兴平市高中2018-2019学年高二上学期第一次月考试卷数学

合集下载

兴平市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

兴平市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

兴平市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D2. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°3. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1﹣B .﹣C .D .4. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( )A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-6. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是( )A .(0,)B .(0,]C .(,]D .[,1)7. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)8. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 9. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π10.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}11.已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .912.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}二、填空题13.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .17.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.18.若关于x ,y的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .三、解答题19.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.20.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.21.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程;(2)求||||PB PA ⋅的最值.24.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.兴平市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B 【解析】由题意,可取,所以2. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.3. 【答案】A【解析】解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A .4. 【答案】C 【解析】考点:几何体的结构特征. 5. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 6. 【答案】D【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.7. 【答案】C【解析】解:令f (x )=x 2﹣mx+3, 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.8. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 9. 【答案】 A【解析】(本题满分为12分)解:由题意可得:|AA'|=sin α、|BB'|=sin β、|CC'|=sin (α+β), 设边长为sin (α+β)的所对的三角形内角为θ, 则由余弦定理可得,cos θ= =﹣cos αcos β=﹣cos αcos β=sin αsin β﹣cos αcos β =﹣cos (α+β), ∵α,β∈(0,)∴α+β∈(0,π) ∴sin θ==sin (α+β)设外接圆的半径为R ,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR 2=.故选:A .【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.10.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.11.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m ﹣1+a m+1﹣a m 2=a m (2﹣a m )=0,解得:a m =0或a m =2,若a m 等于0,显然S 2m ﹣1==(2m ﹣1)a m =38不成立,故有a m =2, ∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10.故选C12.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9}, 所以(C U A )∩(C U B )={7,9} 故选B二、填空题13.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:414.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.16.【答案】12.【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.17.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:118.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.三、解答题19.【答案】【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.20.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.21.【答案】①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③.【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)证明:∵D 是BC 的中点,∴BD =DC =a2.法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2+a 24-2AD ·a2cos ∠ADB ,① b 2=AD 2+a 24-2AD ·a 2·cos ∠ADC ,②①+②得c 2+b 2=2AD 2+a 22,即4AD 2=2b 2+2c 2-a 2,∴AD =122b 2+2c 2-a 2.法二:在△ABD 中,由余弦定理得AD 2=c 2+a 24-2c ·a 2cos B=c 2+a24-ac ·a 2+c 2-b 22ac=2b 2+2c 2-a 24,∴AD =122b 2+2c 2-a 2.(2)∵A =120°,AD =1219,sin B sin C =35,由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②b c =35,③ 联立①②③解得b =3,c =5,a =7,∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=1534.即△ABC 的面积为1543.23.【答案】(1)1222=+y x .(2)||||PB PA ⋅的最大值为,最小值为21.【解析】试题解析:解:(1)曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),消去参数α得曲线C 的普通方程为1222=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θθsin cos 1t y t x 代入1222=+y x 得01cos 2)sin 2(cos 222=-++θθθt t (6分)设B A ,对应的参数分别为21,t t ,则]1,21[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为21. (10分)考点:参数方程化成普通方程. 24.【答案】【解析】(1)连接FH ,由题意,知CD BC ⊥,CD CF ⊥,∴CD ⊥平面BCFG . 又∵GH ⊂平面BCFG ,∴CD ⊥GH . 又∵EFCD ,∴EF GH ⊥……………………………2分由题意,得14BH a =,34CH a =,12BG a =,∴2222516GH BG BH a =+=, 22225()4FG CF BG BC a =-+=,22222516FH CF CH a =+=,则222FH FG GH =+,∴GH FG ⊥.……………………………4分又∵EFFG F =,GH ⊥平面EFG .……………………………5分∵GH ⊂平面AGH ,∴平面AGH ⊥平面EFG .……………………………6分。

2018-2019学年高二上学期第一次月考试卷数学(248)

2018-2019学年高二上学期第一次月考试卷数学(248)

彬县高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8 B .10 C .6 D .42. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最 小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π 3. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i4. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .5. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台6. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程:①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④7. 把函数y=sin (2x﹣)的图象向右平移个单位得到的函数解析式为( ) A .y=sin (2x﹣) B .y=sin (2x+) C .y=cos2x D .y=﹣sin2x8. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .80 9. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞10.设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i11.函数f (x )=﹣lnx 的零点个数为( )A .0B .1C .2D .312.棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( )A .π4B .π6C .π8D .π10二、填空题13.设i是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z•= . 14.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为.【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.15.设函数f (x )=若f[f (a )],则a 的取值范围是.16.已知函数f (x )=x2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 . 17.不等式的解集为R ,则实数m 的范围是 .。

2018-2019学年高二数学上学期第一次月考试题文(无答案)(1)

2018-2019学年高二数学上学期第一次月考试题文(无答案)(1)

陕西省咸阳百灵中学2018-2019学年高二数学上学期第一次月考试题文(无答案)一、选择填空(每小题5分共60分)每题只有一个正确答案。

1. 已知等差数列{a n }中,a 19+a 31=20,则_____22822=+a aA 20B 10C 40D 不能确定2. 已知等比数列{b n }中,首项b 1=2 b 5=32 则S 5=____A 26-2B )12(325+C 26-2 或 )12(325+D 27-2 3. 已知数列+1,-3,+5,-7,+9,-11……则可猜想a n=____A -(-1)n (2n-1)B (-1)n (2n+1)C (-1)n (2n-1)D -(-1)n(2n+1)4. 已知ΔABC 中,∠A=60º∠B=45º a=1则S Δ=____ A 433+ B 433- C 2433+ D 2433- 5. 已知ΔABC 中,a:b:c=3:5:7,则Δ最大角为____A 120ºB 150ºC 90ºD 135º6.已知数列a,a(1-a),a(1-a)2.......是等比数列,则实数a 的取值范围是____A.a≠1 B a≠0或a≠1 C. a≠0 D. a≠0且a≠17.已知数列a n =pn+q p.q 均为实数,则a n 是___①.等差数列,首项为p+q ②.等差数列,首项为q③.等比数列 ④.等差数列,公差为P则正确的是A.①.②. B.②④C.③ D.①④8. 已知等比数列公比为q,那么a 1·a 2 a 2·a 3 a 3·a 4........相邻两项乘积组成的数列,此数列是___A.公比为q 的等比数列;B. 公比为q 的等差数列;C. 公比为q 3的等比数列;D. 公比为q 2的等比数列. 9.若三个非零的数A 、B 、C 满足B 2=AC,且三个数的和为313,且三个数的积为1,则A 、B 、C三数为___A 31,1,3 B3,1,31 C 31,1,3 或3,1,31D 无法确定。

兴平市三中2019-2020学年上学期高二数学12月月考试题含解析

兴平市三中2019-2020学年上学期高二数学12月月考试题含解析

兴平市三中2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内2.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直3.已知集合,,则()A.B.C.D.【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.4.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.5.不等式ax2+bx+c<0(a≠0)的解集为R,那么()A.a<0,△<0 B.a<0,△≤0 C.a>0,△≥0 D.a>0,△>06.与椭圆有公共焦点,且离心率的双曲线方程为()A.B.C.D.7.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①② B.②③ C.③D.③④8.有以下四个命题:①若=,则x=y.②若lgx有意义,则x>0.③若x=y,则=.④若x>y,则x2<y2.则是真命题的序号为()A.①②B.①③C.②③D.③④9.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)10.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为()A.B.C.2 D.11.若变量满足约束条件,则目标函数的最小值为()A.-5 B.-4 C.-2D.312.已知向量,,若,则实数()A. B. C. D.【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.二、填空题13.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.14.设平面向量,满足且,则,的最大值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.15.若实数满足,则的最小值为▲.16.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.17.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为.18.曲线y=x+e x在点A(0,1)处的切线方程是.三、解答题19.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.20.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.21.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点,点在轴的上方.当时,.(Ⅰ)求椭圆的方程;(Ⅱ)若点是椭圆上位于轴上方的一点,,且,求直线的方程.22.已知不等式的解集为或(1)求,的值(2)解不等式.23.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.24.(本小题满分12分)已知圆,直线.(1)证明: 无论取什么实数,与圆恒交于两点;(2)求直线被圆截得的弦长最小时的方程.兴平市三中2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.2.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.3.【答案】D【解析】由已知得,故,故选D.4.【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A5.【答案】A【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选A.6.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.7.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于④先找到四面体OABC 的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D8.【答案】A【解析】解:①若=,则,则x=y,即①对;②若lgx有意义,则x>0,即②对;③若x=y>0,则=,若x=y<0,则不成立,即③错;④若x>y>0,则x2>y2,即④错.故真命题的序号为①②故选:A.9.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.10.【答案】D【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)∵AB为直径的圆恰过点F2∴F1是这个圆的圆心∴AF1=F1F2=2c∴c=2c,解得b=2a∴离心率为==故选D.【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.11.【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系,直线系在可行域内的两个临界点分别为和,当直线过点时,,当直线过点时,,即的取值范围为,所以的最小值为.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.12.【答案】B【解析】由知,,∴,解得,故选B.二、填空题13.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB 也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.14.【答案】,.【解析】∵,∴,而,∴,当且仅当与方向相同时等号成立,故填:,. 15.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.16.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.17.【答案】.【解析】解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.Rt△AOC中,r=AO==,从而弧长为αr=2×=,故答案为.【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.18.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.三、解答题19.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.20.【答案】【解析】解:设双曲线方程为(a>0,b>0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C:c=2.又y=x为双曲线C的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.21.【答案】【解析】解:(Ⅰ)由直线经过点得,当时,直线与轴垂直,,由解得,∴椭圆的方程为.(4分)(Ⅱ)设,,由知.联立方程,消去得,解得∴,同样可求得,(11分)由得,∴,解得,直线的方程为.(13分)22.【答案】【解析】解:(1)因为不等式的解集为或所以,是方程的两个解所以,解得(2)由(1)知原不等式为,即,当时,不等式解集为当时,不等式解集为;当时,不等式解集为;23.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…24.【答案】(1)证明见解析;(2).【解析】试题分析:(1)的方程整理为,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心,当截得弦长最小时, 则,利用直线的点斜式方程,即可求解直线的方程.1111](2)圆心,当截得弦长最小时, 则,由得的方程即. 考点:直线方程;直线与圆的位置关系.。

高二数学试卷20180919

高二数学试卷20180919

2018-2019学年度第一学期高二年级第一次月考数学试题一、选择题:(本大题共12小题,每小题5分,共60分).1、数列{}n a 中,如果3n a n =(n =1,2,3,…),那么这个数列是( ).A 、公差为2的等差数列B 、公差为3的等差数列C 、首项为3的等比数列D 、首项为1的等比数列2、在等差数列{}n a 中,若210,a a 是方程21280x x +-=的两个根,6a 的值( )A 、-6B 、-12C 、12D 、63、下列函数中,既是奇函数又是增函数的为( )A 、1y x =+B 、2y x =-C 、1y x =D 、y x x =4、△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若3,4,60a b C ︒==∠=,则c 的值等于( ).A 、5B 、13C 、13D 、375、执行如图所示的程序框图,若输出的结果为S =105,则判断框中应填入( )A 、i <6?B 、i <7?C 、i <9?D 、i <10?6、函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若21)(=a f ,则实数a 的值是( ) A 、2- B 、2 C 、1-或21 D 、1-或27、在等差数列{}n a 中,25836a a a ++=,36927a a a ++=,则数列{}n a 的前10 项和10S =( )A 、105B 、210C 、110D 、220 8、△ABC 中,=cos cos A a B b,则△ABC 一定是 ( ) A 、等腰三角形 B 、直角三角形 C 、等腰直角三角形 D 、等边三角形9、已知△ABC 中,4a =,b =30A ︒∠=,则∠B 等于 ( )A 、30°B 、30°或150°C 、60°D 、60°或120︒10、在ABC ∆中,已知222sin sin sin sin sin A B A B C +-=,且满足4ab =,则该三角形的面积为( )A 、1 B、CD 、211、数列{a n }中,1a =1,a n +1=22+n n a a (n ∈N *),则1012是这个数列的第几项( ) A 、100项 B 、101项 C 、102项 D 、103项12、已知方程()()22220x mx x nx -+-+=的四个根组成以12为首项的等比数列,则m n等于( ) A 、32 B 、32或23 C 、23D 、以上都不对 二、填空题:(本大题共4小题,每小题5分,共20分.)13、等比数列的前n 项和为54,前2n 项的和为60,则前3n 项的和为 ___________。

河南省平顶山2018-2019学年高二上学期月考数学试卷(文科)Word版含解析

河南省平顶山2018-2019学年高二上学期月考数学试卷(文科)Word版含解析

河南省平顶山2018-2019学年高二上学期月考数学试卷(文科)一、选择题(每题5分,共60分)1.若集合A={x|x 2﹣2x <0},B={x|x >1},则A ∩B 为( ) A .{x|0<x <2}B .{x|1<x <2}C .{x|x >2}D .{x|x >1}2.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4B .5C .6D .73.如果a <0,b >0,那么,下列不等式中正确的是( )A .B .C .a 2<b 2D .|a|>|b|4.在△ABC 中,若∠A=60°,∠B=45°,BC=3,则AC=( )A .B .C .D .5.对于数列{a n },a 1=4,a n+1=f (a n ),依照如表,则a 2018等于( )A .2B .1C .4D .56.在△ABC 中,a 2=b 2+c 2+bc ,则A=( ) A .60°B .45°C .120°D .30°7.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d=( )A .B .C .D .8.在约束条件下,则函数z=2x+y 的最小值是( )A .2B .3C .4D .99.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2•a 3=2a 1,且a 4与2a 7的等差中项为,则S 5=( )A .35B .33C .31D .2910.如图,在点B 处测得山顶A 的仰角为β,在点C 处测得山顶A 的仰角为α,BC=a ,则山高AH 为( )A.B.C.D.11.在△ABC中,a=1,B=45°,面积S=2,则△ABC的外接圆的直径为()A.B.C.5 D.12.数列{an}中,,则等于()A.9n﹣1 B.(3n﹣1)2C.D.二、填空题(每题5分,共20分)13.在△ABC中,已知,则 B= .14.关于的不等式ax﹣b>0的解集是(1,+∞),则关于x的不等式的解集用区间表示为.15.若等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列的前2018项的和为.16.在△ABC中,角A、B、C所对的边分别为a、b、c满足b2+c2﹣a2=bc,,a=,则b+c的取值范围是.三、解答题17.在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c, a=2bsinA.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.18.等差数列{an}的首项a1=1,其前n项和为Sn,且a3+a5=a4+7.(Ⅰ)求{an}的通项公式;(Ⅱ)求满足不等式Sn <3an﹣2的n的值.19.隔河可以看到两个目标A、B,但不能到达,在岸边选取相距km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°.A、B、C、D在同一个平面内,则两目标A、B间的距离为km.20.已知数列{an }为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn﹣1.1)求{an }、{bn}的通项公式;2)若cn =anbn,{cn}的前n项和为Tn,求Tn.21.投资生产A产品时,每生产100t需要资金200万元,需场地200m2,可获利润300万元;投资生产B产品时,每生产100t需要资金300万元,需场地100m2,可获利润200万元.现某单位可使用资金1400万元,场地900m2,问:应作怎样的组合投资,可使获利最大?河南省平顶山2018-2019学年高二上学期月考数学试卷(文科)参考答案与试题解析一、选择题(每题5分,共60分)1.若集合A={x|x2﹣2x<0},B={x|x>1},则A∩B为()A.{x|0<x<2} B.{x|1<x<2} C.{x|x>2} D.{x|x>1}【考点】一元二次不等式的解法;交集及其运算.【分析】把集合A中的不等式左边分解因式,根据两数相乘积为负两因式异号转化为两个不等式组,求出不等式组的解集得到原不等式的解集,进而确定出集合A,然后找出集合A和集合B解集中的公共部分,即可得到两集合的交集.【解答】解:由集合A中的不等式x2﹣2x<0,因式分解得:x(x﹣2)<0,可化为或,解得:0<x<2,∴集合A={x|0<x<2},又B={x|x>1},则A∩B={x|1<x<2}.故选B2.已知{an }为等差数列,a2+a8=12,则a5等于()A.4 B.5 C.6 D.7【考点】等差数列.【分析】将a2+a8用a1和d表示,再将a5用a1和d表示,从中寻找关系解决,或结合已知,根据等差数列的性质a2+a8=2a5求解.【解答】解:解法1:∵{an }为等差数列,设首项为a1,公差为d,∴a2+a8=a1+d+a1+7d=2a1+8d=12;∴a1+4d=6;∴a5=a1+4d=6.解法2:∵a2+a8=2a5,a2+a8=12,∴2a5=12,∴a5=6,故选C.3.如果a<0,b>0,那么,下列不等式中正确的是()A.B.C.a2<b2D.|a|>|b|【考点】不等关系与不等式.【分析】根据已知条件分别对A、B、C、D,四个选项利用特殊值代入进行求解.【解答】解:A、如果a<0,b>0,那么,∴,故A正确;B、取a=﹣2,b=1,可得>,故B错误;C、取a=﹣2,b=1,可得a2>b2,故C错误;D、取a=﹣,b=1,可得|a|<|b|,故D错误;故选A.4.在△ABC中,若∠A=60°,∠B=45°,BC=3,则AC=()A.B.C.D.【考点】正弦定理.【分析】结合已知,根据正弦定理,可求AC【解答】解:根据正弦定理,,则故选B5.对于数列{an },a1=4,an+1=f(an),依照如表,则a2018等于()A.2 B.1 C.4 D.5【考点】数列的概念及简单表示法.【分析】由已知可得:a1=4,a2=f(a1)=f(4)=2,a3=f(a2)=f(2)=4,可得数列{an}为周期数列,an+2=an,即可得出【解答】解析:由题意a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a 5=f(a4)=f(2)=4,a6=f(a5)=f(4)=1,则数列{an }的项周期性出现,循环节为{4,1,5,2},周期为4,a2018=a4×504+2=a2=1,故选:B.6.在△ABC中,a2=b2+c2+bc,则A=()A.60°B.45°C.120°D.30°【考点】余弦定理.【分析】利用余弦定理表示出cosA,将已知的等式变形后代入,求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵a2=b2+c2+bc,即b2+c2﹣a2=﹣bc,∴由余弦定理得:cosA===﹣,又A为三角形的内角,则A=120°.故选C7.已知{an }是等差数列,a10=10,其前10项和S10=70,则其公差d=()A. B. C.D.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式和前n项和公式,结合已知条件列出关于a1,d的方程组,解方程即可.【解答】解:设{an }的公差为d,首项为a1,由题意得,解得,故选D.8.在约束条件下,则函数z=2x+y 的最小值是( )A .2B .3C .4D .9【考点】简单线性规划.【分析】先根据条件画出可行域,设z=2x+y ,再利用几何意义求最值,将最小值转化为y 轴上的截距,只需求出直线z=2x+y ,过可行域内的点B (1,1)时的最小值,从而得到z 最小值即可.【解答】解:设变量x 、y 满足约束条件,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3), 则目标函数z=2x+y 的最小值为3. 故选B .9.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2•a 3=2a 1,且a 4与2a 7的等差中项为,则S 5=( )A .35B .33C .31D .29【考点】等比数列的性质;等比数列的前n 项和.【分析】用a 1和q 表示出a 2和a 3代入a 2•a 3=2a 1求得a 4,再根据a 4+2a 7=a 4+2a 4q 3,求得q ,进而求得a 1,代入S 5即可. 【解答】解:a 2•a 3=a 1q •a 1q 2=2a 1 ∴a 4=2a 4+2a 7=a 4+2a 4q 3=2×==16∴q=,a1==31故S5故选C.10.如图,在点B处测得山顶A的仰角为β,在点C处测得山顶A的仰角为α,BC=a,则山高AH为()A.B.C.D.【考点】解三角形的实际应用.【分析】利用正弦定理,及直角三角形中的三角函数,即可得出结论.【解答】解:△ABC中,,∴AB=,△ABH中,AH=,故选A.11.在△ABC中,a=1,B=45°,面积S=2,则△ABC的外接圆的直径为()A.B.C.5 D.【考点】正弦定理.【分析】利用三角形面积计算公式、正弦定理余弦定理即可得出.【解答】解:∵,∴,由余弦定理得,∴b=5.由正弦定理(R为△ABC外接圆半径),故选:D.12.数列{a}中,,则等于()nA.9n﹣1 B.(3n﹣1)2C.D.【考点】数列的求和.}是首项为2,公比为3的等比数列.进一步得到数列【分析】由已知数列递推式可得数列{an是首项为4,公比为9的等比数列.再由等比数列的前n项和求解.【解答】解:∵,n∈N*,∴则 n=1时,有,当n≥2时,,两式相减得,,n≥2,=2适合上式,又n=1时,a1∴,则.}是首项为2,公比为3的等比数列.故数列{an则数列是首项为4,公比为9的等比数列.因此.故选:C.二、填空题(每题5分,共20分)13.在△ABC中,已知,则 B= 600或1200.【考点】正弦定理.【分析】由已知利用正弦定理可求sinB 的值,利用特殊角的三角函数值及B 的范围即可得解.【解答】解:由,由正弦定理,得,又b >a , 所以B >A=30°, 则B=60°或B=120°. 故答案为:600或1200.14.关于的不等式ax ﹣b >0的解集是(1,+∞),则关于x 的不等式的解集用区间表示为 (﹣∞,2)∪[5,+∞) . 【考点】其他不等式的解法.【分析】根据题意和一元一次不等式的解法列出不等式组,求出a 、b 的关系和符号,代入分式不等式化简后等价转化,由一元二次不等式的解法求出答案. 【解答】解:由题意知,不等式ax ﹣b >0的解集是(1,+∞),则当且仅当a >0时,不等式ax ﹣b >0的解集为,所以,即b=a >0,所以不等式可化为,则,即,即,等价于,解得x <2或x ≥5,其解集为 (﹣∞,2)∪[5,+∞), 故答案为:(﹣∞,2)∪[5,+∞).15.若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列的前2018项的和为.【考点】数列的求和.【分析】由已知列式求出等差数列的首项和公差,得到等差数列的通项公式,代入,利用裂项相消法求和.【解答】解:由a 4=4,S 4=10,得,解得,∴a n =n ,∴,则数列的前2018项的和为.故答案为:.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 满足b 2+c 2﹣a 2=bc ,,a=,则b+c 的取值范围是.【考点】余弦定理;平面向量数量积的运算.【分析】利用a 2+b 2﹣c 2=ab ,代入到余弦定理中求得cosC 的值,进而求得C ,然后通过正弦定理,结合两角和的正弦函数,求解函数的最值即可. 【解答】解:∵b 2+c 2﹣a 2=bc ,由余弦定理可得cosA===,因为C 是三角形内角,∴A=60°,sinA=.,∴,∴B 是钝角.由正弦定理可得b=×sinB=sinB ,同理C=sinC .三角形ABC 中,A=,∴C+B=.b+c=sinB+sinC=sinB+sin()=sinB+=,∵∴∴∴b+c的取值范围为:.三、解答题17.在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c, a=2bsinA.(Ⅰ)求角B的大小;(Ⅱ)若a=2,b=,求c边的长和△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)已知等式利用正弦定理化简,根据sinA不为0求出sinB的值,即可确定出角B的大小;(Ⅱ)由a,b,cosB的值,利用余弦定理求出c的值,再由a,c,sinB的值,利用三角形面积公式即可求出△ABC的面积.【解答】解:(Ⅰ)∵a=2bsinA,∴sinA=2sinAsinB,∵0<A<π,∴sinA≠0,∴sinB=,∵0<B<π,且a<b<c,∴B=60°;(Ⅱ)∵a=2,b=,cosB=,∴由余弦定理得:()2=22+c2﹣2×2×c×,即c2﹣2c﹣3=0,解得:c=3或c=﹣1(舍),∴c=3,=acsinB=×2×3×=.则S△ABC18.等差数列{a n }的首项a 1=1,其前n 项和为S n ,且a 3+a 5=a 4+7. (Ⅰ)求{a n }的通项公式;(Ⅱ)求满足不等式S n <3a n ﹣2的n 的值. 【考点】等差数列的前n 项和;数列的函数特性.【分析】(Ⅰ)利用等差数列{a n }的通项公式求出公差d=2,由此能求出a n .(Ⅱ)由a 1=1,a n =2n ﹣1,求出,由此能求出满足不等式S n <3a n ﹣2的n 的值.【解答】解:(Ⅰ)设数列{a n }的公差为d .…. 因为a 3+a 5=a 4+7,所以2a 1+6d=a 1+3d+7.…. 因为a 1=1,所以3d=6,即d=2,…. 所以a n =a 1+(n ﹣1)d=2n ﹣1.….(Ⅱ)因为a 1=1,a n =2n ﹣1,所以,….所以n 2<3(2n ﹣1)﹣2,所以n 2﹣6n+5<0,…. 解得1<n <5,所以n 的值为2,3,4.….19.隔河可以看到两个目标A 、B ,但不能到达,在岸边选取相距km 的C 、D 两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°.A 、B 、C 、D 在同一个平面内,则两目标A 、B 间的距离为 km .【考点】正弦定理.【分析】利用△ACD 的边角关系,算出出ACCD=;在△BCD 中,由正弦定理算出BC==.最后在△ACB 中利用余弦定理加以计算,即可得出目标A 、B 间的距离.【解答】解:∵在△ACD 中,∠ADC=30°,∠ACD=75°+45°=120°, ∴∠CAD=30°,可得∠CAD=∠ADC根据等角对等边,得AC=CD=.又∵在△BDC 中,∠CBD=180°﹣(45°+75°)=60°.∴由正弦定理,得BC==.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2﹣2AC •BC •cos ∠BCA=()2+()2﹣2××cos75°=5∴AB=,即两目标A、B之间的距离为km.故答案为:20.已知数列{an }为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn﹣1.1)求{an }、{bn}的通项公式;2)若cn =anbn,{cn}的前n项和为Tn,求Tn.【考点】数列的求和;等差数列的性质.【分析】(1)由已知条件利用等差数列的通项公式能求出首项和公差,由此能求出an=2n﹣1(n∈N*);由Sn =2bn﹣1,能推导出{bn}是首项为1公比为2的等比数列,由此求出(n∈N*).(2)由,利用错位相减法能求出{cn }的前n项和为Tn.【解答】解:(1)∵{an }是等差数列,且a3=5,a7=13,设公差为d.∴,解得∴an=1+2(n﹣1)=2n﹣1(n∈N*)在{bn }中,∵Sn=2bn﹣1当n=1时,b1=2b1﹣1,∴b1=1当n≥2时,由Sn =2bn﹣1及Sn﹣1=2bn﹣1﹣1,得bn =2bn﹣2bn﹣1,∴bn=2bn﹣1∴{bn}是首项为1公比为2的等比数列∴(n∈N*)(2)∵,∴①②①﹣②得==1+4(2n﹣1﹣1)﹣(2n﹣1)•2n=﹣3﹣(2n﹣3)•2n∴(n∈N*)21.投资生产A产品时,每生产100t需要资金200万元,需场地200m2,可获利润300万元;投资生产B产品时,每生产100t需要资金300万元,需场地100m2,可获利润200万元.现某单位可使用资金1400万元,场地900m2,问:应作怎样的组合投资,可使获利最大?【考点】简单线性规划的应用.【分析】设生产A产品x百吨,生产B产品y百吨,利润为S百万元,先分析题意,找出相关量之间的不等关系,即x,y满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.【解答】解:设生产A产品x百吨,生产B产品y百吨,利润为S百万元(1′)则约束条件为:,(5′)目标函数为S=3x+2y,(7′)作出可行域,(11′)使目标函数为S=3x+2y取最大值的(x,y)是直线2x+3y=14与2x+y=9的交点(3.25,2.5),此时S=3×3.25+2×2.5=14.75(13′)答:应作生产A产品3.25百吨,生产B产品2.5百吨的组合投资,可使获利最大.(15′)。

兴平市二中2018-2019学年上学期高二数学12月月考试题含解析

兴平市二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .2. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .5C .5D .53. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、44. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i5. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm6. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.7. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=9. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4} C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4} 10.已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .11.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .864012.函数y=2|x|的图象是( )A .B .C .D .二、填空题13.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .14.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .16.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.17.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .18.若log 2(2m ﹣3)=0,则e lnm ﹣1= .三、解答题19.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ;(2)解不等式ax 2﹣(ac+b )x+bc <0.20.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

兴平市第一中学校2018-2019学年高二上学期第二次月考试卷数学

兴平市第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12+B .12 C. 34 D .02. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .63. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣14. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.6 5. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 6. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.7. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13208. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .29. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .110.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 11.函数2-21y x x =-,[0,3]x ∈的值域为( )A. B. C. D. 12.下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}二、填空题13.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 16.不等式的解为 .17.在矩形ABCD 中,=(1,﹣3),,则实数k= .18.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .三、解答题19.已知函数f (x )=e x (ax+b )+x 2+2x ,曲线y=f (x )经过点P (0,1),且在点P 处的切线为l :y=4x+1. (I )求a ,b 的值;(Ⅱ)若存在实数k ,使得x ∈[﹣2,﹣1]时f (x )≥x 2+2(k+1)x+k 恒成立,求k 的取值范围.20.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的 概率.21.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式;(2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.22.已知cos (+θ)=﹣,<θ<,求的值.23.已知角α的终边在直线y=x 上,求sin α,cos α,tan α的值.24.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.兴平市第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.2.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥,所以﹣3=2m,解得m=﹣.故选:A.【点评】本题考查向量共线的充要条件的应用,基本知识的考查.3.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.4. 【答案】A【解析】解:∵随机变量ξ服从正态分布N (2,o 2), ∴正态曲线的对称轴是x=2 P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1, 故选A .5. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 6. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .7. 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种, 故选D .【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.8.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.9.【答案】C【解析】解:由区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),等价为对任意x∈G,有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),①f(x)=的导数f′(x)=,f″(x)=,故在(2,3)上大于0恒成立,故①为“上进”函数;②f(x)=的导数f′(x)=,f″(x)=﹣•<0恒成立,故②不为“上进”函数;③f(x)=的导数f′(x)=,f″(x)=<0恒成立,故③不为“上进”函数;④f(x)=的导数f′(x)=,f″(x)=,当x∈(2,3)时,f″(x)>0恒成立.故④为“上进”函数.故选C.【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.10.【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 11.【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

兴平市一中2018-2019学年高二上学期第二次月考试卷数学

兴平市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .22. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件3. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .44. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 5. f()=,则f (2)=( ) A .3B .1C .2D.6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; 3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④7. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 38. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .39. 十进制数25对应的二进制数是( )A .11001B .10011C .10101D .1000110.若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 11.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种12.已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27二、填空题 13.已知数列的前项和是, 则数列的通项__________14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .15.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .16.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .17.求函数在区间[]上的最大值 .18.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .三、解答题19.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.20.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.21.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.(Ⅰ)求cosB的值;(Ⅱ)若,且,求a和c的值.22.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.23.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.24.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.兴平市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .2. 【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,故选:A3. 【答案】B【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .4. 【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n nn n a a ++--∴-=-()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性. 5. 【答案】A【解析】解:∵f ()=,∴f (2)=f ()==3.故选:A .6. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 7. 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.8. 【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C9.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.10.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.11.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A.【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题12.【答案】C【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.二、填空题13.【答案】【解析】 当时,当时,,两式相减得:令得,所以答案:14.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.15.【答案】 6 .【解析】解:根据题意可知:f (x )﹣2x是一个固定的数,记为a ,则f (a )=6,∴f (x )﹣2x =a ,即f (x )=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.16.【答案】7+【解析】解:如图所示,设∠APB=α,∠APC=π﹣α.在△ABP与△APC中,由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,AC2=AP2+PC2﹣2AP•PCcos(π﹣α),∴AB2+AC2=2AP2+,∴42+32=2AP2+,解得AP=.∴三角形ABP的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.17.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin (2x ﹣)+.又x ∈[,],∴2x ﹣∈[,],∴sin (2x ﹣)∈[,1],∴sin (2x ﹣)+∈[1,].即f (x )∈[1,].故f (x )在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.18.【答案】.【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.三、解答题19.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x ,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1. ∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减, 且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).20.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.21.【答案】【解析】解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.22.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔+2<f(x)min恒成立,∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,∴f(x)的最小值为4,∴+2<4,即,解得:﹣1<a<0或3<a<4.∴实数a的取值范围为(﹣1,0)∪(3,4).23.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.24.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)。

兴平市实验中学2018-2019学年上学期高二数学12月月考试题含解析

兴平市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E 点位于()A.点A处B.线段AD的中点处C.线段AB的中点处D.点D处2.已知,则f{f[f(﹣2)]}的值为()A.0 B.2 C.4 D.83.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.4.已知i为虚数单位,则复数所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)6.P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为()A.a B.b C.c D.a+b﹣c7. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 8. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .09. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]10.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形11.函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .12.函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .二、填空题13.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 14.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .15.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.16.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________. 18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.20.已知复数z 1满足(z 1﹣2)(1+i )=1﹣i (i 为虚数单位),复数z 2的虚部为2,且z 1z 2是实数,求z 2.21.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l的参数方程为(t 为参数),圆C 的极坐标方程为p 2+2psin (θ+)+1=r 2(r >0).(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程; (Ⅱ)若圆C 上的点到直线l 的最大距离为3,求r 值.22.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .23.根据下列条件求方程.(1)若抛物线y 2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.24.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.兴平市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.2.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.3.【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 4. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .5. 【答案】C【解析】解:令f (x )=x 2﹣mx+3, 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.6. 【答案】A 【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a . 故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.7. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 8. 【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 9. 【答案】B【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0, ∴f (0)=0, 即f (0)=m=0, 故m=0;故f (x )=x 2+nx ,f (f (x ))=(x 2+nx )(x 2+nx+n )=0, 当n=0时,成立;当n ≠0时,0,﹣n 不是x 2+nx+n=0的根, 故△=n 2﹣4n <0,故0<n <4;综上所述,0≤n+m <4; 故选B .【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.10.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 11.【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x 在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.12.【答案】A【解析】解:∵y=x 3﹣x 2﹣x ,∴y ′=3x 2﹣2x ﹣1,令y ′≥0即3x 2﹣2x ﹣1=(3x+1)(x ﹣1)≥0解得:x≤﹣或x≥1故函数单调递增区间为,故选:A.【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.二、填空题13.【答案】21 7【解析】14.【答案】12320【解析】考点:棱台的表面积的求解. 15.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032eba -=,整理,得2016ab =. 16.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.17.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.18.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}三、解答题19.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.20.【答案】【解析】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.21.【答案】【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),消去参数,得x+y﹣=0,直线l的直角坐标方程为x+y﹣=0,∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).∴(x+)2+(y+)2=r2(r>0).∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).(Ⅱ)∵圆心C (﹣,﹣),半径为r ,…(5分)圆心C 到直线x+y﹣=0的距离为d==2,又∵圆C 上的点到直线l 的最大距离为3,即d+r=3, ∴r=3﹣2=1.【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.22.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)∴244(1)4n a n n =+-=,由0n a >得n a =. (6分)(Ⅱ)∵1112n n a a +==+, (9分)∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)2222n+++=. (12分)23.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y 2=2px 的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a ,b >0),由题意可得c=4,即a 2+b 2=16,又e==2, 解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.24.【答案】【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,任意的x∈[1,3],f(x)≤0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兴平市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.2. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.3. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种4. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( )A .0.35B .0.25C .0.20D .0.15 5. 已知x ,y满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( ) A .1 B.C.D.6. 在ABC ∆中,b =3c =,30B =,则等于( )AB. C或 D .2 7. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>08. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A. B .1 C. D.9. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)10.半径R 的半圆卷成一个圆锥,则它的体积为( ) A.πR 3B.πR 3C.πR 3D.πR 311.已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]12.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .121二、填空题13.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]14.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.16.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________. 17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.18.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.三、解答题19.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.20.已知在△ABC中,A(2,4),B(﹣1,﹣2),C(4,3),BC边上的高为AD.(1)求证:AB⊥AC;(2)求向量.21.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.22.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.23.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.兴平市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,2. 【答案】A3. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题4. 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B .5. 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.【答案】C【解析】考点:余弦定理.7.【答案】A【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选A.8.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .9. 【答案】A【解析】解:∵f (x )=x 3﹣3x 2+5,∴f ′(x )=3x 2﹣6x ,令f ′(x )<0,解得:0<x <2, 故选:A .【点评】本题考察了函数的单调性,导数的应用,是一道基础题.10.【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A11.【答案】B【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0, ∴f (0)=0, 即f (0)=m=0, 故m=0;故f (x )=x 2+nx ,f (f (x ))=(x 2+nx )(x 2+nx+n )=0, 当n=0时,成立;当n ≠0时,0,﹣n 不是x 2+nx+n=0的根, 故△=n 2﹣4n <0,故0<n <4;综上所述,0≤n+m <4; 故选B .【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.12.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n+++==,∴120n =,选C . 二、填空题13.【答案】8cm 【解析】考点:平面图形的直观图. 14.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 15.【答案】512【解析】16.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或.考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d+=,所以60a=是解答的关键,同时结论中自然数是或是结论的一个易错点.17.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③18.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.三、解答题19.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.20.【答案】【解析】解(1)∵=(﹣1,﹣2)﹣(2,4)=(﹣3,﹣6),=(4,3)﹣(2,4)=(2,﹣1),=﹣3×2+(﹣6)×(﹣1)=0,∴AB⊥AC.(2)=(4,3)﹣(﹣1,﹣2)=(5,5).设=λ=(5λ,5λ)则=+=(﹣3,﹣6)+(5λ,5λ)=(5λ﹣3,5λ﹣6),由AD ⊥BC 得5(5λ﹣3)+5(5λ﹣6)=0,解得λ=,∴=(,﹣).【点评】本题考查向量的垂直与共线的应用,向量的数量积的应用,考查计算能力.21.【答案】【解析】解:设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件,解得,,,∴S=πrl+πr 2=10π,∴22.【答案】【解析】解:由题意得 命题P 真时0<a <1,命题q 真时由(2a ﹣3)2﹣4>0解得a >或a <,由p ∨q 真,p ∧q 假,得,p ,q 一真一假即:或,解得≤a <1或a >.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.23.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.24.【答案】【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.。

相关文档
最新文档