高等数学第3版(张卓奎 王金金)第十一章习题解答

合集下载

高等数学课后习题解答 上海交通大学出版社 第三版 习题10解答

高等数学课后习题解答 上海交通大学出版社 第三版 习题10解答

第10章 曲线积分与曲面积分1.计算下列对弧长的曲线积分:(1) sin d C x y s ⎰,其中C 为3x ty t =⎧⎨=⎩,(0≤t ≤1);(2)22()d Cx y s +⎰Ñ,其中C 为圆周cos sin x a t y a t =⎧⎨=⎩,(0≤t ≤2π); (3) 2d Cy s ⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π); (4) d Cy s ⎰,其中C 为抛物线y 2=2x 上由点(0,0)到点(2,2)之间的一段弧; (5) ()d Cx y s +⎰,其中C 为以O (0,0),A (1,0),B (0,1)为顶点的三角形的边界;(6)s ⎰,其中C 为圆周x 2+y 2=ax (a >0);(7) d Cz s ⎰,其中C 为圆锥螺线cos sin x t t y t t z t =⎧⎪=⎨⎪=⎩从t =0到t =1的一段;(8) 2d Cx s ⎰,其中C为圆周2224x y z z ⎧++=⎪⎨=⎪⎩解答:(1)1111sin d 3sin sin cos cos )Cx y s t t tdt t t tdt ===-+⎰⎰⎰(s i n 1c o s 1)=-;(2) 2223()d 2Cx y s a a ππ+==⎰⎰Ñ;(3)22223500d (1cos )16sin 2Cty s a t a dt ππ=-=⎰⎰⎰353025632sin 15a d a πθθ==⎰;(4)3222211d (1)1)33Cy s yy ==+=⎰⎰; (5) C 可以分割为三条直线:0(01)OA y x =≤≤,:0(01)O B xy =≤≤,:1(01)BA y x x =-≤≤()d Cx y s +⎰=()d OAx y s +⎰+()d OBx y s +⎰+()d ABx y s +⎰111(1xdx ydy x x =+++-⎰⎰⎰1=;(6) C 为圆周x 2+y 2=ax (a >0);化为参数方程cos 22sin 2a a x t a y t ⎧=+⎪⎪⎨⎪=⎪⎩,(0≤t ≤2π),2222200coscos 22222a a t ts dt dt a dt a πππ====⎰⎰⎰⎰;(7)1d Cz s =⎰⎰31212011(2)33t ==+=⎰; (8) C可以表示为参数方程[]cos sin ;0,2x y z θθθπ⎧=⎪=∈⎨⎪=⎩2220d cos Cx s πθπ==⎰⎰.所属章节:第十章第一节 难度:一级2.已知半圆形状铁丝cos sin x a ty a t =⎧⎨=⎩(0≤t ≤π)其上每一点的线密度等于该点的纵坐标,求此铁丝的质量解答:20d sin 2Cm y s a a π===⎰⎰所属章节:第十章第一节难度:一级3.已知螺旋线cos sin x a t y a t z bt =⎧⎪=⎨⎪=⎩(b >0)上各点的线密度等于该点到原点的距离的平方,试求t 从0到2π一段弧的质量解答:222222223208()d (ππ)3C m x y z s a b t a b π=++=+=+⎰⎰所属章节:第十章第一节 难度:二级4.求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π)关于Ox 轴的转动惯量(设其上各点的密度与该点到x 轴的距离成正比,比例系数为k )解答:722332d (1cos )(1cos )CI ky s k t t dt ππ==-=-⎰⎰⎰23740102464sin 235t kadt ka π==⎰ 所属章节:第十章第一节 难度:二级5.计算下列对坐标的曲线积分:(1) d d C y x x y +⎰,其中C 为圆弧cos π,(0)sin 4x a t t y a t =⎧≤≤⎨=⎩,依参数t 增加方向绕行;(2) (2)d ()d Ca y x a y y ---⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩自原点起的第一拱; (3) d Cx y ⎰,其中C 为x +y =5上由点A (0,5)到点B (5,0)的一直线段;(4)Cxydx ⎰Ñ,其中C 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) 解答:(1)()22440d d sin (cos )cos sin cos 22Ca y x x y a td a t a td a t atdt ππ+=+==⎡⎤⎣⎦⎰⎰⎰(2)(2)d ()d Ca y x a y y ---⎰220[(2cos )(sin )(cos )((1cos ))a a a t d at a t a a a t d a t a ππ=-+---+-=⎰(3)525d (5)2Cx y xd x =-=-⎰⎰ (4) C 分成两部分在2122()(0):x a y a a C -+=>在x 轴的上部逆时针方向,2C 是从原点指向(2,0)a ,则1202320π02aCC C a xydx xydx xydx x dx a =+=+⋅=-⎰⎰⎰⎰⎰蜒? 所属章节:第十章第二节 难度:一级6.计算22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段y =x ; (2) OA 为抛物线段y =x 2; (3) OA 为y =0,x =1的折线段解答:(1)122201()d d 3OA x y x xy y x dx -+==⎰⎰;(2)()122243208()d d ()15OA x y x xy y x x dx x d x ⎡⎤-+=--=⎣⎦⎰⎰; (3) 设点B 的坐标为(1,0),则OA 分为两段1122205()d d 6OAOBBAx y x xy y x dx ydy -+=+=+=⎰⎰⎰⎰⎰. 所属章节:第十章第二节 难度:一级7.计算22d d ABxy x x y +⎰,其中点A 、B 的坐标分别为A (0,0),B (1,1):(1) AB 为直线段y =x ; (2) AB 为抛物线段y =x 2; (3) AB 为y =0,x =1的折线段 解答:(1) 122202d d (2)1ABxy x x y x dx x dx +=+=⎰⎰;(2)1232202d d [2()]1ABxy x x y x dx x d x +=+=⎰⎰;(3) 设点C 的坐标为(1,0),则AB 分为两段1122d d 011ABACCBxy x x y dx dy +=+=+=⎰⎰⎰⎰⎰.所属章节:第十章第二节 难度:一级8.计算下列曲线积分:(1) 222()d 2d d Ly z x yz y x y -+-⎰,其中L 依参数增加方向绕行的曲线段23x t y t z t =⎧⎪=⎨⎪=⎩(0≤t ≤1);(2)d d (1)d Lx x y y x y z +++-⎰,L 为从点A (1,1,1)到点B (2,3,4)的一直线段;解答:(1)1222466401()d 2d d (43)35Ly z x yz y x z t t t t dt -+-=-+-=⎰⎰; (2)此时L 写作参数方程12 1 (01)31x t y t t z t =+⎧⎪=+≤≤⎨⎪=+⎩1d d (1)d (14293)13Lx x y y x y z t t t dt +++-=+++++=⎰⎰.所属章节:第十章第二节 难度:一级9.一力场由沿横轴正方向的常力F 所构成。

高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 著)

高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 著)
56 。 3
7
16 2 2 2 3 a 。 ; (6) 143 3
4a 4a 4. , 。 3 3
4 1 1 1 k 3 3 5. (1) ab 2 ; (2) ; (3) ; (4) 2 ; (5) (6) 。 a 2 ; 3 2 21 35 3
1 。 6. k (a 2 b 2 ) ( k 为比例系数) 2
dx ,再利用

dx (b x)( x a)
ab 2x a b t 计算) 。 c (作变换 x 2 ba
§ 5 两类曲线积分 1. (1)5; (2) 3 。 2. (1) 2R 2n1 ; (2) 2a 2 ; (3) 2a ; (4) a 3 ; (5) 3.
O ( M , r )
Pdydz Qdzdx Rdxdy
K 2K 3 dxdydz r 0. 2 3 O ( M ,r )
P Q R x y z dxdydz O ( M ,r )


与已知矛盾。 6.提示:按定义直接计算。 7.提示:按定义直接计算。
(2n)! nn 收敛; ( 2 )证明级数 收敛。 n ( n 1) 2 n 1 2 n 1 ( n!)

6. (1)收敛; (2)发散; (3)收敛。
2 2 7.提示:若 x n 收敛,则当 n 充分大时成立 xn 收敛,不一 xn 。反之, x n n 1 n 1
4.
3 。 16
5. h 3 。 § 8 Green 公式与 Stokes 公式
1 3 1 1. (1) ; (2)0; (3) ; (4) 1 e 。 2 10 5 1 2 2. (1) a ; (2) 3a 2 。 6 7 1 2 3. (1) sin 1 cos 1 ; (2) 3 3( 1)e sin 2 2 cos 2 3 。 6 2 3 9 4. (1) 3a 2 ; (2)0; (3) 2a(a b) ; (4) 。 2 5.提示:利用 Green 公式可得

张卓奎《高等数学(第3版)》第十一章微分方程-本章提要

张卓奎《高等数学(第3版)》第十一章微分方程-本章提要

第10章 微分方程一、微分方程基本概念微分方程 凡表示未知函数、未知函数的导数(或微分)与自变量之间的关系的方程。

微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数。

微分方程的解 满足微分方程的函数(这样的函数及导数其代入微分方程后,能使该方程变为恒等式)。

微分方程的通解 解中含有任意常数,且相互独立的任意常数的个数与微分方程的阶数相同。

微分方程的特解 利用初始条件,确定了通解中的任意常数后而得出的解。

初始条件 实际问题中用来确定特解的已知条件。

如00==y y y y '',等。

二、一阶微分方程的可解类型 可分离变量的方程()()dy f x g y dx= 分离变量,再积分,则 1d ()d ()y f x x C g y =+⎰⎰ 齐次方程dy y dx x ϕ⎛⎫= ⎪⎝⎭作变量代换,令y u x =,化为d 1d ()u x u u x ϕ=-,则 d 1d ()u x u u x ϕ=-⎰⎰ 一阶线性方程()()dy P x y Q x dx+= 用常数变易法,则 ()()()P x dx P x dx y e Q x e dx C --⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ *伯努利方程(0,1n ≠)()()n dy P x y Q x y dx += 作变量代换,令1n z y -=,化为线性方程(1)()(1)()dz n P x z n Q x dx+-=-。

求出该方程通解,然后再回代。

全微分方程(,)(,)0P x y dx Q x y dy += (P Q y x∂∂=∂∂) 曲线积分法: 000(,),d (,)x y x y u x y P x y x Q x y dy =+⎰⎰()=C; 凑微分法:(,)du x y =()()Pdx Qdy d P d Q =++⎰⎰=0三、可降阶的微分方程()()n y f x = 连续积分n 次可得通解。

(,)y f x y '''= 令 ,y p '=y p '''=,原方程降为关于,x p 的一阶微分方程(,)p f x p '=。

高等数学第3版(张卓奎 王金金)第七章习题解答

高等数学第3版(张卓奎 王金金)第七章习题解答

习题7-11. 已知函数22(,)tanxf x y x y xy y=+-,试求(,)f tx ty . 解 ()()()()222222(,)tan(tan )(,)tx xf tx ty tx ty tx ty t x y xy t f x y ty y=+-=+-=. 2. 已知函数()(,)(),(2,3),-=++x y f x y x y f f x y y 求,.解 ()1(2,3)=,=(2)5x f f x y y x y ++,.3. 已知()22(,),+=-yf x y x y f x y x求,. 解 令 , y x y u v x +==⇒ , 11u uvx y v v==++,则 ()2221(,)111u v u uv f u v v v v -⎛⎫⎛⎫=-= ⎪ ⎪+++⎝⎭⎝⎭, 故 ()2(1) , (1)1x y f x y y y-=≠-+,. 4. 求下列各函数的定义域,并画出定义域的图形:(1)ln()=z xy ; (2)23z =(3)ln()z y x =- (4)=z ;(5)u =R >r >0);解 (1){}(,)0,00,0>><<x y x y x y 或;(2){}222(,)24,x y x y x y≤+≤>;(3)0y x ->,0x ≥且2210x y -->,故函数的定义域为,{}22(,)0,1D x y y x x y =>≥+<.(4)2222(,)1⎧⎫⎪⎪+≤⎨⎬⎪⎪⎩⎭x y x y a b .(5)22220R x y z ---≥且22220x y z r ++->,故函数的定义域为{}22222(,,)D x y z r x y z R =<++≤.5. 求下列各极限: (1)22011limx y xyx y →→-+; (2)00x y →→; (3)220sin()lim →→x y xy x y ; (4)222222001cos()lim ()x y x y x y x y e →→-++; 解 (1)2211lim=1x y xyx y→→-+; (2)0000014x x x y y y →→→→→→-;(3)22200sin()1sin()1limlim 2x x y y xy xy x y x xy →→→→⎡⎤=⋅=⎢⎥⎣⎦ (4)22222224222200001cos()11cos limlimlim 1lim 02()x y xyx x t t y y x y t t tt x y ee →→→→→→-+-=⋅=⋅=+ 6. 从012lim (,0)0,lim (,)25→→==x x f x f x x ,能否断定00lim (,)→→x y f x y 不存在?答 因为函数(,)f x y 沿不同路径的极限不相等,所以极限0lim (,)→→x y f x y 不存在.7. 函数2222y xz y x+=-在何处是间断的?解 为了使函数的表达式有意义,需要220y x -≠,所以曲线220y x -=上的点均是函数2222y xz y x+=-的间断点.8. 证明:极限00limx y x yx y →→+-不存在。

高等代数_北大第三版_习题答案.pdf

高等代数_北大第三版_习题答案.pdf
P44.3 .2)
∴ ( x3 − x 2 − x) = ( x − 1 + 2i)3 + (2 − 8i )( x − 1 + 2i) 2 −(12 + 8i )( x − 1 + 2i ) − (9 − 8i ) 即余式 −9 + 8i
商 x − 2ix − (5 + 2i )
2
P44. 4.1).
m n
f m , g1 g 2
g n ) = 1 (注反复归纳用 12 题) 。
f(x)=x3+2x2+2x+1, g(x)=x4+x3+2x2+x+1 解:g(x)=f(x)(x-1)+2(x2+x+1), f(x)=(x2+x+1)(x+1) 即(f(x),g(x)) = x2+x+1.
令(x +x+1)=0 得
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
∴ d ( x) h( x) = ( f ( x ), g ( x )) h( x ) = u ( x ) f ( x ) h( x ) + v ( x ) g ( x ) h( x ).
而首项系数=1,又是公因式得(由 P45、8) ,它是最大公因式,且

数学模型第三版(高等教育出版社)课后习题答案

数学模型第三版(高等教育出版社)课后习题答案

《数学模型》作业解答第七章(2008年12月4日)1. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: ⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到 ⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x k k k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-= 当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 212,1<⇔<∴αβλ 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: ⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则 ,03=++q p μμ 其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q q μμμ 其中,231i w +-= 求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ 8时,显然有442λ-= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有442λ-≤= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkik a a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 = 有()()T nk k k nk k k n j nk n j k n j k n j jk nj n j jk j n j jk j T nk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()T nk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 32154→→→→13542→→→→42135→→→→ →→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A 令()T e 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0= 数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=n m n m D 21112 当mn 2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈ E D -=1 , m n E 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为()1122--+=⋅+⋅n n n n npq q m npq m q m于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n n p q q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈ 当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:m n E 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r nn r r n r r f 7))(4(7)( 收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型 2. 数学模型 对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中著名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验e.n 阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .9. (1)某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿. 次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经 过路径中的同一地点.为什么?(2)37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者 进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标, 第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点.方法二:设想有两个人, 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. 0d t早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(5) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(6) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .(1).求渔场鱼量的平衡点,并讨论其稳定性;(2).试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,并求此时渔场鱼量水平*x . 解:(1).)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNh N x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ②当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.(2).最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.5.某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s y x S ∈≥≥≤+≤+≤++=,,0,020********6140032..54max模型的求解:用图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及组成的凸五边形区域.直线C y x l =+54:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x 260020054004max =⨯+⨯=S (千元).故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元.6.已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题.用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .7.深水中的波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波速v 的表达式.解:设v ,λ,d ,ρ,g 的关系为),,,,(g d v f ρλ=0.其量纲表达式为[v ]=LM 0T -1,[λ]=LM 0T 0,[d ]=LM 0T 0,[ρ]=L -3MT 0, [g ]=LM 0T -2,其中L ,M ,T 是基本量纲.---------4分量纲矩阵为A=)()()()()()()()(20010*********g d v T M L ρλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧===+-++02y - y -0 y 03y y 51454321y y y 2ll1x1l2x的基本解为1y =),21,0,0,21,1(--2=)0,0,1,1,0(- 由量纲i P 定理 得 ⎪⎩⎪⎨⎧==---2112121πλπλd g v∴g v λ=1π, )(21πϕπ=, λπd =2)(λϕλd g v =∴,其中ϕ是未定函数 .第二章(2)(2008年10月9日15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L 齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数.16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f 其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(12001101000110k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g lt =1π, )(21πϕπ=, 2/12/12mgkl =π ∴)(2/12/1mgkl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ ⎩⎨⎧==---22/112/112/12/1ππk g m l g tl当无量纲量l l m m '='时, 就有 ll l g g l t t '=⋅'='. 第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222TkQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c T c dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第四章(2008年10月28日)1.某厂生产甲、乙两种产品,一件甲产品用A 原料1千克,B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大?解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70l以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =1202ll1x1l2x及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值. 由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为()()(),,0t C t x t f 血药浓度为中心室药量为()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()(),0,000V D C t f ==(2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定; ③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .第八章(2008年12月9日)1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层。

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

第10章 无穷级数一、常数项级数的概念常数项级数 设给定一个数列12,,,,n u u u ,表达式1nn u∞=∑称为常数项无穷级数.121n n s u u u u =++++称为该级数的(前n 项)部分和.级数收敛 如果部分和数列{}n s 有极限,即若lim n n s s →∞=,则称该级数收敛,s 为其和,并记为1nn us ∞==∑,否则,称级数发散.二、常数项级数性质 (1)如果级数1nn u∞=∑收敛于s ,则级数1nn ku∞=∑(k 为常数)也收敛,且收敛于ks ;(2)如果级数11, n nn n u v∞∞==∑∑分别收敛于s 和σ,a 和b 为任意实数,则1()nn n aubv ∞=+∑也收敛,且收敛于as b σ+;(3) 在级数中去掉(加上或改变有限项),级数敛散性不变; (4) 收敛级数加括号后仍然收敛,且收敛于原来的和; (5) 级数1nn u∞=∑收敛的必要条件是:0lim =∞→n n u .三、常数项级数的审敛法 1.正项级数收敛充要条件 数列{}n s 有上界 1nn u∞=∑收敛。

比较审敛法 n n v u ≤(1,2,n =),当1nn v∞=∑收敛时⇒1nn u∞=∑收敛;当∑∞=1n nu发散时⇒∑∞=1n nv也发散。

(极限形式) lim n n nul v →∞=,当0l <<+∞时,1nn u∞=∑与∑∞=1n nv同时收敛或发散;当0l =时,若1nn v∞=∑收敛⇒1nn u∞=∑必收敛;当l =+∞时,若1nn u∞=∑发散⇒1nn v∞=∑必发散。

比值审敛法 1limn n nu u ρ+→∞=,当10<≤ρ时,1n n u ∞=∑收敛; 当∞<<ρ1时,1nn u∞=∑发散;当1=ρ时,判别法失效。

根值判别法n ρ=,当10<≤ρ时,1nn u∞=∑收敛;当∞<<ρ1时,1nn u∞=∑发散;当1=ρ时,判别法失效。

高等数学XX大学第三版下册课后习题及答案

高等数学XX大学第三版下册课后习题及答案
故 s0 42 (3)2 52 5 2
sz 42 (3)2 (5 5)2 5 .
6.在 z 轴上,求与两点 A(-4,1,7)和 B(3,5,-2)等距离的点. 解:设此点为 M(0,0,z),则
解得 z 14 9 14
即所求点为 M(0,0, ).
9
7.试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.
(1)| (a b) (a b) | a a a b b a b b || 2(a b) |
(2)| (3a b) (a 2b) || 3a a 6a b b a 2b b || 7(b a) |
27.求垂直于向量 3i-4j-k 和 2i-j+k 的单位向量,并求上述两向量夹角的正弦.
由①及②可得: a b a b 1 (a b)2 1 | a |2 | b |2 2 | a |2| b |2 4
又 a b 1 | b |2 0 ,所以 cos a b 1 ,
2
| a || b | 2
故 arccos 1 π . 23
解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k
在 x 轴上的投影 ax=13,在 y 轴上分向量为 7j.
17.解:设 a {ax , ay , az} 则有
求得
ax

1 2
.


设 a 在 xoy 面上的投影向量为 b 则有 b {ax , ay , 0}
15.求出向量 a=i+j+k,b=2i-3j+5k 和 c=-2i-j+2k 的模,并分别用单位向量 ea , eb , ec 来表达向量 a,b,c.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 微分方程
习题11-1
1.说出下列各微分方程的阶数:
(1)2
0dy dy x y dx dx ⎛⎫
+-= ⎪⎝⎭
; (2)220d Q dQ Q L R
dt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=;
(5)2sin y y y x '''++= ; (6)2d sin .d ρ
ρθθ
+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.
2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==
(2)0 , 3sin 4cos ;y y y x x ''+==-
(3)221
, ;y x y y x
''=+=
(4)21221 , sin cos .2
x x d y y e y C x C x e dx +==++
解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅
∴25y x =是方程的解.
(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得
()()3sin 4cos 3sin 4cos 0y y x x x x ''+=-++-= ∴ 3sin 4cos y x x =-是方程的解.
(3)∵ 2312,y y x x '''=-=,代入方程,得 2
32
21x x x
≠+ ∴1
y x
=
是方程的解. (4)∵ 21212211
cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛
⎫--++ ⎪⎝
⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭
∴121
sin cos 2
x y C x C x e =++是方程的解.
3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==
解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得
220x y xy yy ''--+=
移项后即得 ()22 x y y x y '-=-
故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.
(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=
+=+, 即 y
y xy x
'=- ()()
()
()
()
2322
2
3
122 y xy x y y xy xy y y
xy xy xy
y xy x xy x xy x ''--+-'--+-+-''=
=
=
---,
代入微分方程,得
()
()
322
3
2
22()20xy xy xy
y y y
xy x x y xy x xy x
xy x xy x -+--⋅
+⋅
+⋅
-⋅=---- 故 ln()y xy =所确定的函数是所给微分方程的解.
4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==
(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==
∴222 =0011C -+=
即 221x xy y -+=
(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 1120
1
C C C =⎧⎨+=⎩。

相关文档
最新文档