新人教版七年级上册数学学案:余角和补角复习进程
2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
新人教版七年级上册数学《4.3.3余角和补角》参考学案

新人教版七年级上册数学《余角和补角》参照教案学习目标 :1、认识一个角的余角与补角,并能娴熟求出一个角的余角和补角。
2、经历研究余角和补角的性质,并会用其性质解决一些简单的问题。
学习要点:互余、互补定义及它们的性质。
学习难点:余角与补角的性质及其运用。
D C C90°学习过程:12A O B一、自主学习AO B1、在一副三角板中同一块三角板的两个锐角和等于度。
2、若∠ 1=60.5 °,∠2=29.5 °,则∠ 1+∠2=。
3、如上左图,已知点 A 、O、B 在向来线上,∠COD=90°,那么∠ 1+∠2=。
4、若∠ 1=115°,∠ 2=65°,则∠ 1+∠ 2=5、如上右图,已知点 A 、O、B 在向来线上,∠ AOC=150°,那么∠ BOC=.二、研究新知概括 : 1、余角的定义假如个角的和等于,就说这个角余角,简称。
此中一个角是另一个角的。
即假如∠ α+∠β=,那么∠ α和∠ β互为。
反之:假如∠ α与∠β互为角,那么∠α+∠β=.2、补角的定义假如个角的和等于,就说这个角补角,简称。
此中一个角是另一个角的。
即假如∠ α+∠β=,那么∠ α和∠ β互为。
反之:假如∠α与∠β互为角,那么∠ α+∠β=.1 / 3三、应用新知例 1 达成下表:00x(0x 90 ) 1 ( 0 1 90) 4564 30的余角005315 .6的补角0095 3072想想:同一个角的补角与它的余角之间有如何的数目关系?例 2若一个角的补角等于它的余角的 4 倍,求这个角的度数。
四、发现总结1、若∠1+∠2= 900,∠2 +∠3= 90,那么∠1____∠3;如果∠1+∠2=90,∠3+∠4= 90,且∠ 1=∠3,那么∠ 2___∠ 4;同理,若∠ 1+∠ 2=180,∠ 2+∠3=180,那么∠ 1____∠3;假如∠1+∠2=180,∠ 3+∠4=180,且∠ 1=∠3,那么∠ 2_____∠4.总结:等角(或同角)的余角________,等角(或同角)的补角 ________________.2、同一个角的余角比它的补角小。
人教版七年级数学上册:4.3.3 余角和补角 教案设计

余角和补角【教学目标】1.知识与技能:(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的概念和性质。
(2)了解方位角,能确定具体物体的方位。
(3)能运用余角、补角、方位角的知识解决一些简单的实际问题。
2.过程与方法:学会观察、分析、归纳的方法,初步学会简单的逻辑推理,培养学生简单的说理能力和运用知识分析、解决问题的能力,进一步提高学生的抽象概括能力,发展学生的空间观念。
3.情感态度与价值观:体会通过观察、归纳、推理的方法获得数学知识的重要作用体会数学推理的严谨性和数学的应用价值,通过小组合作交流活动,发展合作意识和交流能力,并在活动中体验成功的喜悦,增强学习数学的兴趣和自信心。
【教学设想】结合本节课的教学内容,我采用“问题情境——建立概念——探索性质——巩固反思——应用拓展”的模式展开教学,让学生经历知识的形成与应用过程,从而更好地理解互余、互补的概念,方位角的意义,在互余互补的性质探索中,尽可能组织学生进行观察、猜测、归纳等活动,帮助学生积累数学活动的经验,发展空间观念和推理能力。
在问题情境的设计、练习的安排上密切联系学生的知识基础和实际生活,由易到难,尽可能让所有的学生都主动参与数学活动,充分发挥每个学生的想像力和主动性,让学生在活动中体会数学与生活的密切联系,体会数学的应用价值,体会成功的喜悦,增强学习的信心。
【教材分析】余角和补角是在学生学习了角的定义、度量和比较大小的基础上,利用数量关系进一步研究两个角之间的关系。
互为余角、互为补角、方位角的概念及余角、补角的性质是求解有关角问题的重要工具。
同时,这节课也是培养学生观察分析、概括问题能力的内容,是培养学生学会简单的说理能力的入门知识,对培养学生合情的数学猜想,抽象概括能力,逻辑推理能力和发展学生的空间观念都有重要的意义。
【教学重难点】1.重点:认识角的互余、互补关系及性质,懂得确定物体的方位。
2.难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质。
余角、补角的概念和性质-人教版七年级数学上册教案

余角、补角的概念和性质-人教版七年级数学上册教案一、学习目标1.了解角度的定义和度量;2.掌握余角和补角的概念和性质;3.能够应用余角和补角来解决实际问题。
二、教学重点1.余角和补角的概念;2.余角和补角的计算方法;3.余角和补角之间的关系。
三、教学难点1.怎样理解余角和补角;2.利用余角和补角来解决实际问题。
四、教学过程1. 角度的定义和度量角度是指由两条射线(即两条有公共端点的线段)所形成的图形中,位于公共端点处的那个点所对应的角度大小。
度量角度主要有两种方法:度和弧度。
在本节课中,我们主要使用度来度量角度。
一个角的度数是指以顺时针方向旋转的角度为正,以逆时针方向旋转的角度为负,以度为单位来度量。
2. 余角和补角的概念余角和补角是两个角度之间的概念。
2.1 余角如果角A的度数为a,则以角A为顶点的平面内有一个角B,使得角A和角B的和等于90度,则称角B为角A的余角。
2.2 补角如果角A的度数为a,则以角A为顶点的平面内有一个角C,使得角A和角C 的和等于180度,则称角C为角A的补角。
3. 余角和补角的性质3.1 余角和补角之和等于90度和180度根据余角和补角的定义可知,余角和补角之和分别等于90度和180度。
即:∠A的余角加上∠A的角度等于90度,∠A的补角加上∠A的角度等于180度。
3.2 两个角的余角和补角性质不同一个角的余角和补角不同。
例如,一个角的度数为30度,其余角为60度,补角为150度。
3.3 一个角的余角和补角唯一一个角的余角和补角唯一。
例如,一个角的度数为30度,则其余角为60度,补角为150度,不会再有其他的余角和补角。
4. 余角和补角的计算方法4.1 计算余角以角A为顶点的平面内,设∠A的度数为a,则其余角的度数为90度-a。
例如,若∠A=30度,则其余角∠B的度数为60度。
4.2 计算补角以角A为顶点的平面内,设∠A的度数为a,则其补角的度数为180度-a。
例如,若∠A=30度,则其补角∠C的度数为150度。
人教版七年级上册数学学案:4.3.3 余角和补角

100︒150︒80︒10︒30︒60︒4.3.3余角和补角执笔人:审核人:一、学习目标1、余角和补角的定义;2、掌握余角和补角的性质,并能够运用余角补角3、了解方位角,能确定具体物体的方位二、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质三、学法指导:了解推理的意义和推理过程四、教学过程1、了解概念原理(1)什么是余角?(2)什么是补角?(3)余角的性质(4)补角的性质2、探究原理(1)、探究互为余角的定义:如果两个角的和是90°(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即:∠1是∠2的余角或∠2是∠1的余角。
练习:图中给出的各角,那些互为余角?(2)、探究互为补角的定义:如果两个角的和是180°(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。
即:∠3是∠4的补角或∠4是∠3的补角。
练习:1)图中给出的各角,那些互为补角?170︒120︒21432143(3)探究补角的性质:如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?总结:补角性质: (4)探究余角的性质:如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?总结:余角性质: 1、例题分析例1:若一个角的补角等于它的余角4倍,求这个角的度数。
解: 设这个角是x °,则它的补角是( 180°-x °),余角是(90°-x °)。
根据题意得:(180-x °)= 4 (90-x °) 解之得: x =60 答:这个角的度数是60 °。
例2:如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?解:∠1=∠3∵ ∠1+∠2= ∠COD=90° ∠3+∠2= ∠AOB=90°北西∴ ∠1=∠3 (等角的余角相等)2、能力形成(1)填下列表:结论:同一个锐角的补角比它的余角大90°。
6.3.3 余角和补角教学设计-人教版(2024)数学七年级上册

6.3.3 余角和补角教学目标1.在具体的现实情境中,理解余角、补角的概念,掌握余角和补角的性质.2.通过探索余角和补角的性质,发展几何直观和推理能力.3.体会观察、归纳、推理对获取数学猜想和论证的重要作用,初步体会数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重点难点重点余角、补角的概念和性质.难点通过简单的推理,归纳出余角、补角的性质,并用规范的语言描述性质.教学准备课件师生活动:教师提出问题,学生思考.教师指出:学完今天的内容就能解决这个问题了.【设计意图】通过生活问题设疑,激发学生的学习兴趣,让学生体会数学与生活的联系.高效课堂任务一:探究余角和补角的概念问题:求下列各图中的两个角的和,并根据这些和把这四个图分成两组,你是怎么分的?每一组中的两个角的和有什么共同的特点?①②③④师生活动:教师提出问题,学生讨论交流.学情预设:通过计算,②④为一组,它们的和都是90°,①③为一组,它们的和都是180°.归纳概念:如图,如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.符号语言:因为∠1+∠2=90∘,所以/1和/2互为余角.反之,因为/1和/2互为余角,所以∠1+∠2=90∘°(或∠1=90∘−∠2).如图,如果两个角的和等于180°(平角),就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角.符号语言:因为∠3+∠4=180∘,所以<3和/4互为补角.反之,因为<3和/4互为补角,所以∠3+∠4=180∘(或∠3=180∘−∠4).【设计题图】让学生通过观察,从直观的角度去感受余角和补角的概念,培养学生的观察、归纳能力及文字语言、符号语言的表述能力.练一练:图中给出的各角中,哪些互为余角?哪些互为补角?师生活动:学生根据余角和补角的概念独立解决,并口答,教师评价.学情预设:互为余角有:①与④,②与③.互为补角有:①与⑧,②与⑦,③与⑥,④与⑤.小游戏:同桌之间,一个同学说出一个角,让另一个同学说出它的余角和补角,说完之后交换角色.教师指出:同学说出的角,如果有余角和补角,则需注意这个角一定是小于90度的.【设计息图】通过练一练和小游戏,让学生再一次加深对余角和补角概念的理解,并能让学生会求一个角的余角和补角.任务二:探究余角和补角的性质问题1:/1与/2,<3都互为余角,/2与/3的大小有什么关系?师生活动:根据余角的概念,学生找出/1与<2,/3之间的数量关系,并自主探究/2与/3的大小关系,教师关注学生的表现.学情预设:因为/1与<2,<3都互为余角,所以,所以∠2=∠3.师生共同归纳余角的性质:同角的余角相等.问题2:∠1与/2互余,<3与/4互余,如果∠1=∠,那么/2与/4相等吗?为什么?师生活动:根据刚才的经验,学生可讨论交流,并书写证明过程,教师关注学生推理是否规范严谨.解:∠2与<4相等,理由如下:因为<1与/2互余,所以∠1+∠2=90∘.因为∠3与∠4互余,所以∠3+∠4=90∘,所以∠1+∠2=∠3+∠4.又因为∠1=∠3,所以∠1+∠2=,∠1+∠4,,所以∠2=∠4.师生共同归纳余角的性质:等角的余角相等.教师让学生类比探究余角性质的方法,来探究补角的性质:同角(等角)的补角相等.学生积极探讨,教师适时点评.【设计意图】通过师生合作得出余角的性质,教师引导学生学会说理,规范几何书写过程.通过类比,探究补角的性质,并独立推导证明,在多种形式的数学活动中,发展演绎推理能力.任务三:应用新知,解决问题例如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分/AOC和/BOC.(1)图中相等的角有哪些?(2)求/DOE的度数.(3)图中哪些角互为余角?师生活动:教师引导学生观察图形,找到图中角之间的关系,第(2)题注意几何书写过程.解:(1)根据射线OD和射线OE分别平分∠AOC和∠BOC,,可得∠AOD=∠DOC,∠COE=∠BOE.(2∠DDD=∠DDD+∠DDD=12∠DDD+12∠DDD=12(∠DDD+∠DDD)=90∘.(3)由(2)知∠DDD=90∘,所以∠DOC和/COE互为余角.同理,∠AOD和∠BOE,,∠AOD和∠COE,,∠DOC和/BOE也互为余角.【设计意图】学生初学几何推理,将大问题分解成小问题,层层递进,从而让学生能更快更准确地解决问题,通过例题讲解巩固新知.任务四:回归情境,解决问题如图,要测量两堵围墙所形成的/AOB的度数,但人不能进入围墙,如何测量?师生活动:教师再出示情境问题,学生合作探究讨论交流,画出示意图,有两种方法可求得/AOB的度数.方法一:延长AO至D(或者延长BO至C),测得<AOC(或者<BOD)的度数,则∠AOB是它的补角.方法二:根据同角的补角相等,只要测得<COD的度数,那么∠AOB=∠COD.课堂总结教师引导学生回顾本节课所学内容:1.余角和补角的概念.2.余角和补角的性质.作业设计基础性作业:教材练习第1~3题.提高性作业:教材习题6.3第15题.板书设计6.3.3 余角和补角1.余角和补角的概念余角:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角补角:如果两个角的和等于180°(平角),就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角2.余角和补角的性质同角(等角)的余角相等,同角(等角)的补角相等3.应用新知例教学特色1.发展几何直观,深化数学理解发展学生的几何直观、培养学生的空间想象力是本节课教学的一个重要目标,应重视让学生从事动手操作、观察、思考、想象、交流等活动,为学生提供一些有意义的、有一定挑战性的学习任务,如对于余角和补角的概念和性质,鼓励学生勤思考、多动手、善交流,在活动中获得几何概念和性质,以及读图、表达、推理等技能,从而发展学生的几何直观.2.联系生活实际,注重概念理解本节内容涉及的概念与性质较多,大多数几何图形与性质是学生初次接触,且比较抽象.作为几何入门阶段的学习,要善于培养学生学习的兴趣,注意揭示所学概念与性质同现实生活的联系.本节课在情境导入时,创设了生活中测量围墙内角的度数的情境,激发了学生的学习兴趣,让学生体会到所学知识在实际生活中有着广泛的应用.本教学案例设计中通过设置一些问题,让学生体验到几何探究的乐趣,成功体会解决问题的喜悦.3.多种教学活动,培养逻辑推理学习“图形与几何”与“数与代数”的方式、方法有所不同.本节课通过自主探究、合作交流,通过练一练、小游戏等活动,加深对余角和补角概念的理解.对于余角和补角的性质,让学生独立思考,观察角之间的联系,从而得出性质.同时,要养成勇于质疑、善于说理和独立思考、认真严谨的学习习惯,逐步提升学生的空间想象能力、逻辑推理能力、动手操作能力和应用几何图形知识解决实际问题的能力.。
2024年余角和补角人教版七年级数学上教案
2024年余角和补角人教版七年级数学上教案一、教学内容本节课选自人教版七年级数学上册,具体内容包括第四章《角的度量》中的4.4节“余角和补角”。
详细内容为:余角的定义、性质及其应用;补角的定义、性质及其应用。
二、教学目标1. 知识与技能:使学生掌握余角和补角的概念,能熟练运用余角和补角的性质进行相关计算。
2. 过程与方法:通过实践情景引入、例题讲解、随堂练习,培养学生观察、分析、解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识。
三、教学难点与重点教学难点:余角和补角的性质及其应用。
教学重点:余角和补角的定义及其在实际问题中的应用。
四、教具与学具准备教具:三角板、直尺、圆规。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入(1)请同学们观察三角板,找出其中互为余角和补角的角。
(2)引导学生思考:在实际生活中,余角和补角有哪些应用?2. 新课导入(1)讲解余角的定义、性质。
(2)讲解补角的定义、性质。
3. 例题讲解(1)求出两个角的余角和补角。
(2)已知一个角的度数,求其余角和补角。
4. 随堂练习(1)完成课本P65的练习题。
(2)小组讨论:如何利用余角和补角的性质解决实际问题?5. 小结六、板书设计1. 定义:余角:两个角的和为90°的两个角。
补角:两个角的和为180°的两个角。
2. 性质:(1)互为余角的两个角之和为90°。
(2)互为补角的两个角之和为180°。
3. 应用:(1)求角的余角和补角。
(2)解决实际问题。
七、作业设计1. 作业题目:(1)求出下列各角的余角和补角:① 30° ② 45° ③ 60°(2)已知一个角的度数,求其余角和补角,并说明实际应用。
2. 答案:(1)① 余角:60°,补角:150°;② 余角:45°,补角:135°;③ 余角:30°,补角:120°。
4.3.3余角和补角教案 2022-2023学年人教版七年级上册数学
4.3.3 余角和补角教案一、教学目标1.掌握余角和补角的概念;2.熟练计算给定角度的余角和补角;3.能够灵活运用余角和补角的概念解决实际问题。
二、教学内容1.余角的定义和性质;2.补角的定义和性质;3.余角和补角的计算方法;4.余角和补角在实际问题中的应用。
三、教学重点和难点1.掌握余角和补角的概念和计算方法;2.能够将余角和补角的概念应用到实际问题中解决问题。
四、教学准备1.教师准备:教案、黑板、粉笔、练习题等;2.学生准备:课本、笔记本、作业本等。
五、教学过程1. 导入教师可以先引入角的概念,并复习角的度量单位和计算方法。
2. 角的余角和补角1.引入余角和补角的概念。
余角是指与某个角度相加等于90°的角度,补角是指与某个角度相加等于180°的角度。
2.指导学生计算一些具体角度的余角和补角,如30°的余角和补角分别是60°和150°。
3.引导学生总结余角和补角的计算方法,并进行相关练习。
3. 余角和补角的性质1.引导学生发现余角和补角的性质:余角相等,补角相等。
2.通过具体的角度进行演示和练习,加深学生对余角和补角性质的理解。
4. 应用题解析1.引导学生运用余角和补角的概念解决实际问题,如通过已知的角度计算其余角和补角。
2.给学生提供一些应用题,并进行讲解和分析。
5. 总结和拓展1.教师对本节课的内容进行总结,强调余角和补角的重要性和应用价值。
2.引导学生思考其他角度相关的概念和性质。
六、课堂练习1.计算下列角度的余角和补角:a)40°b)75°c)125°d)170°2.解决实际问题:小明站在地面上观察一棵树,他所站的位置与树的底部所连线与水平方向的夹角为30°,那么小明与树顶所连线与水平方向的夹角是多少度?七、作业布置1.完成课堂练习中的题目;2.按照教师要求完成相关课后习题。
八、教学反思通过本节课的教学,学生对余角和补角的概念和计算方法有了更深入的理解,并能够将其应用到实际问题中解决问题。
余角和补角人教版七年级数学上教案
余角和补角人教版七年级数学上教案教案:余角和补角一、教学内容人教版七年级数学上册,第10章“角的计算”,第3节“余角和补角”。
1. 余角:如果两个角的和等于90°(直角),就说这两个角互为余角。
2. 补角:如果两个角的和等于180°(平角),就说这两个角互为补角。
3. 练习:判断下列各组角中,哪些是互为余角,哪些是互为补角。
二、教学目标1. 理解余角和补角的概念,掌握判断互为余角和互为补角的方法。
2. 能够运用余角和补角的知识解决实际问题。
3. 培养学生的逻辑思维能力和团队合作能力。
三、教学难点与重点1. 难点:理解余角和补角的概念,判断互为余角和互为补角的方法。
2. 重点:掌握余角和补角的性质,能够运用余角和补角的知识解决实际问题。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、量角器。
2. 学具:练习本、笔、三角板。
五、教学过程1. 实践情景引入:老师:请大家观察一下,教室里的窗户和门的角度关系是什么?学生:窗户和门的角度和为180°。
老师:同学们观察得很好,窗户和门的角度和为180°,这就是我们今天要学习的补角的概念。
2. 讲解余角和补角的概念:老师:如果两个角的和等于90°,我们就说这两个角互为余角;如果两个角的和等于180°,我们就说这两个角互为补角。
学生:互为余角和互为补角的意思是两个角加起来等于90°或180°。
3. 例题讲解:例题1:判断下列各组角中,哪些是互为余角,哪些是互为补角。
解答:互为余角的例子:30°和60°,因为30°+60°=90°;互为补角的例子:60°和120°,因为60°+120°=180°。
例题2:已知一个角的度数是75°,求它的余角和补角分别是多少度?解答:余角= 90° 75° = 15°;补角= 180° 75° = 105°。
6.3.3 余角和补角 教案-人教版(2024)数学七年级上册
6.3.3 余角和补角教学目标课题 6.3.3 余角和补角授课人素养目标1.理解余角、补角的概念.2.探索并掌握同角(等角)的余角相等、同角(等角)的补角相等.3.通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理.教学重点角的互余、互补关系及其性质.教学难点通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】意大利著名建筑比萨斜塔的塔身与地面、塔身与垂直于地面的方向会形成夹角.图中的∠1和∠2、∠3和∠4分别有怎样的数量关系呢?经测量可知:∠1+∠2=90°,∠3+∠4=180°.学完本节课,你就知道啦!下面我们一起走进本节课的学习.【教学建议】教师不要限制学生的思维,鼓励学生思考解决方案,并敢于表达自我.设计意图为学生创设一种思考的情境,自然而然地导入,为本节课的探究活动做好铺垫.活动二:实践探究,获取新知探究点1余角和补角的概念问题1(1)在一副三角尺中,大家观察一下每个三角尺的度数有什么特点?每个三角尺都有一个角是90°,而其他两个角的和是90°(30°+60°=90°,45°+45°=90°).知识引入:(2)钝角有余角吗?钝角没有余角,只有锐角有余角.问题2 类似地,如果两个角的和等于180°(平角),这两个角有什么数量关系?知识引入:【教学建议】教师提醒学生注意区分互补和互余,前者两角的和是180°,后者两角的和是90°,在对比中记忆.根据余角和补角的概念,我们能够直接得出互余(补)两角之间的数量关系.设计意图从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养口头表达能力.教学步骤师生活动追问改变问题1,2中∠1与∠2(或∠3与∠4)的位置关系,它们仍然互余(互补)吗?因为∠1+∠2=90°,∠3+∠4=180°,所以∠1和∠2仍互余,∠3和∠4仍互补.例1 (教材P177例4)如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC. 图中哪些角互为余角?分析:互为余角的两个角的和是90°,而已知条件中隐含互为补角的条件,再利用角平分线的条件,便可以发现互为余角的角.解:因为点A,O,B在同一条直线上,所以∠AOC和∠BOC互为补角. 又因为射线OD和射线OE分别平分∠AOC和∠BOC,所以所以∠COD和∠COE互为余角.同理,∠AOD和∠BOE,∠AOD和∠COE , ∠COD和∠BOE也互为余角.【对应训练】教材P177练习第1,2,4题.【教学建议】提醒学生注意:互为补角和互为余角反映的是角的数量关系,而非角的位置关系.教科书在画图时(图6.3-13,图6.3-14)把互为补角或互为余角的角画成互相分离的样子,是为了避免学生误认为互为补角或互为余角的两角一定有公共顶点和公共边(例如学生容易混淆补角和邻补角).设计意图探究点2余角和补角的性质问题1已知∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为余角,所以∠2=90°-∠1.因为∠1与∠3互为余角,所以∠3=90°-∠1,所以∠2=∠3.教师归纳:同角(等角)的余角相等.问题2已知∠1与∠2互为补角,∠1与∠3互为补角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为补角,所以∠2=180°-∠1.因为∠1与∠3互为补角,所以∠3=180°-∠1,所以∠2=∠3.教师归纳:同角(等角)的补角相等.例2如图,如果∠AOB=∠COD=90°,那么∠1与∠2有什么数量关系?为什么?解:∠1=∠2. 理由:因为∠AOB=∠COD=90°,所以∠1+∠BOC=90°,∠2+∠BOC=90°,所以∠1=∠2.【对应训练】如图,点C,O,E在同一条直线上,∠AOB=∠EOD=90°.比较∠1与∠3的大小,并说明理由.解:∠1=∠3. 理由:因为∠DOE=90°,所以∠DOC=180°-∠DOE=90°.因为∠DOC=∠AOB=90°,所以∠DOC-∠2=∠AOB-∠2,所以∠1=∠3. 【教学建议】这里开始要让学生简单说理,要求学生能用数学语言表达思考过程,不要求严格的推理形式.【教学建议】例题和习题是两个补充的说理题,旨在进一步强化学生的说理能力.教师引导学生分析角重叠时的角度关系.通过对两个问题的分析得出关于余角和补角的两个性质,开始让学生简单说理,用数学语言表达自己的思考过程,逐步强化推理能力.教学步骤师生活动活动三:典例精析,巩固提升例3一个角的余角与这个角的3倍互补,求这个角的度数.解:设这个角的度数为x°.根据题意得90-x+3x=180.解得x=45.所以这个角的度数是45°.【对应训练】教材P177练习第3题.【教学建议】教师引导学生厘清相等关系:设计意图综合余角、补角的概念和性质,培养学生用方程思想解题.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.余角和补角的概念是什么?2.余角和补角的性质是什么?【知识结构】【作业布置】1.教材P178习题6.3第2(3)(4),4,7,11题.板书设计教学反思本节课在具体的教学过程中坚持“数形结合”,从学生熟悉的知识着手,例如讲解余角和补角的性质时,先以数的形式出现,然后在练习中再强化从图形上形象地理解性质,激发学生的学习兴趣,促成好的学习方法,养成良好的学习习惯.解题大招余角、补角与三角尺的结合以三角尺为背景的角的问题(30°,60°,45°,90°),寻找图形中角之间的和、差关系并结合余角、补角的性质求角的度数或角之间的关系.例如图,把一副三角尺按不同的方式摆放,其中∠α与∠β不相等的是(C)培优点余角、补角和角平分线的综合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:余角和补角(1)
【学习目标】在具体的现实情境中,认识一个角的余角和补角; 【重点难点】正确求出一个角的余角和补角。
【导学指导】 一、知识链接 思考:
(1) 在一副三角板中同一块三角板的两个锐角和等于多少度? (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究
1.互为余角的定义: 思考:
(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=
(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=
1 2
图 1
90°
1
2
图 2
C
O
D
O
E
D
C
B
A
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗? 3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的3
1
还少︒20,求这个角的度数。
2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。
【总结反思】:
课题:余角和补角(2)
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
【导学指导】
一、知识链接
1.70°的余角是,补角是;
2.∠α(∠α <90°)的它的余角是,它的补角是;
二、自主学习
1.探究补角的性质:
例3、如图,∠1与∠2互补,∠3与∠4互补,∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,
∠3与∠4互补,∠4等于什么?∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
∠2=∠4(等量减等量,差相等)
2
1
4
3
西北
西南
东南
东北
北
西
南
东
南
北
西
上面的结论,用文字怎么叙述?
补角的性质:等角的 相等。
2.探究余角的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的 相等 3.方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
乙地对甲地的方位角 ; 甲地对乙地的方位角
例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。
(师生共同完成)
【课堂练习】:
1、α∠和β∠都是AOB ∠的补角,则α∠ β∠;
2、如果9031,9021=∠+∠︒=∠+∠,则32∠∠与的关系是 , 理由是 ;
3、A 看B 的方向是北偏东21°,那么B 看A 的方向( )
A 南偏东69°
B 南偏西69°
C 南偏东21°
D 南偏西21°
4、在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( ) A 100° B 70° C 180° D 140° 【要点归纳】:补角的性质:
余角的性质:
【拓展训练】:
1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,
请说出∠1与∠3之间的关系?并试着说明理由?
【总结反思】:。