全等三角形讲解
8年级上册数学第一课全等三角形讲解

8年级上册数学第一课全等三角形讲解全等三角形是初中数学中的重要内容,它涉及到我们解决几何问题的基本方法和技巧。
在本文档中,我将详细介绍全等三角形的定义、判定条件以及相关的性质和定理,希望对同学们的学习有所帮助。
1.全等三角形的定义全等三角形指的是具有完全相等的三边和三角形的一对三角形。
当两个三角形的对应边和对应角全部相等时,我们可以称这两个三角形是全等的。
2.全等三角形的判定条件有以下几种判定条件可以判断两个三角形是否全等:-SSS判定法:若两个三角形的三条边分别相等,则它们是全等的。
-SAS判定法:若两个三角形的两边和夹角分别相等,则它们是全等的。
-ASA判定法:若两个三角形的两角和夹边分别相等,则它们是全等的。
-RHS判定法:若两个直角三角形的一条斜边和两个直角边分别相等,则它们是全等的。
3.全等三角形的性质和定理全等三角形具有很多有趣的性质和定理,这些定理不仅能帮助我们解决几何问题,还可以拓展我们的数学思维。
-全等三角形的对应部分相等:两个全等三角形的对应边和对应角全部相等。
-全等三角形的外角相等:两个全等三角形对应的外角相等。
-全等三角形的内角和相等:两个全等三角形对应的内角和相等。
-全等三角形的周长和面积相等:两个全等三角形的周长和面积分别相等。
4.三角形全等的应用全等三角形在解决几何问题时起到非常重要的作用,特别是在计算未知角度或边长时能提供有力的线索。
-通过全等三角形的已知条件,我们可以求解未知的角度或边长。
-全等三角形的性质可以应用于证明其他定理和性质。
全等三角形是初中数学中的重要内容,通过学习全等三角形的定义、判定条件、性质和定理,我们可以提高几何问题的解决能力,并拓展我们的数学思维。
希望同学们能够认真学习并应用到实际问题中,加深对全等三角形的理解和掌握。
以上就是本文档对于8年级上册数学第一课全等三角形的讲解,希望对同学们的学习有所帮助。
如果有任何疑问或需要进一步的讲解,请随时与我联系。
三角形的全等讲解

三角形的全等讲解一、全等三角形的概念三角形全等啊,就像是双胞胎一样。
两个三角形的形状、大小完全相同,这就是全等三角形啦。
那怎么判断它们是不是全等呢?这可就有趣了。
二、全等三角形的判定方法1. 边边边(SSS)这就好比是三根一样长的小棍儿搭成的三角形。
如果两个三角形的三条边都对应相等,那这两个三角形就是全等的。
比如说,一个三角形三条边分别是3厘米、4厘米、5厘米,另一个三角形也是这三条边的长度,那它们肯定全等。
这就像我们搭积木,三条边的积木块都一样,搭出来的形状肯定是一样的。
2. 边角边(SAS)这个呢,就是两条边和它们的夹角对应相等。
想象一下,有两条长度确定的小棍儿,它们之间的夹角也确定了,那这样搭出来的三角形肯定也是唯一的。
比如说,一条边是4厘米,另一条边是5厘米,它们的夹角是60度,另一个三角形也有同样的边和角,那这两个三角形就全等。
3. 角边角(ASA)这就像是先确定了两个角的大小,然后中间夹着一条边。
比如说一个三角形有30度角、60度角,中间夹着的边是5厘米,另一个三角形也有同样的角和边,那这两个三角形就全等。
这就像我们在画三角形的时候,先画好两个角,再连一条边,只要这些都一样,三角形就一样。
4. 角角边(AAS)这个和角边角有点像,不过是两个角和其中一个角的对边相等。
就好像我们知道了两个角的大小,然后知道了其中一个角对面的边的长度,这样也能确定一个三角形的形状和大小。
5. 直角、斜边、直角边(HL)这个是专门针对直角三角形的哦。
如果两个直角三角形的斜边和一条直角边对应相等,那这两个直角三角形就全等。
就像两个直角三角形,斜边都是5厘米,一条直角边是3厘米,那它们就是全等的。
三、全等三角形的性质全等三角形的对应边相等,对应角也相等。
这就像是双胞胎不仅长得一样,连胳膊腿的长度都是一样的,眼睛鼻子的角度也是一样的。
比如说,一个全等三角形的一条边是6厘米,那另一个全等三角形对应的边肯定也是6厘米;一个角是45度,另一个对应的角肯定也是45度。
全等三角形的概念和性质(基础)知识讲解

A.
B.
C. D. 如图,在 5 个条形方格图中,图中由实线围成的图形与①全等的有______________.
类型二、全等三角形的对应边,对应角 如图,△ABN≌△ACM,∠B 和∠C 是对应角,AB 与 AC 是对应边,写出其他对应边和对应角.
如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.
DF 4cm ,求: (1) 1 的度数; (2) AC 的长.
E
F
A
C D
1
B
如图,已知 △ ABC 中, AB AC 10 厘米, BC 8 厘米,点 D 为 AB 的中点. (1)如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上由 C 点向 A 点运动. ①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后, △BPD 与 △CQP 是否全等,
已知:△ABC≌△ADE,求证:∠BAE=∠DAC
顶点 C 与 B 对应, 写出其他对应角及对应顶点. △ ABE 与 △ ACD 全等,D 与 E 对应,
A D M N E
B
C
D
如图 △ ABD ≌△ ACE ,试说明 EBD 与 DCE 的关系.
C
O B E
A 三、全等三角形性质
如图所示,Rt△EBC 中,∠EBC=90°,∠E=35°.以 B 为中心,将 Rt△EBC 绕点 B 逆时针 旋转 90°得到△ABD,求∠ADB 的度数.AB=3cm,AC=8cm,求 DE 的长.
全等三角形的概念和性质
一、全等形 形状、大小相同的图形放在一起能够完全重合.能够完全重合 的两个图形叫做全等形. 一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、 翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形 能够完全重合的两个三角形叫全等三角形. 三、对应顶点,对应边,对应角 1. 对应顶点,对应边,对应角定义 两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫 对应角. 在写两个三角形全等时, 通常把对应顶点的字母写在对应位置上, 这样容易找出对应边、 对应角.如下图,△ABC 与△DEF 全等,记作△ABC≌△DEF,其中点 A 和点 D,点 B 和点 E, 点 C 和点 F 是对应顶点;AB 和 DE,BC 和 EF,AC 和 DF 是对应边;∠A 和∠D,∠B 和∠E, ∠C 和∠F 是对应角.
全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
完整版三角形全等的判定

完整版三角形全等的判定在数学的世界里,三角形全等的判定是一个非常重要的知识点。
它不仅是解决几何问题的基础,也是培养我们逻辑思维和空间想象力的关键。
接下来,让我们深入探讨三角形全等的判定方法。
三角形全等,简单来说就是两个三角形的形状和大小完全相同。
要判定两个三角形全等,有以下几种常见的方法。
第一种是“边边边”(SSS)判定法。
如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
比如说,有三角形 ABC 和三角形DEF,AB 等于 DE,BC 等于 EF,AC 等于 DF,那么就可以判定三角形 ABC 全等于三角形 DEF。
为什么“边边边”能够判定三角形全等呢?我们可以通过制作两个三边长度分别相等的三角形模型,然后将它们叠放在一起,会发现它们能够完全重合,这就直观地说明了“边边边”判定法的正确性。
第二种是“边角边”(SAS)判定法。
如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,AB 等于 DE,∠A 等于∠D,AC 等于 DF,那么三角形 ABC 就全等于三角形 DEF。
这个判定法也很好理解。
想象一下,我们先确定一条边的长度和一个夹角的大小,然后以这条边的一个端点为顶点,按照给定的夹角和另一条边的长度画出第二条边,最后连接两个端点,得到的三角形是唯一确定的。
接下来是“角边角”(ASA)判定法。
当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。
比如,在三角形 ABC 和三角形 DEF 中,∠A 等于∠D,AB 等于 DE,∠B 等于∠E,那么三角形ABC 与三角形 DEF 全等。
同样地,我们可以通过实际操作来理解这个判定法。
先确定一条边,然后分别以这条边的两个端点为顶点,按照给定的两个角的大小画出另外两条边,得到的三角形也是唯一确定的。
还有“角角边”(AAS)判定法。
如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册

专题12.7全等三角形的判定(HL)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】直角三角形全等的判定方法——斜边、直角边(HL)(1)判定方法:斜边和一条直角边分别对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).(2)书写格式:如图,在Rt△ABC 和△Rt DEF 中,AB DE AC DF=⎧⎨=⎩ABC DEF ∴∆≅∆(HL)【知识点二】判定两个直角三角形全等的方法判定一般三角形全等的方法对判定两个直角三角形全等全部适用,因此我们可以根据“HL”“SSS”“SAS”“ASA”“AAS”这五种方法来判定两个直角三角形全等.【知识点三】判定两个直角三角形全等的思路(1)已知一条直角边对应相等,可用判定方法“SAS”“HL”“ASA”或“AAS”;(2)已知斜边对应相等,可用判定方法“HL”“AAS”;(3)已知一锐角对应相等,可用判定方法“ASA”或“AAS”.第二部分【题型展示与方法点拨】【题型1】用“HL”证明直角三角形全等【例1】(23-24八年级上·广西南宁·期中)已知,如图,点A 、E 、F 、B 在同一条直线上,CA AB ⊥,DB AB ⊥,AE FB =,CF DE=(1)求证:CAF DBE ≌ ;(2)若25AFC ∠=︒,求D ∠的度数【变式1】如图,已知AB BD ⊥,CD BD ⊥,若用HL 判定Rt △ABD 和Rt BCD 全等,则需要添加的条件是()A .AD CB =B .AC ∠=∠C .BD DB =D .AB CD=【变式2】(23-24八年级上·北京朝阳·阶段练习)如图,BD CF =,FD BC ⊥于点D ,DE AB ⊥于点E ,BE CD =,若145AFD ∠=°,则EDF ∠=.【题型2】全等的性质与“HL”综合【例2】(23-24八年级下·山东青岛·期中)已知:如图AD 为ABC 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =,ED CD =.(1)问BF 与AC 的数量和位置关系分别是什么?并说明理由.(2)直接写出ABC ∠的度数.【变式1】(23-24八年级上·山东菏泽·期末)如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,EF AB ⊥于点F ,交AC 于点E ,BC BF =,连接BE 交CD 于点G .下列结论:①CE EF =;②CG EF =;③BGC AEB ∠=∠.其中正确的有()A .0个B .1个C .2个D .3个【变式2】(23-24八年级上·吉林·期末)如图,在ABC 中,M 为边BC 的中点,ME AB ⊥于点E ,MF AC ⊥于点F ,且BE CF =.若25BME ∠=︒,则A ∠=°.【题型3】全等三角形的综合问题【例3】(23-24七年级下·广东佛山·阶段练习)如图,ABC 中,AC AB >,D 是BA 延长线上一点,点E 是CAD ∠的平分线上一点,过点E 作EF AC ⊥于F ,EG AD ⊥于G .(1)求证:EGA EFA ≌△△;(2)若2BEC GEA ∠=∠,3AB =,5AC =,求AF 的长.【变式1】(23-24八年级上·河北保定·期末)如图,EB 交AC 于点M ,交FC 于点D ,90E F ∠=∠=︒,B C ∠=∠,AE AF =,给出下列结论:12∠=∠①;②BE CF =;③ACN ABM ≌;CD DN =④,其中正确的有()A .①②③B .①②④C .①③④D .②③④【变式2】(23-24八年级上·江苏南京·阶段练习)如图,ABC 中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,EF BC ∥,以下四个结论:①AH EF ⊥,②ABF EFB ∠=∠,③AF BE =,④E ABE ∠=∠.正确的是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·陕西·中考真题)如图,在ABC 中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.【例2】(2023·山东·中考真题)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于()A .180α︒-B .1802α︒-C .90α︒+D .902α︒+2、拓展延伸【例1】(23-24八年级上·广东汕头·期中)如图,从点O 引射线OM ,ON ,点A ,B 分别在射线OM ,ON 上,点C 为平面内一点,连接AC ,BC ,有ACB O ∠=∠.(1)如图1,若AO BC ∥,则AC 和ON 的位置关系是______;(2)如图2,若ABC ABO ∠=∠,AC OM ⊥,请求出CBD ∠和O ∠的度数的等量关系式;(3)在(2)的条件下,过点C 作CD OM ∥交射线ON 于点D ,当8CDN CBD ∠=∠时,求ABC ∠的度数.【例2】(22-23九年级下·山东滨州·期中)(1)如图1,在四边形ABCD 中,120AB AD BAD =∠=︒,,90ABC ADC ∠=∠=︒,且60EAF ∠=︒,求证:EF BE FD =+.(2)如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E F 、分别是BC CD 、上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.。
全等三角形(知识点讲解)

学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。
全等三角形详细讲解

全等三角形1. 全等形:能够完全重合的两个图形叫全等形。
全等形必须满足的条件:(1)形状相同(2)大小相等(3)能够完全重合2.定义:能够完全重合的两个三角形称为全等三角形。
用“≌”表示,读作“全等于”。
注:全等三角形是相似三角形中相似比为1:1的特殊情况3. 全等三角形的表示:(1)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(2)关键:会找对应顶点、对应边、对应角①对应角所对的边是对应边,两个对应角所夹的边是对应边;②对应边所对的角是对应角,两条对应边所夹的角是对应角;③有公共边的,公共边一定是对应边;④有公共角的,角一定是对应角;⑤有对顶角的,对顶角一定是对应角;(3)表示。
注:对应顶定点字母写在对应位置上。
5. 全等三角形的性质:(1)对应边相等,对应角相等(2)周长,面积相等考点:证明线段相等、角相等、面积相等、两条线段的和差等于另一条线段6. 全等变换:只改变位置,不改变形状和大小的图形变换。
如:平移,翻着(对称),旋转三角形全等的判定全等三角形判定定理:(1)三边对应相等的两个三角形全等。
(SSS或“边边边”)(2)两边和它们的夹角对应相等的两个三角形全等。
(SAS或“边角边”)(3)两角和它们的夹边对应相等的两个三角形全等。
(ASA或“角边角”)(4)两角和其中一角的对边对应相等的两个三角形全等。
(AAS或“角角边”)(5)斜边和一条直角边对应相等的两个直角三角形全等。
(HL或“斜边,直角边”)注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。
补充:(6)三条中线(或高、角分线)分别对应相等的两个三角形全等。
性质======判定定理角平分线的性质1.①会画已知角的平分线②利用SSS证明是角平分线2.性质:角平分线上的点到角的两边的距离相等3.判定:角的内部,到角的两边距离相等的点在这个角平分线上补充:平行线平行线的性质:①两直线平行,同位角相等②两直线平行,内错角相等③两直线平行,同旁内角互补平行线的判定定理:①同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形讲解
全等三角形是指两个三角形在形状和大小上完全相等的情况,也称为同一形状的三角形。
在几何学中,全等三角形是几何学中最基本的概念之一,因为它是通过三角形之间的相似性来推导其他几何形状的方法之一。
全等三角形的定义是,两个三角形在所有的对应角度相等,在对应的边上也相等。
当两个三角形完全重合时,即它们的所有的对应角度和对应边都相等时,这两个三角形就是全等三角形。
证明两个三角形全等的方法有多种,例如SAS(已知两边和夹角),SSS(已知三边)和ASA(已知两角和一边)等等。
通过这些方法,我们可以证明两个三角形完全相等,这种相等性对于解决几何问题、计算面积和寻找相似形状等问题非常有用。
在实际应用中,全等三角形也经常出现。
例如,在设计建筑物、桥梁和通讯塔等结构时,必须确保它们的三角形部分是全等的,以确保结构的稳定性和安全性。
另外,全等三角形也是数学竞赛中常见的问题,需要我们熟练掌握求证全等三角形的方法。
总之,全等三角形是几何学中最基本的概念之一,我们需要认真学习和掌握。
只有掌握了全等三角形的定义和证明方法,我们才能在实际问题中应用它们,解决复杂的几何形状和结构问题。