新田县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载

2018年湖南省永州市新田第一中学高二数学文月考试题含解析

2018年湖南省永州市新田第一中学高二数学文月考试题含解析

2018年湖南省永州市新田第一中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线经过点A(0,3)和点B(1,2),则直线AB的斜率为()A. -1B.1C.3 D. 不存在参考答案:A略2. 已知满足,记目标函数的最大值为,最小值为,则A.1 B.2 C.7 D.8参考答案:D3. 下列函数中,周期为,且在上为减函数的是()A、 B、 C、 D、参考答案:D试题分析:周期为,有C,D;在上为增函数,在上为减函数,所以选D.考点:三角函数性质4. 的展开式中的第6项是A. B.C. D.参考答案:C5. 若向量(),则“”是“”的()A.充分不必要条件 B. 必要不充分条件C.充要条件 D. 既不充分也不必要条件参考答案:A6. 设( )A.4 B.5 C.6 D.10参考答案:B7. 书架上有2本不同的语文书,1本数学书,从中任意取出2本,取出的书恰好都是语文书的概率为()A.B.C.D.参考答案:A【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的书恰好都是语文书包含的基本事件个数,由此能求出结果.【解答】解:书架上有2本不同的语文书,1本数学书,从中任意取出2本,基本事件总数n==3,取出的书恰好都是语文书包含的基本事件个数m==1,取出的书恰好都是语文书的概率为p==.故选:A.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.8. 函数f(x)=ax3﹣x在(﹣∞,+∞)内是减函数,则实数a的取值范围是()A.a≤0B.a<1 C.a<2 D.a<参考答案:A【考点】3F:函数单调性的性质.【分析】根据f′(x)=3ax2﹣1<0恒成立,求得实数a的取值范围.【解答】解:函数f(x)=ax3﹣x在(﹣∞,+∞)内是减函数,故f′(x)=3ax2﹣1<0恒成立,故有3a≤0,求得a≤0,故选:A.9. 若经过点(3,a)、(-2,0)的直线与经过点(3,-4)且斜率为1/2的直线垂直,则a的值为()A. 5/2B. 2/5 C.10 D.-10参考答案:D略10. 已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1) B. C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 已知,是不相等的正数,,,则,的大小关系是__________.参考答案:,,∵,∴,∵,,∴.12. 盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率为_____.参考答案:试题分析:从5个球中任选2个,共有种选法.2个球颜色不同,共有种选法.所以所求概率为.13. 设是互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中真命题的序号为.参考答案:④14. 某算法的流程图如图所示,则输出的值为.参考答案:315. 已知,若非p是q的充分而不必要条件,则实数a的取值范围为______.参考答案:略16. 椭圆上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为()A.6B.7C.8D.9参考答案:C17. 在平行四边形ABCD中,E为线段BC的中点,若,则.参考答案:三、解答题:本大题共5小题,共72分。

新田县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新田县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新田县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,,则这个三角形一定是()A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形2. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .43. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是()A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣34. 设实数,则a 、b 、c 的大小关系为()A .a <c <bB .c <b <aC .b <a <cD .a <b <c5. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .6. 设直线y=t 与曲线C :y=x (x ﹣3)2的三个交点分别为A (a ,t ),B (b ,t ),C (c ,t ),且a <b <c .现给出如下结论:①abc 的取值范围是(0,4);②a 2+b 2+c 2为定值;③c ﹣a 有最小值无最大值.其中正确结论的个数为( )A .0B .1C .2D .37. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象()A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位8. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 10.不等式的解集为( )A .或B .C .或D .11.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A . B.15+C .D.15+15+【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.12.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+B.(1)+∞C. (1,3)D .(3,)+∞二、填空题13.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .14.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 . 15.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +16.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .17.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.18.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.三、解答题19.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.甲地区:分组[70,80)[80,90)[90,100)[100,110)频数231015分组[110,120)[120,130)[130,140)[140,150]频数15x 31乙地区:分组[70,80)[80,90)[90,100)[100,110)频数1298分组[110,120)[120,130)[130,140)[140,150]频数1010y 3(Ⅰ)计算x ,y 的值;(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望. 20.(本小题满分13分)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线22:14x C y +=,A B P ,A B ,AP BP 与直线分别交于点,:2l y =-,M N (1)设直线的斜率分别为,求证:为定值;,AP BP 12,k k 12k k ⋅(2)求线段的长的最小值;MN (3)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.P MN【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.23.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.24.已知函数f(x)=(Ⅰ)求函数f(x)单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.新田县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A C D A D C A C C A题号1112答案C A二、填空题13. 0 .14. (﹣2,0)∪(2,+∞) .15.56 2716. 6 .17.5418.2016三、解答题19.20.21.22.23.(Ⅰ);(Ⅱ)证明见解析;(Ⅲ). 24.。

新田县高级中学2018-2019学年高二上学期第一次月考试卷数学

新田县高级中学2018-2019学年高二上学期第一次月考试卷数学

新田县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .33. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)4. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .36. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD7. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数8. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .9. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0C .1D .﹣1或110.圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=211.下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 12.某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .57二、填空题13.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .14.函数的单调递增区间是 .15.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x﹣)在[0,π]上是减函数其中真命题的序号是 .16.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 17.数据﹣2,﹣1,0,1,2的方差是 .18.在△ABC 中,若角A为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .三、解答题19.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.20.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.21.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.22.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.23.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.24.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.新田县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】 A【解析】解:①在区间(0,+∞)上,函数y=x ﹣1,是减函数.函数y=为增函数.函数y=(x ﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x 3是增函数.∴有两个是增函数,命题①是假命题;②若log m 3<log n 3<0,则,即lgn <lgm <0,则0<n <m <1,命题②为真命题;③若函数f (x )是奇函数,则其图象关于点(0,0)对称, ∴f (x ﹣1)的图象关于点A (1,0)对称,命题③是真命题;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0即为3x ﹣2x ﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f (x )=0有2个实数根命题④为真命题.∴假命题的个数是1个. 故选:A . 【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.2. 【答案】D【解析】解:∵f (x )=,f (1)=f[f (7)]=f (5)=3. 故选:D .3. 【答案】A解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .4. 【答案】B【解析】解:∵(﹣4+5i )i=﹣5﹣4i , ∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.5.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.6.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

新田县二中2018-2019学年高二上学期第二次月考试卷数学

新田县二中2018-2019学年高二上学期第二次月考试卷数学

新田县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .52. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)3. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 4. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 5. 设集合,,则( )A BCD6. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.7. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .408. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .± 9. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆ 10.与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 11.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣512.函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数二、填空题13.已知x 、y 之间的一组数据如下:x 0 1 2 3 y 8 2 64则线性回归方程所表示的直线必经过点 .14.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .16.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.17.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .三、解答题19.已知函数(a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.20.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;(Ⅱ)证明:B1F∥平面A1BE;(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.21.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.22.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.23.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.24.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.新田县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】考点:三角恒等变换.2. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .3. 【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.4. 【答案】A【解析】解:∵A={x|a ﹣1≤x ≤a+2}B={x|3<x <5}∵A ∩B=B ∴A ⊇B∴解得:3≤a ≤4 故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.5. 【答案】C【解析】送分题,直接考察补集的概念,,故选C 。

2018-2019学年上学期高二数学12月月考试题含解析(192)

2018-2019学年上学期高二数学12月月考试题含解析(192)

新田县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图,该程序运行后输出的结果为( )A .7B .15C .31D .632. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .3. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=4. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a的公差,则n S 的最小值仅为6S 的概率为( )A .15 B .16 C .314 D .135. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .6. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4) 7. 计算log 25log 53log 32的值为( )A .1B .2C .4D .88. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( )A .{3,4}B .{1,2,5,6}C .{1,2,3,4,5,6}D .∅9. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]D .(﹣3,+∞)10.方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆11.已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U A B =,则()U C A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤-⎥⎝⎦(C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D )1,02⎛⎤- ⎥⎝⎦12.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台二、填空题13.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 14.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .15.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= .16.给出下列命题: (1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是.(填上所有正确命题的序号)17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.三、解答题19.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.20.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.21.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2的参数方程为(θ为参数).(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.22.已知矩阵A =,向量=.求向量,使得A 2=.23.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.24.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.新田县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】如图,该程序运行后输出的结果为()D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.2.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.3.【答案】D【解析】考点:直线的方程.4.【答案】D【解析】考点:等差数列.5.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.6.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.7.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.8.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.9.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D .10.【答案】A 【解析】试题分析:由方程1x -=,两边平方得221)x -=,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程. 11.【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .12.【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的, 故选:C .二、填空题13.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-114.【答案】 存在x ∈R ,x 3﹣x 2+1>0 .【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是:存在x ∈R ,x 3﹣x 2+1>0. 故答案为:存在x ∈R ,x 3﹣x 2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.15.【答案】. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简16.【答案】 (4)【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误, (3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.17.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O 的半径为3,球O 1 的半径为1,则,在Rt △OMO 1中,OO 1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.18.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.三、解答题19.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.20.【答案】【解析】解:(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,即|﹣x|﹣|+x|≥a2﹣3a 恒成立.由于f(x)=|﹣x|﹣|+x|=,故f(x)的最小值为﹣2,∴﹣2≥a2﹣3a,求得1≤a≤2.(Ⅱ)由于f(x)的最大值为2,∴f(m)≤2,f(n)≤2,若f(m)+f(n)=4,∴m<n≤﹣,∴m+n<﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.21.【答案】【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,故曲线C1与C2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.【答案】=【解析】A=.设=.由A2=,得,从而,所以=【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b ab ∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=,∴当4a b ==+, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446A D P S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.24.【答案】【解析】解:方法一(综合法) (1)取OB 中点E ,连接ME ,NE ∵ME ∥AB ,AB ∥CD ,∴ME ∥CD又∵NE ∥OC ,∴平面MNE ∥平面OCD ∴MN ∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.。

新田县实验中学2018-2019学年上学期高二数学12月月考试题含解析

新田县实验中学2018-2019学年上学期高二数学12月月考试题含解析

新田县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数y=﹣lnx (1≤x ≤e 2) 的值域是( )A .[0,2]B .[﹣2,0]C .[﹣,0]D .[0,]2. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 3. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 4. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .5. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i6. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.7. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .28. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( )A .{2}B .{0,2}C .{﹣1,2}D .{﹣1,0,2}10.若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i11.已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣412.设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .二、填空题13.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.14.若与共线,则y= .15.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .16.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .17.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .18.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题19.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.20.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.21.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.22.有编号为A 1,A 2,…A 10的10个零件,测量其直径(单位:cm ),得到下面数据:编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 直径1.511.491.491.511.491.511.471.461.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品. (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.23.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)24.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.新田县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵函数y=lnx在(0,+∞)上为增函数,故函数y=﹣lnx在(0,+∞)上为减函数,当1≤x≤e2时,若x=1,函数取最大值0,x=e2,函数取最小值﹣2,故函数y=﹣lnx(1≤x≤e2)的值域是[﹣2,0],故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键.2.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF∆的面积为11||||22222AF y⋅=⨯⨯=,故选B.3.【答案】D【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=ZxxxZxxxxM,集合{}aN,0=,又φ≠NM ,1-=∴a或2-=a,故选D.考点:交集及其运算.4.【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D5.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.6.【答案】D.【解析】7.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.8.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.9.【答案】A【解析】解:∵x2<2∴﹣<x<∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁U P={2}故选:A.10.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.11.【答案】A【解析】解:∵点P(1,3)在α终边上,∴tanα=3,∴====﹣.故选:A.12.【答案】A【解析】解:∵0<a <b 且a+b=1∴∴2b >1∴2ab ﹣a=a (2b ﹣1)>0,即2ab >a又a 2+b 2﹣2ab=(a ﹣b )2>0 ∴a 2+b 2>2ab∴最大的一个数为a 2+b 2故选A二、填空题13.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e -'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 14.【答案】 ﹣6 .【解析】解:若与共线,则2y ﹣3×(﹣4)=0解得y=﹣6 故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y 的方程,是解答本题的关键.15.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S 位置是关键.考查空间想象能力、计算能力.16.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.17.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.18.【答案】 .【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),则=sin (﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.三、解答题19.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x>0,∴22x>1,∴f'(x)>0,∴f(x)在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.20.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).21.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.22.【答案】【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件B B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.∴P(B)=.【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.23.【答案】【解析】解:证明:2()10f x x x x=⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩.∵12111111112122222222111111n n n n nn n n nna a a a aa a a aaλλλλλλλλλλλλλλλλ++--+----====⋅------+,(3分)1112a aλλ-≠-,12λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设m =()f m m =. 由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.24.【答案】(1)1n a n=,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分。

新田县一中2018-2019学年上学期高二数学12月月考试题含解析

新田县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a2. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.3. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .104. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 76. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 67. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣8. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 9. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 10.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .132011.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 12.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样二、填空题13.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .14.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 15.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 . 16.已知数列的前项和是, 则数列的通项__________ 17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .18.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 三、解答题19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积4V =,求A 到平面PBC 的距离.111]20.解不等式|2x ﹣1|<|x|+1.21.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。

新田县一中2018-2019学年上学期高三数学10月月考试题

2
1 3
2015

T3
2015 2
,故选 C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 8. 【答案】C 【解析】
第 8 页,共 16 页
∴ ( x1 1, y1 ) 2( x2 1, y2 ) (0, 0) , ∴ y1 2 y2 0 ③, 联立①②③可得 m
姓名__________
分数__________

B. x 2 y 1 4
2 2
C. x 2 y 1 8
2 2
D. x 2 y 1 16
2 2
2. “ p q 为真”是“ p 为假”的( A.充分不必要 B.必要不充分 x y 3. 两个随机变量 x,y 的取值表为
B
C
第 4 页,共 16 页
23.已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3﹣b3=1. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)记 cn=anbn,求数列{cn}的前 n 项和 Sn.
24.某城市 100 户居民的月平均用电量(单位:度),以 160,180 , 180, 200 , 200, 220 ,
2015 2
B. 3
2
2015
C. 3
2015 2
8. 已知曲线 C : y 4 x 的焦点为 F , 过点 F 的直线与曲线 C 交于 P, Q 两点, 且 FP 2 FQ 0 , 则 OPQ 的面积等于( A. 2 2 ) C.



B. 3 2
3 2 2
D.
3 2 4
)条件 C.充要 0 2.2 1 4.3 3 4.8 4 6.7 ) D.既不充分也不必要

新田县高级中学2018-2019学年高二上学期第二次月考试卷数学

新田县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数2. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)3. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .4. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111]6. 已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位 D .向右平移个长度单位7. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称8. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,59. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣10.已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i11.若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣12.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、25二、填空题13.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .14.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 16.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .17.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .三、解答题19.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)20.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.21.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.22.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B两班中各随机抽5名学生进行抽查,其成绩记录如下:x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.23.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.24.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.新田县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.3.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.4.【答案】A【解析】试题分析:由方程1x-=,即221x-=22x y-++=,所(1)(1)1以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.5.【答案】D【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)6. 【答案】 A【解析】解:∵△EFG 是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f (x )=Asin ωx=sin (x ﹣),g (x )=sinx ,由于f (x )=sin (x ﹣)=sin[(x ﹣)],故为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象向左平移个长度单位. 故选:A .【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.7.【答案】A【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,故选:A.【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.8.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.9.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.10.【答案】A【解析】解:复数===,故选:A.【点评】本题考查了复数的运算法则,属于基础题.11.【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,解得﹣2≤t ≤﹣,即实数t 的取值范围为是[﹣2,﹣], 故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.12.【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =.二、填空题13.【答案】 60° .【解析】解:∵|﹣|=,∴∴=3,∴cos <>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.-+∞.14.【答案】2,[1,)【解析】π,18+15.【答案】6【解析】16.【答案】16π【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==17.【答案】.【解析】解:∵直线l 过原点且平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.18.【答案】 ①④ .【解析】解:由所给的正方体知, △PAC 在该正方体上下面上的射影是①,△PAC 在该正方体左右面上的射影是④, △PAC 在该正方体前后面上的射影是④ 故答案为:①④三、解答题19.【答案】(1) ()()210473h x x x =+-- (37x <<)(2) 13 4.33x =≈ 试题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13k f x x =-,()()227g x k x =-,12.00k k ≠≠,,则()()()()21273k h x f x g x k x x =+=+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,()()521, 3.569h h ==,即12124212492694k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分所以,()()210473h x x x =+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()210473h x x x =+--,答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分 考点:利用导数求函数最值20.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增.(2)7b e a ≤<【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不等式()'0h x >得b x e >求出单调增区间;解不等式()'0h x <得bx e<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35b a be +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7be a≤<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫ ⎪⎝⎭上单调递减,在,b e ⎛⎫∞⎪⎝⎭上单调递增. (2)由345a b a b ++<得7ba<,由条件得()min 0h x ≤.①当345a b b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b e e e a a e≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43?3044e b ba b e e b e --+-=>=>,矛盾,∴不成立. 由0ba e-+≤得.③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,45a b a b ++⎡⎤⎢⎥⎣⎦上单调递减, ()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b ae ++++⎛⎫⎛⎫⎛⎫==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52?2230553e b ba b e e b e----=>=>,∴当35b e a e >-时恒成立,综上所述,7b e a ≤<. 21.【答案】【解析】解:(Ⅰ)直线y=x+2的斜率为1,函数f (x )的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,. 由f'(x )>0解得x >2;由f'(x )<0,解得 0<x <2.所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x )>0解得; 由f'(x )<0解得.所以,f (x)在区间上单调递增,在区间上单调递减.所以,当时,函数f (x)取得最小值,.因为对于∀x ∈(0,+∞)都有f (x )>2(a ﹣1)成立,所以,即可. 则. 由解得.所以,a 的取值范围是 .(Ⅲ) 依题得,则.由g'(x )>0解得 x >1; 由g'(x )<0解得 0<x <1.所以函数g (x )在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g (x )在区间[e ﹣1,e]上有两个零点,所以,解得. 所以,b 的取值范围是.【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.22.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x ﹣8)2+(y ﹣8)2=1,②由①②解得或,∵x <y ,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C ,则事件C 包含个基本事件,共有个基本事件,∴P (C )=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X 所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.23.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.24.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.。

新田县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

新田县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +2. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .23. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±34. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=5. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)6. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]7. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,8. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 9. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.10.定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 1111.以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .12.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .二、填空题13.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .14.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.15.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.16.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .17.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 18.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .三、解答题19.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.20.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.21.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.22.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.23.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.24.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.新田县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 2. 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P (3,0)到平面区域的最短距离d min =,∴(x ﹣3)2+y 2的最小值是:.故选:A .【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.3. 【答案】B【解析】解:∵A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},∴2a ﹣1=9或a 2=9,当2a ﹣1=9时,a=5,A ∩B={4,9},不符合题意;当a 2=9时,a=±3,若a=3,集合B 违背互异性;∴a=﹣3. 故选:B .【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.4. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.C.∵=,则z1=z2,正确;D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.5.【答案】C【解析】如图,由双曲线的定义知,aPFPF2||||21=-,aQFQF2||||21=-,两式相加得aPQQFPF4||||||11=-+,又||||1PFPQλ=,1PFPQ⊥,||1||121PFQFλ+=∴,aPFPQQFPF4||)11(||||||1211=-++=-+∴λλ,λλ-++=21114||aPF①,λλλλ-+++-+=∴22211)11(2||aPF②,在12PF F∆中,2212221||||||FFPFPF=+,将①②代入得+-++22)114(λλa22224)11)11(2(ca=-+++-+λλλλ,化简得:+-++22)11(4λλ22222)11()11(e=-+++-+λλλλ,令t=-++λλ211,易知λλ-++=211y在]34,125[上单调递减,故]35,34[∈t,22222284)2(4tttttte+-=-+=∴]25,2537[21)411(82∈+-=t,]210,537[∈e,故答案选C.6.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.7. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 8. 【答案】C. 【解析】9. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .10.【答案】C 【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C11.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.12.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A ,B ,D 皆有可能,而<1,故C 不可能.故选C .【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.二、填空题13.【答案】.【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.14.【答案】1231n -- 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 15.【答案】 ①③④【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④16.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.17.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭.1 18.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义三、解答题19.【答案】【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直【试题解析】(Ⅰ)是等边三角形,为的中点,平面平面,是交线,平面平面.(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,设平面的法向量为,,,,平面的法向量即为平面的法向量.由图形可知所求二面角为锐角,(Ⅲ)设在线段上存在点,,使线段与所在平面成角,平面的法向量为,,,解得,适合在线段上存在点,当线段时,与所在平面成角.20.【答案】证明见解析.【解析】考点:平面的基本性质与推论.21.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.22.【答案】【解析】解:(1)由题得=,=1,又a2=b2+c2,解得a2=8,b2=4.∴椭圆方程为:.(2)设直线的斜率为k,A(x1,y1),B(x2,y2),∴,=1,两式相减得=0,∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,代入上式得:4+4k=0,解得k=﹣1,∴直线l:x+y﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.24.【答案】 【解析】解:(1)∵=,∴数列{b n }是以为首项,3为公差的等差数列.(2)由(1)可知,∴①②①﹣②得:,∴.【点评】本题主要考查数列通项公式和前n 项和的求解,利用定义法和错位相减法是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新田县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2} B .{﹣1,4} C .{﹣1,2} D .{2,4}2. 函数y=的图象大致为( )A .B .C .D .3. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .64. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )A .{1}-B .{1}C .{-D .5. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .356. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)7. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 8. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .139. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.10.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q11.设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A. B.C. D.12.不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}二、填空题13.已知复数,则1+z 50+z 100= .14.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

16.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .17.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力. 18.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是 三、解答题19.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.20.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.21.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.22.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.23.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.24.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).新田县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.2.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.3.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.4.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算 5. 【答案】C【解析】解:因为a 1=1,a 2=2,所以a 3=(1+cos2)a 1+sin2=a 1+1=2,a 4=(1+cos 2π)a 2+sin 2π=2a 2=4.一般地,当n=2k ﹣1(k ∈N *)时,a 2k+1=[1+cos 2]a 2k ﹣1+sin 2=a 2k ﹣1+1,即a 2k+1﹣a 2k ﹣1=1.所以数列{a 2k ﹣1}是首项为1、公差为1的等差数列,因此a 2k ﹣1=k . 当n=2k (k ∈N *)时,a 2k+2=(1+cos2)a 2k +sin2=2a 2k .所以数列{a 2k }是首项为2、公比为2的等比数列,因此a 2k =2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77 故选:C .6. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.7. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k ==∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 8. 【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.9. 【答案】B 【解析】10.【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l , 显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.11.【答案】B【解析】解:A 项定义域为[﹣2,0],D 项值域不是[0,2],C 项对任一x 都有两个y 与之对应,都不符.故选B .【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.12.【答案】B【解析】解:∵x (x ﹣1)<2, ∴x 2﹣x ﹣2<0,即(x ﹣2)(x+1)<0, ∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}. 故选:B二、填空题13.【答案】 i .【解析】解:复数,所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1.14.【答案】【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 15.【答案】①③【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}22sincos []1x x +=得,{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时{}22sin sin []x x =化为22sin (1)sin 1x -=,方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,此时{}22sinsin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方程无解.故②是假命题;对于③,∵3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤==⎢⎥⎣⎦,4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤===⎢⎥⎣⎦,所以数列{}n a 的前3n 项之和为3[12(1)]n n +++-+=23122n n -,故③是真命题;对于④,由16.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.17.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 18.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.三、解答题19.【答案】【解析】解:(1)由|2x ﹣1|+|2x+2|<x+3,得:①得x ∈∅;②得0<x ≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…20.【答案】【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),∴f'(x)=e x﹣a,由f'(x)=e x﹣a=0得x=lna,由f'(x)>0得,x>lna,此时函数单调递增,由f'(x)<0得,x<lna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.(2)若f(x)≥0对任意的x∈R恒成立,等价为f(x)min≥0,由(1)知,f(x)min=a﹣alna﹣1,设g(a)=a﹣alna﹣1,则g'(a)=1﹣lna﹣1=﹣lna,由g'(a)=0得a=1,由g'(x)>0得,0<x<1,此时函数单调递增,由g'(x)<0得,x>1,此时函数单调递减,∴g(a)在a=1处取得最大值,即g(1)=0,因此g(a)≥0的解为a=1,∴a=1.21.【答案】【解析】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x 1<x 2则f (x 1)﹣f (x 2)=﹣=因为函数y=2x在R 上是增函数且x 1<x 2∴f (x 1)﹣f (x 2)=>0即f (x 1)>f (x 2)∴f (x )在(﹣∞,+∞)上为减函数(III )f (x )在(﹣∞,+∞)上为减函数,又因为f (x )是奇函数,所以f (t 2﹣2t )+f (2t 2﹣k )<0等价于f (t 2﹣2t )<﹣f (2t 2﹣k )=f (k ﹣2t 2), 因为f (x )为减函数,由上式可得:t 2﹣2t >k ﹣2t 2. 即对一切t ∈R 有:3t 2﹣2t ﹣k >0,从而判别式.所以k 的取值范围是k <﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.22.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式.23.【答案】【解析】由底面ABCD 为菱形且60oABC ∠=,∴ABC ∆,ADC ∆是等边三角形, 取DC 中点O ,有,OA DC OP DC ⊥⊥,∴POA ∠为二面角P CD A --的平面角, ∴90oPOA ∠=.分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,则(0,1,0),(0,1,0)A P D B C -. …… 3分(Ⅰ)由M 为PB 中点,M ∴3(DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,|||4||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM 所成角的正弦值为4.…… 12分 24.【答案】【解析】解:(1)∵f (5)=3, ∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…。

相关文档
最新文档