带隙基准源电路与版图设计.

合集下载

带隙基准

带隙基准

Key words: Bandgap Reference; Layout; Power Supply Rejection Ratio; Temperature Coefficient
III

第1章 1.1

绪论············································································ 1 带隙基准源概述······························································1 1.1.1 1.1.2 带隙基准源的研究现状········································· 1 研究目的及意义···········································设计········································· 17 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 设计指标·························································· 17 带隙基准源架构·················································17 核心电路设计···················································· 20 运放设计·························································· 22 偏置电路设计···················································· 23

CMOS_带隙基准源的设计(IC课程设计报告)

CMOS_带隙基准源的设计(IC课程设计报告)
VREF=VBE+MVT 将上式对温度T微分,并在室温下等于零(输出电压在室温下的理论温度系 数为零),解得常数M的值。
1
图 1、带隙基准电压源原理示意图(选自 Analysis and Design of Analog Integrated Circuits)
2
3 设计过程 3.1 电路结构
图 2、带隙基准电路中运算放大器的电路结构
《IC 课程设计》报告
——模拟部分
CMOS 带隙基准源的设计
华中科技大学电子科学与技术系 2004 级学生 张青雅
QQ:408397243 Email:zhangqingya@
2007 年秋大四上学期 IC 课程设计报告
1
目录
1 设计目标........................................................................................................................................1 2 介绍 ...............................................................................................................................................1 3 设计过程........................................................................................................................................3
LambdaN=0.0622 由跨导公式可以算出:

《带隙基准电压源》课件

《带隙基准电压源》课件
设计带隙基准电压源的反馈环路,以实现输出电压的稳定和调节。
4. 优化电路参数
根据仿真结果和实际测试数据,对电路参数进行优化,以提高带隙基 准电压源的性能。
电路设计的优化方法
温度补偿
通过引入温度补偿元件或采用 温度补偿技术,减小温度对带 隙基准电压源输出电压的影响

噪声抑制
采用低噪声元件、优化布线方 式和滤波技术等手段,减小带 隙基准电压源输出电压中的噪 声成分。
温漂
02
带隙基准电压源的温漂是指其在一定温度范围内的输出电压变
化量,温漂越小,性能越好。
热稳定性
03
带隙基准电压源在高温下的稳定性,良好的热稳定性可以保证
其在高温环境下正常工作。
04
带隙基准电压源的实现方式
模拟实现方式
01
02
03
运算放大器
使用运算放大器来调整和 稳定带隙基准电压,以实 现高精度和低噪声的输出 。
电阻和电容
通过精密电阻和电容来构 建带隙基准电压源,以实 现温度补偿和稳定性。
差分放大器
使用差分放大器来提高带 隙基准电压的精度和线性 度,以减小温度和电源电 压变化的影响。
数字实现方式
查找表
使用查找表来存储不同温度下的带隙基准 电压值,通过查表方式实现温度补偿。
数字滤波器
使用数字滤波器来处理带隙基准电压的输 出,以提高其稳定性和精度。
数字控制环路
使用数字控制环路来调整带隙基准电压的 输出,以实现高精度和低噪声的性能。
混合实现方式
模拟与数字相结合
将模拟和数字技术相结合,以实现高性能的带隙基准电压源。例如,可以使用 模拟电路来实现温度补偿和稳定性,同时使用数字电路来实现高精度和低噪声 的性能。

带隙基准电路设计

带隙基准电路设计

帯隙基准电路设计(东南大学集成电路学院)一.基准电压源概述基准电压源(Reference Voltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC,ADC,DAC以及DRAM等集成电路设计中有广泛的应用。

它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。

模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。

在CMOS技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。

基于CMOS的帯隙基准电路的设计可以有多种电路结构实现。

常用的包括Banba和Leung结构带薪基准电压源电路。

在综合考虑各方面性能需求后,本文采用的是Banba结构进行设计,该结构具有功耗低、温度系数小、PSRR高的特点,最后使用Candence软件进行仿真调试。

二.帯隙基准电路原理与结构1.工作原理带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。

用数学方法表示可以为:2211V V V REF αα+=,且02211=∂∂+∂∂TV T V αα。

1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。

推导如下:对于一个双极性器件,其集电极电流)/(ex p T BE S C V V I I =,其中q kT V T /=,约为0.026V ,S I 为饱和电流。

根据集电极电流公式,得到:SC T BE I I V V ln= (2.1) 为了简化分析,假设C I 保持不变,这样: TI I V I I T V T V S S T S C T BE ∂∂-∂∂=∂∂ln (2.2) 根据半导体物理知识可知:kT E bT I gm S -=+ex p 4 (2.3)其中b 为比例系数,m ≈−3/2,Eg 为硅的带隙能量,约为1.12eV 。

带隙基准电路设计与仿真

带隙基准电路设计与仿真

带隙基准电路设计与仿真带隙基准电路是一种用于产生稳定电压参考的电路,它的工作原理是利用带隙参考电压源的稳定性,将其转换为稳定的输出电压。

在电子设备中,带隙基准电路被广泛应用于各种需要稳定参考电压的场合,如模拟电路中的比较器、放大器、ADC、DAC等。

1.确定设计指标和要求:首先需要确定带隙基准电路的设计指标和要求,包括输出电压的精度、波动、温漂等。

这些指标将直接影响到整个电路的设计和性能。

2.选择合适的带隙参考电压源:带隙参考电压源是带隙基准电路的核心部分,选择合适的电压源对于整个电路的性能至关重要。

常见的带隙参考电压源有基准二极管电压源、基准电流源和温度补偿电压源等。

3.设计和优化调整电路:调整电路用于校准输出电压,使其达到所需的精度,也可以用于调整输出电压的温度系数。

调整电路通常由运放、电阻网络和校准电压源等组成,通过合理选择和设计这些元件,可以优化整个电路的性能。

4.进行仿真和优化:在设计结束后,需要进行电路的仿真和优化。

通过仿真可以验证电路的性能,并进行参数调整和优化,以满足设计指标和要求。

5.制作原型并测试:在设计和仿真完成后,可以制作原型并进行测试。

测试结果将反馈给设计人员,并根据需要进行进一步的调整和优化。

设计带隙基准电路需要综合考虑电路的稳定性、精度、功耗和成本等因素。

在选择和设计电路元件时,可以采用一些常用的优化方法,如小信号模型分析、傅里叶级数分析、参数扫描等。

最后,需要注意的是,在设计带隙基准电路时,还应考虑一些特殊因素,如温度变化、噪声干扰、工作电流等影响电路性能的因素,并采取相应的补偿措施。

总之,带隙基准电路的设计与仿真是一个复杂的过程,需要综合考虑各种因素,通过合理的选择和设计来满足设计指标和要求。

一种低功耗多输出带隙电压基准源电路的设计

一种低功耗多输出带隙电压基准源电路的设计

一种低功耗多输出带隙电压基准源电路的设计一种低功耗多输出带隙电压基准源电路的设计是一种实现高精度电压基准源的方法。

在本文中,我们将分步骤阐述这种电路的设计过程及其主要特点。

步骤1:选择具有合适特性的带隙参考电压源为了实现高精度电压基准源,我们需要选择具有合适特性的带隙参考电压源。

这种电压源需要具有以下特点:1. 稳定性高:带隙参考电压源相对于温度和电源电压的变化非常稳定,可以在多种应用场景下提供稳定的参考电压。

2. 精度高:带隙参考电压源可以提供高精度的电压输出,能够满足对于电压精度要求较高的应用场景。

3. 低噪声:带隙参考电压源的噪声非常低,可以提供纯净的电压参考信号。

为了实现这种特性,我们可以选择亚微米CMOS工艺下的具有特殊结构的带隙参考电压源。

步骤2:设计低功耗的多输出电路在选择好合适的带隙参考电压源后,我们需要将其集成在一个低功耗多输出的电路中。

这种电路需要具有以下特点:1. 低功耗:这种电路需要设计为低功耗的,以便在便携式电子设备等需要长时间工作的场合中使用。

2. 多输出:这种电路需要提供多个电压输出,以满足不同应用需求。

3. 精度高:这种电路需要具有高精度的输出,以提供稳定可靠的参考电压信号。

为了实现这种特性,我们可以采用基于CMOS运算放大器的电路结构。

通过适当的电路调整和优化,可以实现低功耗、多输出、高精度的目标。

步骤3:验证电路性能并进行参数调整在设计完低功耗多输出带隙电压基准源电路后,需要进行实验验证并进行参数调整,以优化电路性能。

具体来说,需要进行以下工作:1. 电路性能测试:对电路进行性能测试,包括输出电压精度、温度稳定性、输入电压范围等方面的测试。

通过测试结果来调整电路设计参数,优化电路性能。

2. 参数调整:通过对电路设计参数的调整,对电路性能进行进一步优化。

调整的参数包括电路增益、偏置电压、输入电压范围等。

在完成以上工作后,即可实现设计一个低功耗多输出带隙电压基准源电路。

带隙基准源电路和版图设计

带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计摘要基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。

模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。

本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。

本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。

接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。

本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。

仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。

最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。

关键字:BiCMOS,基准电压源,温度系数,版图ISubject: Research and Layout Design Of Bandgap ReferenceSpecialty: MicroelectronicsName: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ABSTRACTThe reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified.This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory.This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements.Keywords: BiCMOS,band gap , temperature coefficient, layoutII目录1 绪论 (1)1.1 背景介绍及发展趋势 (1)1.2 研究意义 (3)1.3 本文主要工作 (4)2 基准电压源电路设计 (5)2.1 基准电压源的分类及特点 (5)2.2 基准电压源的温度特性 (7)V (7)2.2.1 负温度系数项BE2.2.2 正温度系数电压 (7)2.3 基本原理 (8)2.3.1 与温度无关的电路 (8)2.3.2.与电源无关的偏置电路 (8)2.4 基准电压源电路设计 (9)2.4.1 基本原理 (9)2.4.2 运放的设计 (10)2.4.3 带隙核心电路设计 (14)2.5 仿真分析 (15)3 版图设计 (19)3.1 版图设计的基础 (19)3.1.1 集成电路版图设计与掩膜版、制造工艺的关系 (19)3.1.2 版图设计的设计规则 (20)3.1.3 版图通用设计步骤 (23)3.2工艺介绍 (24)3.2.1 常见工艺简介 (24)III3.2.2 BiCMOS工艺 (26)3.3 带隙基准电路的版图设计 (28)3.3.1 版图的分层及连接 (28)3.3.2 版图设计环境介绍 (29)3.3.3 器件及总体版图 (30)4 版图验证 (39)4.1 版图验证概述 (39)4.2 验证工具介绍 (39)4.2.1 Cadence概述 (39)4.2.2 Diva使用介绍 (40)4.3 版图的DRC验证 (44)4.4 版图的LVS验证 (44)5总结 (46)致谢 (48)参考文献 (49)IV1 绪论1.1 背景介绍及发展趋势基准源是模拟与数字系统中的核心模块之一,它被广泛应用于动态存储(DRAM)、闪存(flash memory)以及其他模拟器件中。

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。

设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。

文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。

可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。

基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。

在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。

在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。

它利用了齐纳二极管被反向击穿时两端的电压。

由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。

之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。

其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。

1971年,Widlar首次提出带隙基准结构。

它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。

相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。

接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。

新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。

以上经典结构奠定了带隙基准理论的基础。

文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。

1 带隙基准源工作原理由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文题目:带隙基准源电路与版图设计摘要基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。

模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。

本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。

本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。

接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。

本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。

仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。

最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。

关键字:BiCMOS,基准电压源,温度系数,版图ISubject: Research and Layout Design Of Bandgap ReferenceSpecialty: MicroelectronicsName: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ABSTRACTThe reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified.This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory.This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements.Keywords: BiCMOS,band gap , temperature coefficient, layoutII目录1 绪论 (1)1.1 背景介绍及发展趋势 (1)1.2 研究意义 (3)1.3 本文主要工作 (4)2 基准电压源电路设计 (5)2.1 基准电压源的分类及特点 (5)2.2 基准电压源的温度特性 (7)2.2.1 负温度系数项V (7)BE2.2.2 正温度系数电压 (7)2.3 基本原理 (8)2.3.1 与温度无关的电路 (8)2.3.2.与电源无关的偏置电路 (8)2.4 基准电压源电路设计 (9)2.4.1 基本原理 (9)2.4.2 运放的设计 (10)2.4.3 带隙核心电路设计 (14)2.5 仿真分析 (15)3 版图设计 (19)3.1 版图设计的基础 (19)3.1.1 集成电路版图设计与掩膜版、制造工艺的关系 (19)3.1.2 版图设计的设计规则 (20)3.1.3 版图通用设计步骤 (23)3.2工艺介绍 (24)3.2.1 常见工艺简介 (24)III3.2.2 BiCMOS工艺 (26)3.3 带隙基准电路的版图设计 (28)3.3.1 版图的分层及连接 (28)3.3.2 版图设计环境介绍 (29)3.3.3 器件及总体版图 (30)4 版图验证 (39)4.1 版图验证概述 (39)4.2 验证工具介绍 (39)4.2.1 Cadence概述 (39)4.2.2 Diva使用介绍 (40)4.3 版图的DRC验证 (44)4.4 版图的LVS验证 (44)5总结 (46)致谢 (48)参考文献 (49)IV1 绪论1.1 背景介绍及发展趋势基准源是模拟与数字系统中的核心模块之一,它被广泛应用于动态存储(DRAM)、闪存(flash memory)以及其他模拟器件中。

其实现方式有电压基准和电流基准。

基准电压源是模数转换器(ADC)、数模转换器(DAC)、线性稳压器和开关稳压器、温度传感器、充电电池保护芯片和通信电路等电路中不可缺少的部分,基准电流源主要作为高性能运算放大器等器件或电路的偏置,也可用于LVDS驱动器和Viterbi解码器。

基准源需要有稳定的工艺、电压和温度系数,并且不需要随着制造工艺的改变而改变。

带隙基准参考源通常是模拟和混合信号处理系统中重要的组成模块,它用来提供高稳定的参考电平和参考电压,对系统的性能起着至关重要的作用。

传统的带隙基准电路利用双极型晶体管的基极—发射极电压V m的负温度系数和不同电流密度下两个双极型晶体管基极—发射极电压的差值的正温度系数相互补偿,使输出电压达到很低的温度漂移。

但实际设计电路中由于运放的失调电压对V m的影响,V m与温度的非线性关系,使传统的带隙基准电路在温度系数、功耗、PSRR等方面无法达到现今集成电路设计的要求。

随着现代如今,带隙基准源在AD/DA、电源芯片、锁相环、高精度的电压表、电流表、欧姆表等领域有着很广泛的应用。

微电子技术和通信技术的发展,集成电路已进入超深亚微米时代,它的发展继续以高速、高集成度、低功耗为目标。

在发展的同时,集成电路逐渐与其它学科和技术相结合,形成新的方向,新的学科或专业,不断改变着传统专业分工的格局,使得SOC系统(System on Chip)越来越复杂。

这对模拟电路基本模块的电压、功耗、精度和速度等, 提出了更高的要求。

传统的带隙基准源电路结构渐渐难以适应设计需求。

近几年,国内外学者都对传统带隙基准源进行了改进,主要集中降低温度系数,提高了PSRR以及使其能工作在低电源电压下,展现出低功耗、低噪声、低温漂、高精度等特性。

国内外对CMOS工艺带隙基准电压源做了大量的研究,最新的技术进展主要体现在以下几个方面。

(1)低温度系数低温度系数的电压基准源对于高分辨率的DAC和ADC尤其重要。

对于一阶补偿的带隙基准源,温度系数通常可以做到10.60ppm/。

C。

为了进一步降低带隙基准的温度系数必须做高阶补偿。

目前出现的高阶补偿技术包括利用MOS管亚阈区v~I特性的补偿的带隙基准电路、利用电阻的温度特性的曲率校正方法、指数曲率补偿方法、温度分段补偿方法等。

(2)低电压工作的电压基准源随着深亚微米集成电路技术的不断发展,集成电路的电源电压越来越低。

带隙基准电压在1.2V左右,所以一般的带隙基准源的工作电压至少在1.2V以上。

采用特殊电路结构的带隙基准源可以工作在1V左右。

采用这些电路结构后主要的工作电压限制通常来自于运放的工作电压,并最终受限于MOS管的阈值电压。

(3)高电源纹波抑制比随着射频集成电路和数字电路的发展以及带基准源在高频电路应用中的推广,电源抑制比成为了基准源在高频及数模混合电路中的一个重要衡量标准。

在数模混合集成电路中,数字电路的噪声可能对模拟电路产生不利的影响。

因此,在混合电路中电压基准源应该在较宽的范围内具有良好的电源电压抑制比性能。

(4)低功耗低功耗是衡量电路性能好坏的指标之一。

作为集成电路的一个基本单元电路,低功耗也一直是基准电压研究发展的一个方向。

集成电路制造工艺主要有双极工艺、CMOS工艺和BiCMOS工艺。

用双极型工艺可以制造出速度高、驱动能力强、模拟精度高的器件,但双极型器件在功耗和集成度方面却无法满足系统集成的要求:而CMOS工艺可以制造出功耗高、集成度高和抗干扰能力强的CMOS器件,但其速度低、驱动能力差,在既要求高集成度又要求高速的领域中也无能为力。

BiCMOS工艺是把双极型器件和CMOS器件同时制作在同一芯片上,它综合了双极器件高跨导、强负载驱动能力和CMOS器件高集成度、低功耗的优点,使其互相取长补短,发挥各自的优点,它给高速、高集成度、高性能的LSI及VLSI的发展开辟了一条新的道路。

相关文档
最新文档