范德蒙行列式及其应用

合集下载

范德蒙行列式及应用论文

范德蒙行列式及应用论文

范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。

范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。

范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。

范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。

范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。

首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。

通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。

其次,在微积分中,范德蒙行列式也有着重要的应用。

在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。

通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。

另外,在数论中,范德蒙行列式也有着重要的应用。

由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。

通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。

除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。

它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。

范特蒙德矩阵行列式

范特蒙德矩阵行列式

范特蒙德矩阵行列式范特蒙德矩阵行列式矩阵理论作为现代数学的重要分支,在科学领域和应用领域中有着广泛的应用。

而矩阵行列式是矩阵理论中的重要概念。

本文将介绍范特蒙德矩阵行列式(Vandermonde determinant),并探讨其相关性质和应用。

一、范特蒙德矩阵行列式的定义范特蒙德矩阵行列式,又称范德蒙行列式,是由范特蒙德(Vandermonde)于1772年引入的。

它的定义如下:对于正整数n和n个实数a1, a2,…, an,范特蒙德矩阵V是一个n×n的矩阵,其中第i行第j列的元素是ai的j−1次方,即:$$V = \begin{pmatrix}1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & a_n & a_n^2 & \cdots & a_n^{n-1}\end{pmatrix}$$范特蒙德矩阵行列式(Vandermonde determinant)是矩阵V的行列式,记作:$$\prod_{1 \le i < j \le n} (a_j - a_i)$$二、范特蒙德矩阵行列式的性质范特蒙德矩阵行列式具有以下性质:1. 对任意正整数n和n个实数a1, a2,..., an,范特蒙德矩阵行列式的绝对值等于$\prod_{i<j}(ai - aj)$,即范德蒙定理。

2. 范特蒙德矩阵行列式的值只与a1, a2,…, an的大小关系有关,而与它们的顺序无关。

3. 当a1, a2,..., an等距时,即存在正整数k和h,使得ai=a1+(i−1)k(i=1,2,…,n),则Vandermonde determinant等于$\prod_{i<j}(j-i)$,即n个不同的有理数的秩次数。

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。

2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。

3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。

1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。

具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。

数学与应用数学本科毕业范文范德蒙行列式及其应用

数学与应用数学本科毕业范文范德蒙行列式及其应用

本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。

范德蒙行列式经典例题

范德蒙行列式经典例题

范德蒙行列式经典例题范德蒙行列式是19世纪的数学家哈勒•范德蒙提出的一种数学思想,它可以用来解决许多数学问题。

范德蒙行列式的经典应用是用来解决二元一次方程,而这样就给出了许多可以用来练习的例题。

下面将介绍列出几个范德蒙行列式经典例题:一、解决一元二次方程题目:2x2+7x+1=0解:通过范德蒙行列式,可得:|2 7||1 0|令左边矩阵的行列式D = 2*0-7*1 = -7则根据范德蒙行列式,可求出:x1= D/2= -7/2x2= (-7+-√49)/4即根为x1=-3.5,x2=-1.5二、解决多元一次方程题目:2x+y+6z=17 , 5x-y-3z=2 , 4x+3y-2z=1解:通过范德蒙行列式,可得:|2 1 6||5 -1 -3||4 3 -2|令左边矩阵的行列式D = (2*(-1)*(-2)-1*5*(-3)+6*3*4) = 28 则根据范德蒙行列式,可求出:x1= (17*(-2)*(-3)-2*(-1)*6+1*5*4)/D= 6x2= (17*(-1)*4-2*3*6+1*(-3)*5)/D= 4x3= (17*2*3-2*(-1)*(-3)+1*(-1)*(-2))/D= 3三、应用范德蒙行列式进行微积分题目:求∫sin2(x)dx解:利用范德蒙行列式,可得:| sin 2x -1 || cos 2x 0 |令左边矩阵的行列式D = sin2x * 0 - (-1) * cos2x = cos2x则根据范德蒙行列式,则可求得∫sin2(x)dx= sin2x + c,其中c为常数。

四、直角梯形面积计算题目:梯形ABCD的对角线AB和CD的长分别为2 cm 和4 cm,且∠BAC=45°,求梯形ABCD的面积S。

解:通过范德蒙行列式,可得:|2 tan45°||4 0 |令左边矩阵的行列式D = (2 * 0 - tan45° * 4) = -2因此面积S = D / 2 = -1由此可看出,梯形ABCD的面积为1平方厘米。

范德蒙行列式及其应用

范德蒙行列式及其应用

范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。

范德蒙行列式及其应用

范德蒙行列式及其应用

目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程组、矩阵、向量空间和线性变换的基础,起着重要作用。

而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。

本文将通过对n阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。

关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only animportant point but also a difficult point,it is a foundation of learning linear equations,matrices,vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义定义1[1]关于变元x,2x n x的n阶行列式1122221211112111n n nn n n nx x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。

(整理)范德蒙行列式及其应用

(整理)范德蒙行列式及其应用

范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。

它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质 1.范德蒙行列式的定义 定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---= (1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积 ,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()由以上的计算可以得出,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1nn n n n nx x x x x x x x x ---=∏(i j x x -).有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.二. 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.1. 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助. 例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0,如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有 ()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c ac a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c xc x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.2. 范德蒙行列式在矩阵的特征值与特征向量中的应用例 4 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 5 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11jr r Ax x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.3. 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程 组、矩阵、向量空间和线性变换的基础,起着重要作用。

而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。

本文将通过对n 阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。

关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China)Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only an important point but also a difficult point,it is a foundation of learning linear equations,matrices, vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义 定义1[1] 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nxx x D x x x x x x ---=(1)叫做1x ,2x n x 的n 阶范德蒙行列式。

下面我们来证明对任意的n (2n ≥),n 级范德蒙行列式等于1x ,2x n x 这n 个数的所有可能的差i j x x -(1j i n ≤≤≤)的乘积。

我们对n 作归纳法:当2n =时,1211x x =21x x -结果是对的。

设对于1n -级的范德蒙行列式结论成立,现在来看n 级的情形。

在(1)式中,第n 行减去第1n -行的1x 倍,第1n -行减去第2n -行的1x 倍,也就是由下而上依次地从每一行减去它上一行的1x 倍,有21311222212313112121221231312131122221231311212122123131111100n n nn n n n n n n n n n nn n n n n n n nx x x x x x d x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ---------------=------------=---=(21x x -)(31x x -)(1n x x -)232222322223111n n n n n nx x x x x x x x x ---后面这行列式是一个1n -阶的范德蒙行列式,根据归纳法假设它等于所有可能差i j x x -(2)j i n ≤<≤的乘积,而包含1x 的差全在前面出现了,因此,结论对n 级范德蒙行列式也成立,根据数学归纳法,完成了证明。

用连乘号,这个结果可以简写为1222212111112111()n n i j j i nn n n nx x x x x x x x x x x ≤<≤---=-∏(二)范德蒙行列式的推广定义2 推广的范德蒙行列式12123(,,)i i n V x x x x =11112122212122121111122312111111111000000n n i n i i n i n i n i n i n i n n i n i n i x x x A x x x A x A x x x A x A x A x +--+-+-+-+-+-+-+-+-2211122221122312121200000i n i i n i n i n i n i n i A A x A A x A x A x +--+-+-+-+-+-其中12i i i =+,0(1,2)j i j <=;121,,(1,2)jjjr r r n j j j A A A r i +-=分别表示关于j x(1,2)j =所在的列元素求j r 各阶导数的系数。

定理1212121121123121212121123(,,)(,)!!()()()i i i i n n i i i n n p p j j p p V x x x x V x x x j j x x x x x x +====⎧⎫⎧⎫=---⎨⎬⎨⎬⎩⎭⎩⎭∏∏∏∏证明(一)将12123(,,)i in V x x x x 的第11,2n n n i +++列分别提取11!,2!,3!!i 及11121,2,n i n i n i i ++++++分别提取21!,2!,3!!i 得行列式记为m V ,并记n i m +=,即:1212121231211(,,)!!i i i i n m j j V x x x x j j V ===∏∏其中112212222111221221111112231223121111111212121110000001001001010n m n i m i i m i m m m m m m m n m m m m m m x x x V x x x C x C x x x x C x C x C x C x C x C x -----------------=(二)将m V 的第1,22,1m m --行各乘以1,x -然后分别加到第,1m m -3,2行,并按第一列展开得到一个1m -阶行列式,记为1m V -即:2131111221331121122211222221331132132122211222322133111211211()()()()1()()()()()()()()()()n n n m n n m m m m m n n m m m m x x x x x x x x x x x x x x x C C x V x x x x x x x x x C C x C C x x x x x x x x x x C C x C C x ----------------=----------111222112211112132212322111211322412112221221212212100000()0()()()()m i i m i i i n i m m m m m m m m m m C x C x C x C x x C x C x V C C x C x C x C x C x x C x C x x ---+------------------(三)将1m V -的第1,2,1n -列分别提取21311(),()()n x x x x x x ---等因子,又因为第1n -列到第11n i +-列中1111l l q q q C C C ----=(其中,q l 为2,3,1m -),则1112()nm p mp V x x V --='=-∏ 其中 1123122221123121112222132312121111100100n mni m i m m m m m nm m x x x x V x x x x C x x x x x C x C x -----------'=22221122111122322123221121213232412221221212212110()0i n i i n i m m m m m m m m m m C x C x C x C x x C x C x C x C x C x C x x C x C x x +-+-----------------1m V -'的第1n i +列减去第一列并提取因子21()x x -,得第1n i +列为:113222221(0,1,,)(()m Tm C x C x x x ---作为公因子提到行列式外) 再把该列乘以-1加到第11n i ++列上去,得到第11n i ++列为:212213243222112221224212212(0,0,(),())(0,0,,())m m Tm m m m Tm C C x C x C C x C x x x x Cx x x-----------=--=242122()(0,0,1)m Tm x x C x ---再将第11n i ++列乘以-1加到第12n i ++列,得第12n i ++列为3243521122212(0,0,0,,())m m T m m m x x C C x C x x -------- =352122()(0,0,0,1,)m Tm x x C x --- 这样一直进行到第1211n i i m ++-=-列(共2i 次)。

相关文档
最新文档