的 100 (1 )% 置信区间。如果 2 在 假设H0下落入此区间,就不要拒绝H0。但如果它落在此区间之外, 就要拒绝H0。 在上例中, H 0 : 2 0.3,很明显地落在(0.4268,0.5914)这 个置信区间之外,因此我们能以95%的置信度拒绝MPC的真值是 0.3的假设。
即 2 的100 (1 )% 水平的置信区间为:
ˆ ˆ 2 t / 2 se( 2 )
例子:P123
两个游戏: 掷硬币 套圈
请问: 区间估计更象哪一个?
置信区间的两个特点: 位置的随机性 长度的随机性
二、 的置信区间: 1 2 ˆ 利用 E ( 1 ) 1 和 ˆ
在区间估计中,置信区间的宽度与估计量的标准误
100 (1 )% ˆ ˆ 1 t / 2 se( 1 )
水平的置信区间为:
(5.3.8)
或
§5.4 2 的置信区间 在正态性假定下,变量:
ˆ 2 2 (n 2) 2 (5.4.1) 服从自由度为n-2的 2 分布。因此,可以用 2 分布构造
1
n xi
Xi
2
2 2
进行类似的推导,可得:
ˆ ˆ ˆ ˆ Pr[ 1 t / 2 se( 1 ) 1 1 t / 2 se( 1 )] 1 (5.3.7e( 1 ) 成正比例。这说明,标准误越大,置信区间越宽,对总 ˆ se( 2 ) 体真值进行估计的接近程度越差。因此,估计量的标准误被看 作是估计量的精度(precision),它反映了估计量的精确程度。
在正态性假设下的变量:
ˆ ˆ ( 2 2 ) 2 2 t ˆ ˆ se( )
2
xi
2
(5.3.2)
服从自由度为n-2的t分布。 在虚拟假设下 2 的真值被设定,就可以利用样本数据算 出(5.3.2)式,即这个t统计量是可以算出来的,从而可以作出 如下的置信区间:
第5章 区间估计与假设检验 (Interval Estimation and Hypothesis Testing)
§5.1 统计学的预备知识 自己复习 §5.2 区间估计:一些基本概念
第三章给出了边际消费倾向(MPC)的估计值为0.5091。 ˆ E( 2 ) 2 我们也知道, ,但是,由于抽样的波动性,单个估计 值可能并不等于真值。因此,我们不能完全依赖一个点估计值, 而是要围绕点估计量构造出一个区间,使这一区间在一定的概 率保证之下包含真实的参数值(真值),这就是区间估计。
这里定义的t变量服从自由度为n-2的t分布
证明:令
ˆ ˆ 2 2 ( 2 2 ) Z1 ˆ se( )
2
xi
2
(1)
ˆ 2 Z 2 (n 2) 2 (2) ˆ 如果 已知,(1)式就是对 2 进行标准化,所以Z1服从 标准正态分布, Z1 ~ N (0,1) 。 2 分布(证明参见有关的数理统 Z2服从(n-2)个自由度的 计教程),而且,可以证明Z2的分布独立于Z1。运用P160定理5.5 (附录),
备择假设可以是简单的(simple)或复合的(composite)。例 如, H1 : 2 1.5 是一个简单假设,而 H1 : 2 1.5 则是一个复 合假设。 进行统计假设检验,就是要制定一套步骤和规则,以使决定 接受或拒绝一个虚拟假设(原假设)。一般来说,有两种相互 联系、相互补充的方式:置信区间(confidence interval)和显 著性检验(test of significance)。
它是统计上高度显著(highly statistically significant)。
单侧或单尾检验 One-Sided or One-Tail Test
当我们有着很强的理论支撑或者先验性预期时,可以把备择假 设H1取为单侧的或单向的。如:H 0 : 2 0.3 和 H1 : 2 0.3
用统计上的话说,这个指定的(声称的)假设叫做虚拟假设 (null hypothesis),或维持假设(maintained hypothesis),用 H0来表示。 通俗地说,是一个靶子。
另 外 , 还 需 要 一 个 备 择 假 设 ( 对 立 假 设 ) ( alternative hypothesis),用H1表示。H0和H1构成一个完备事件。
在统计上,当虚拟假设被我们拒绝时,就称我们的发现是统计 上显著的(statistically significant)。反之,当我们不拒绝虚拟假 设时,我们说,我们的发现不是统计上显著的。 当选择的显著性水平又比较低,比如 1% ,从而置信系数
1 比较高,如99%时,仍然达到了统计上是显著的,我们就称
xi
2
(5.3.1)
则,Z为一个标准化正态变量,Z ~ N (0,1) 。
如果总体方差 2 已知,就可以用正态分布对 2
作出概率上的表述。在正态曲线下,
1 之间的面积为68.26%
1.96 之间的面积为95%
2 之间的面积为95.45%
3
之间的面积为99.73%
显著性检验的关键在于构造出一个检验统计量(test statistic) (作为估计量),在虚拟假设下这个统计量会服从一定的抽样 2 分布(如t分布,F分布,正态分布, 分布等)。构造出统计 量以后,就可以利用样本数据计算出这个统计量的样本值,再 把这个样本值与给定某一显著水平的临界值进行比较,看它与 临界值是否有显著差别,从而作出判断,决定拒绝还是接受所 作的假设。
从而 2 的区间估计就容易了。选定1 为95%,则
ˆ 2 2 Pr[ 1.96 1.96 ] 0.95 ˆ ) se( 2
但是,在许多实际问题中,总体方差 2 都是未知的,只能 用其无偏估计量 2 来替代。(5.3.1)式便为: ˆ
ˆ ˆ ( 2 2 ) xi 2 2 2 t (5.3.2) ˆ ˆ se( 2 ) ˆ ˆ se( 2 ) 为估计量 2 的标准误的估计值(estimated standard error)。
于是有:
Pr[ t / 2
整理得:
ˆ 2 2 t / 2 ] 1 ˆ se( 2 )
(5.3.4)
ˆ ˆ ˆ ˆ Pr[ 2 t / 2 se( 2 ) 2 2 t / 2 se( 2 )] 1 (5.3.5)
2 的置信区间:
Pr(
2 1 / 2
/ 2 ) 1
2 2
(5.4.2)
2 2 值由(5.4.1)式给出,12 / 2和 / 2 可以查表得 其中的
到,自由度为n-2,见P125 Figure 5.1。 把(5.4.1)式中的 2 代入(5.4.2)式
参数的区间估计主要解答某一总体参数真值落在什么区间 内的问题; 而假设检验就是要对一个已知估计值或已得出的数据进行 检验,判断它是否与某一个指定的假设(stated hypothesis)相容 或一致(compatible)。所谓相容或一致,是指某一已知估计值 充分地接近其假设的数值,从而导致接受新指定的假设。
我们的任务就是求出两个正数 和 , ,使得随 0 1 的概率 机区间(random interval) 包含 ˆ ˆ 为 : ( 2 , 2 ) 2
1
ˆ ˆ Pr( 2 2 2 ) 1
(5.2.1)
这样的区间称为置信区间(confidence interval); 称为置 1 信系数(confidence coefficient);而 称为显著性水平(level of significance)。置信区间的端点称置信限(confidence limits)也 称临界值(critical values)。
(5.2.1)式表示的是:随机区间包含真实 2 的概率为 1 。区 间估计量给出了一个真实 2 会落入其中的数值范围。 点估计与区间估计: 单一的点估计量可能不同于总体真值,即存在估计误差。点 估计既不能给出误差范围的大小,也没有给出估计的可靠程度。 ˆ ˆ 区间估计则可以显示 1和 2 是怎样的接近总体真值 1 和 2 , 以及这种接近的可靠性。
整理得:
ˆ ˆ 2 2 2 Pr[( n 2) 2 (n 2) 2 ] 1 1 / 2
2
(5.4.3)
该式给出了 2 的置信系数为 100 (1 )% 的置信区间。 §5.5 假设检验(Hypothesis Testing):概述
参数估计与假设检验都是在样本分布基础上作出概率性判 断,两者既有联系又有区别,但其基本原理则是一致的。
在假设 H 0下,落入此区间