解三角形应用举例

合集下载

解三角形应用举例

解三角形应用举例

1.2│ 新课感知 新课感知
在日常生活和工农业生产中,为了达到某种目的,常常 想测得一个点与另一个不可到达的点间的距离或在远处的 两个物体之间的距离,这样的想法能实现吗?如何实现呢?
测量距离的问题
例1、设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C,测出 75 , C 60 AC的距离是55cm, A= = ,求A、B 6 2.449 ). 两点间的距离(精确到0.1m ,
10 A
50 40
B

BC 28
∴我舰的追击速度为14n mile/h
又在△ABC中由正弦定理得:
AC BC sin B sin A
即 B=38.2° 故我舰行的方向为北偏东
AC sin A 5 3 故 sin B BC 14
50°- 38.2°=11.8°
课堂小结 1、本节课通过举例说明了解斜三角形在实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。 2、在分析问题解决问题的过程中关键要分析题意,分清已知 与所求,根据题意画出示意图,并正确运用正弦定理和余 弦定理解题。 3、在解实际问题的过程中,贯穿了数学建模的思想,其流程 图可表示为: 实际问题
15 45
解:在⊿ABC中, ∠A=15°, ∠C=45°-15°=30°. 根据正弦定理,
15 45
BC AB sin A sin C
AB sin A 5sin15 5( 6 2) BC 2.5875(km). sቤተ መጻሕፍቲ ባይዱn C sin 30 2
CD=BC×tan∠DBC=BC×tan15°≈693(m) 答:山的高度约为693米。
28 cos30 sin 60 sin(60 30 ) 42( m)

解三角形的实际应用举例

解三角形的实际应用举例

AB sin CAB 15 sin15 BC sin120 sin ACB
6 2 sin15 4
5 6 BC ( 3 1) 4.48(海里) 2
(1)解决实际应用问题的关键思想方法是把实际问题转化为 数学问题,即数学建模思想。 (2)解决实际应用问题的步骤
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01km).
a
P B C
D A
分析
(1)PA,PB,PC长度之间的关系可以通过收到信号的先后时
间建立起来. (2)作PD⊥a,垂足为D,要求PD的长,只需要求出PA的长和cos∠APD, 即cos∠PAB的值.由题意,PA-PB,PC-PB都是定值,因此,只需分别在 △PAB和△PAC中,求出cos∠PAB, cos∠PAC的表达式,建立方程即 可.
=3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
例2.如图,两点C,D与烟囱底部在同一水平直线上,在点C1,D1利
用高1.5m的测角仪器, 测得烟囱的仰角分别是 =450和 =600, CD间的距离是12m.求烟囱的高AB (结果精确到0.01m). B
C1 C

D1 D

(18 2 6)(m)
从而 A1 B 因此
2 BC1 18 3 19.732(m) 2 AB A1B AA1 19.732 1.5 21.23(m)
例3:如图是曲柄连杆机构的示意图,当曲柄CB绕点C旋转时,通
过连杆AB的传递,活塞作直线往复运动.当曲柄在CB0位置时,曲 柄和连杆成一条直线,连杆的端点A在A处.设连杆AB长为l mm,曲 柄CB长为r mm,l>r. (1)当曲柄自CB0按顺时针方向旋转角为θ时,其中0O≤θ<360O, 求活塞移动的距离(即连杆的端点A移动的距离A0A); (2)当l =340mm, r =85mm,θ=80O时,求A0A的长(结果精确到1mm).

解三角形应用举例

解三角形应用举例

解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°

解三角形的实际应用举例

解三角形的实际应用举例

第二章 解三角形
(2)由正弦定理得 AC=sin[180°20-sin((3405°°++4650°°+)60°)] =20ssiinn4150°5°=20sisnin4575°° =10(1+ 3)(米), BC=sin[180°-(206s0i°n 4+5°30°+45°)] =20sisnin4455°°=20(米).
栏目 导引
第二章 解三角形
测量高度问题 如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在 西偏北 30°的方向上,行驶 600 m 后到达 B 处, 测得此山顶在西偏北 75°的方向上,仰角为 30°,则此山的 高度 CD=________m.
栏目 导引
第二章 解三角形
栏目 导引
第二章 解三角形
若 P 在 Q 的北偏东 44°,则 Q 在 P 的( )
A.东偏北 46°
B.东偏北 44°
C.南偏西 44°
D.西偏南 44°
解析:选 C.如图,因为 P 在 Q 的北偏东 44°,则 Q 在 P 的南 偏西 44°.
栏目 导引
第二章 解三角形
A,B 两点间有一小山,选定能直接到达点 A,B 的点 C, 测得 AC=60 m,BC=160 m,∠ACB=60°,则 A,B 两点间 的距离为________m. 解析:在△ABC 中,由余弦定理得 AB2=AC2+BC2-2·AC·BC·cos 60° =602+1602-2×60×160cos 60°=196 00, 所以 AB=140 m,即 A、B 两点间的距离为 140 m. 答案:140
栏目 导引
第二章 解三角形
1.(1)在 200 m 高的山顶上,测得山下一塔顶

解三角形(4)---解三角形应用举例

解三角形(4)---解三角形应用举例

解三角形(4)---解三角形应用举例例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75.求A 、B 两点的距离(精确到0.1m )启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。

解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB =ABC ACB AC ∠∠sin sin =ABC ACB ∠∠sin sin 55 = )7551180sin(75sin 55︒-︒-︒︒ =︒︒54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?(画图建立数学模型。

答案:2a km )例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得:AC = )](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =αcos 222BC AC BC AC ⨯-+ 分组讨论:还没有其它的方法呢?变式训练:若在河岸选取相距40米的C、D两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒(画图建立数学模型。

解三角形应用举例(二)

解三角形应用举例(二)

B
80
A0
A
B0
C
已知△ABC中, BC=85mm,AB=340mm,∠C=80°,
求AC. 解:(如图)在△ABC中, 由正弦定理可得: BC sin C 85 sin 80 sin A 0.2462 AB 340 因为BC<AB,所以A为税角 , A=14°15′ ∴ B=180°-(A+C)=85°45′ 又由正弦定理: AB sin B 340 sin 85 45 AC 344.3( mm) sin C 0.9848

A0 A A0C AC ( AB BC ) AC ( 340 85) 344.3 80.7 81( mm )
答:活塞移动的距离为81mm.
解三角形应用举例
总结 实际问题 抽象概括 示意图 数学模型 推 演 理 算 实际问题的解 还原说明 数学模型的解

B

A
C
CD=BD-BC=42-28=14(m) 答:山的高度约为14米。
D
测量术语: 1 仰角,俯角 2 方向角:北偏西,南偏东 3 方位角:从正北方向顺时针旋转 到目标方向线的水平角
例 2 如图, 某渔轮在航行中不幸遇 险, 发出呼救信号. 我海军舰艇在 A处获悉后, 测出该渔轮在方位角为45 0 , 距离为10n mile的C处, 并测得渔轮正沿方位角 为105 0 的方向,以9 n mile / h的速度向小岛靠拢 .我海军舰艇立 即以21 n mile / h的速度前去营救 .求舰艇的航向和靠近 渔轮所需的时间 (角度精确到 0.10 , 时间精确到1 min).
答 舰艇应沿着方位角66.8 0 的方向航行, 经过40 min 就可靠近渔轮.

人教版解直角三角形的应用举例(方位角)

人教版解直角三角形的应用举例(方位角)
可以互相讨论下,但要
拓展练习
1、如图,某船以29.8海里/时的速度向正北方向航 行,在A处测得灯塔C在该船的北偏东32°方向上, 半小时后该船航行到点B处,发现此时灯塔C与船的 距离最短。 (1)在图上标出点B的位置; (2)求灯塔C到B处的距离(精确到0.1海里)。

D C
A

2、海中有一个小岛A,它的周围8海里内有暗礁,鱼 船跟踪鱼群由西向东航行。在B点测得小岛A在北偏东 60°方向上,航行12海里到达点D,这时测得小岛A在 北偏东30°方向上,如果鱼船不改变航线继续向东航 行,有没有触礁的危险?
A
B D
3、如图,小岛A在港口P的南偏西45°方向,距离港口 81海里处,甲船从小岛A出发,沿AP方向以9海里/时的 速度驶向港口;乙船从港口P出发,沿南偏东60°方向, 以18海里/时的速度驶离港口。已知两船同时出发。 (1)出发后几小时两船与港口P的距离相等? (2)出发后几小时乙船在甲船的正东方向?
A
东南方向:_射__线__O_G____ G 东北方向:_射__线__O_H____
B 西

(3)南偏西25°
70°
O 60°
25° A南
射线OA 东
北偏西70° C 射线OB
南偏东60°
射线OC
合作探究
例题:如图,一艘海轮位于灯塔P的北偏东65°方向, 距离灯塔80海里的A处,它正沿着正南方向航行一段 时间后,到达位于灯塔P的南偏东34°方向上的B处, 这时,海轮所在的B处距离灯塔P有多远?

A
P
C
B
归纳经验
利用解直角三角形的知识解决实际问题的一般过程是:
(1)、将实际问题抽象为数学问题(画出平面图形,转化 为解直角三角形的问题);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年第17题 已知三角形△ABC,∠B=45°, AC= 10 ,cosC= 2 5 5 (I)求BC边的长; (II)记AB的中点为D,求中线CD的长。
3 2
13
200320在某海滨城市附近海面有一台风。 据监测,当前台风中心位于城市O(如图)的 东偏南θ(cosθ= )方向300km的海面P 处,并以20km/h的速度向西偏北45°方向 移动,台风侵袭的范围为圆形区域,当前 半径为60km,并以10km/h的速度不断增 大,问几小时后该城市 开始受到台风的侵袭?
应用举例
解三角形应用题中的几个角的概念 1、仰角、俯角的概念: 、仰角、俯角的概念: 在测量时,视线与水平线 所成的角中,视线在水平线 上方的角叫仰角,在水平线 下方的角叫做俯角。如图:
2、方向角:指北或指南 、方向角: 方向线与目标方向线所成 的小于90°的水平角,叫 方向角,如图
解斜三角形应用题的一般步骤是: 解斜三角形应用题的一般步骤是: 1、分析:理解题意,画出示意图 、分析: 2、建模 建模:把已知量与求解量集中在一个三角形中 建模 3、求解 求解:运用正弦定理和余弦定理,有顺序地解这 求解 些三角形,求得数学模型的解。 4、检验 4 检验:检验所求的解是否符合实际意义,从而 检验 得出实际问题的解。 数学问题(三角形) 实际问题→数学问题(三角形) →数学问题的解(解三角形)→实际问题的解 数学问题的解(解三角形)
如图建立坐标系:以O为原点,正东方向为x轴正向 在时刻t(h)台风中心 ( , )的坐标为
此时台风侵袭的区域是 (x- )2+(y- )2≤[r(t)]2, 其中r(t)=10t+60 若在t时刻城市O受到台风的侵袭,则有 (0- )2+(0- )2≤(10t+60)2, 即(300× -20× t)2+(-300× +20× 即r2-36t+288≤0, 解得12≤t≤24 答:12小时后该城市开始受到台风的侵袭。
D E A B C
6 + 4
2
6− 2
解:设在时刻t(h)台风中心为Q,此时台风侵袭的圆形区域半径为10t+60(km) 若在时刻t城市O受到台风的侵袭,则 OQ≤10t+60 由余弦定理知 OQ2=PQ2+PO2-2·PQ·POcos∠OPQ 由于PO=300,PQ=20t, cos∠OPQ=cos(θ-45°)=cosθcos45°+sinθsin45° = 故OQ2=(20t)2+3002-2×20t×300× =202t2-9600t+3002 因此202t2-9600t+3002≤(10t+60)2, 即t2-36t+288≤0, 解得12≤t≤24 答:12小时后该城市开始受到台风的侵袭。
t)2≤满分12分) 如图,测量河对岸的塔高时,可以选与塔 底在同一水平面内的两个测点C与D.现 ∠ 测得, BCD = α,∠BDC = β,CD = s 并在点C测得塔顶A的仰角为 θ ,求塔高 AB.
∠CBD = π − α − β
BC CD = sin ∠BDC sin ∠CBD
CD sin ∠BDC s sin β · BC = = sin ∠CBD sin(α + β )
s tan θ sin β · AB = BC tan ∠ACB = sin(α + β )
2008年第17题 如图,△ACD是等边三角形,△ABC是 等腰直角三角形,∠ACB=90°,BD交 AC于E,AB=2. (1)求cos ∠ CBE的值; (2)求AE。
相关文档
最新文档