典型环节伯德图演示文稿

合集下载

自动控制原理之伯德图ppt课件

自动控制原理之伯德图ppt课件

求出。
2
系统开环对数幅频特性L(ω)通过0分贝线,即 L(c ) 0 或 A(c ) 1
时的频率c 称为穿越频率。穿越频率c 是开环对数相频
特性的一个很重要的参量。
3
5.4 系统开环频率特性的绘制
⑥ 画出各串联典型环节相频特性,将它们相加后得到 系统开环相频特性。
绘制开环系统对数相频特性时,可分环节绘 出各分量的对数相频特性,然后将各分量的纵坐 标相加,就可以得到系统的开环对数相频特性。
40dB/ dec
20dB/ dec
20dB/ dec
D
开环系统对数幅频特性图 60dB/ dec
5
5.4 系统开环频率特性的绘制
二、绘制系统开环频率特性伯德图的步骤
① 确定交接频率w1、w2、w3……,标在角频率w轴上。 ② 在w=1处,量出幅值20lgK,其中K为系统开环放大系数。 (在图中标出相应的字母,如A点) ③ 通过A点作一条-20NdB/十倍频的直线,其中N为系统的 无差阶数,直到第一个交接频率w1。如果w1<1,则低频渐 近线的延长线经过A点。
斜率增加-40dB/十倍频。
2
5.4 系统开环频率特性的绘制
⑤ 绘出用渐近线表示的对数幅频特性以后,如果需要,可以进
行修正。通常只需修正交接频率处以及交接频率的二倍频和 1/2倍频处的幅值就可以了。
对于一阶项,在交接频率处的修正值为±3dB;
在交接频率的二倍频和1/2倍频处的修正值为±1dB。
对于二阶项,在交接频率处的修正值可由公式 20lg 1
4
例5-12 已知系统的开环传递函数为
G(s)H (s)
K (1 s) 1 1
LL( )
s T1s 1 T2 s 2

BODE图的讲解

BODE图的讲解
§5.6 利用开环频率特性分析系统的性能
§5.7 利用闭环频率特性分析系统的性能
共二十三页
§5.3
对数(duì shù)频率特性 ( Bode )
Bode图介绍
(jièshào)
共二十三页
§5.3
对数(duì shù)频率特性 ( Bode)(2)
Bode图介绍(jièshào)
横轴 按 lg 刻度,dec “十倍频程”
绘制开环系统(xìtǒng)Bode图的 步骤
⑴ 化G(j)为尾1标准型
⑵ 顺序列出转折频率
例1
G(s)
s(
40(s 0.5) 0.2)( s2 s 1)
100( s 1)
G(s)
0.5
s( s 1)(s2 s 1)
0.2
0.2 惯性环节
0.5 一阶复合微分
1 振荡环节
⑶ 确定低频特性
例1 根据(gēnjù)Bode图确定系统传递函数。
解. 依图有 G(s) K
Ts 1
30
20lg K 30 K 1020 31.6
转折频率 2 1 T T 0.5
G(s)
3.16 s 1
2
• Bode图与Nyquist图之间的对应(duìyìng)
关系: • 截止频率c:G( jc ) 1
最小转折频率之左 的特性或其延长线
基准点 ( 1, L(1) 20lg K ) 斜率 20 v dB dec
⑷ 叠加作图
一阶
二阶
惯性环节 -20dB/dec
复合微分 +20dB/dec
振荡环节 -40dB/dec
复合微分 +40dB/dec
共二十三页
0.2 惯性环节 -20

《典型环节伯德图》课件

《典型环节伯德图》课件
Maya:一汇报人:
稳定性分析
稳定性定义:系统 在受到扰动后能够 恢复到其原始状态 的能力
稳定性分类:稳定、 不稳定、临界稳定
稳定性分析方法: 伯德图分析、奈奎 斯特图分析、根轨 迹分析等
伯德图分析:通过绘制 伯德图,观察系统在不 同频率下的增益和相位 变化,判断系统的稳定 性。
动态性能分析
伯德图:描述系统动态性能的图形工具 频率响应:系统对不同频率信号的响应 相位裕度:系统稳定性的指标 增益裕度:系统放大能力的指标 动态性能分析方法:如根轨迹法、频率响应法等
MATLAB还提供了丰富的函数库,可以方便地进行各种数学计算和仿真。
Simulink软件介绍
软件名称: Simulink
开发商: MathWorks
公司
软件功能:用 于建模、仿真 和分析动态系

应用领域:广 泛应用于控制 工程、信号处 理、通信等领

软件特点:图 形化界面,易 于操作,支持 多种编程语言
软件版本:最 新版本为 Simulink 2022a
其他绘制软件介绍
AutoCAD:一款专业的CAD软件,可以绘制 各种类型的伯德图
SolidWorks:一款三维设计软件,可以绘制 伯德图
Inventor:一款三维设计软件,可以绘制伯 德图
SketchUp:一款三维设计软件,可以绘制伯 德图
Blender:一款三维设计软件,可以绘制伯德 图
幅频特性的分析
幅频特性的定义:描述信号在频率域上的分布特性 幅频特性的表示方法:通常采用伯德图或奈奎斯特图 幅频特性的应用:用于分析信号的频率响应、滤波器设计等 幅频特性的测量方法:通过频谱分析仪或示波器等仪器进行测量
相频特性的分析
相频特性的定义:描述信号频率与相位之间的关系 相频特性的表示方法:通常用相频特性曲线表示 相频特性的应用:在信号处理、通信等领域有广泛应用 相频特性的测量方法:通过实验或仿真进行测量

典型环节的Bode图

典型环节的Bode图

控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。

否则就是非最小相位系统。

对数幅频特性与相频特性之间存在确定的对应关系。

对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。

也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。

非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。

对响应要求快的系统,不宜采用非最小相位元件。

Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。

sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。

输出sys 是储存传递函数数据的传递函数目标。

单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。

这两个向量并不要求维数相同。

如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。

若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。

2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。

尼奎斯特图 伯德图

尼奎斯特图 伯德图

1.比例环节比例环节的传递函数为G(s)=K所以比例环节的频率特性为G(j ω)=K 十j0=0j Ke其幅相频率特性曲线如图5-2所示。

其中幅值M(ω) =K 。

相位移φ(ω)=00。

并且都与ω无关,它表示输出为输入的K 倍,且相位相同。

图5—2 比例环节幅相频率特性曲线2.积分环节积分环节的传递函数为G(s)=s1所以积分环节的频率特性为21101)(πωωωωjejj j G -=-==其幅相频率特性曲线如图5—3所示,它是整个负虚轴,且当ω→∞时,趋向原点0,显然积分环节是一个相位滞后环节[因为φ(ω)=-900],每当信号通过一个积分环节,相位将滞后900。

图5—3 积分环节幅相频率特性曲线3.微分环节微分环节的传递函数为G(s)=s所以微分环节的频率特性为20)(πωωωωjej j j G =+==其幅相频率特性曲线如图5—4所示。

是整个正虚轴,恰好与积分环节的特性相反。

其幅值变化与ω成正比:M(ω)=ω,当ω=0时, M(ω)也为零,当ω→∞时,M(ω)也→∞。

微分环节是一个相位超前环节[φ(ω)=+900]。

系统中每增加一个微分环节将使相位超前900。

图5-4 微分环节幅相频率特性曲线4.一阶惯性环节一阶惯性环节的传递函数为11)(+=Ts s G所以一阶惯性环节的频率特性为222211111)(ωωωωωT T jT jT j G +-+=+=幅频特性和相频特性为ωωφωωT tg T M 122)(11)(--=+=由式(5—16)直接可得实频特性和虚频特性为22221)(11)(ωωωωωT T I T R +-=+=并满足下面的圆的方程22221)(21)(⎪⎭⎫ ⎝⎛=+⎥⎦⎤⎢⎣⎡-ωωI R 圆心为⎪⎭⎫⎝⎛0,21,半径为21。

当ω从0→∞时,M(ω)从l →0;φ(ω)从00→-900,因此,一阶惯性环节的频率特性位于直角坐标图的第四象限,且为一半圆,如图5—5所示。

如何绘制伯德图PPT课件

如何绘制伯德图PPT课件
G( j ) G1 ( j )G2 ( j )Gn ( j ) G( j ) G1 ( j ) G2 ( j ) Gn ( j ) L( ) 20 lg G( j) 20 lg G1 ( j) 20 lg G2 ( j ) 20 lg Gn ( j)
G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)

(
1
j
)n
其对数幅频特性为
20 lg
G(
j )

20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB

如何绘制伯德图.ppt

如何绘制伯德图.ppt

j?
??
其幅频特性为
1
G ( j? ) ? ?
对数幅频特性是
(5-65) (5-66)
1
20 lg G ( j? ) ? 20 lg ? ? 20 lg ? ?
(5-67)
当 ? ? 0 . 1 时,20 lg G ( j 0 . 1 ) ? ? 20 lg 0 . 1 ? 20 ( dB ) ; 当 ? ? 1 时,20 lg G ( j1) ? ? 20 lg 1 ? 0 ( dB ) ;
当 ? ? 10 时,20 lg G ( j10 ) ? ? 20 lg 10 ? ? 20 ( dB ) 。
6
设 ? ' ? 10 ? ,则有
? 20 lg ? ' ? ? 20 lg 10 ? ? ? 20 ? 20 lg ?
可见,其对数幅频特性是一条 在
dB L(? )
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线
(5-73) (5-74)
? ? 20 lg 1 ? T 2? 2
当 ? ?? 1 时, 20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? 0 ( dB ) ,
T
当 ? ?? 1 时,20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? ? 20 lg T ? ( dB )
40
(ω 轴),且以每增加十倍频降
20
? 20 dB / dec
低20分贝的速度( -20dB/dec )
0
0.01
0.1
1
10
?
变化的直线。
? 20
积分环节的相频特性是
? G ( j ? ) ? ? 90 0

如何绘制伯德图讲诉

如何绘制伯德图讲诉
0.7
-10
( )
渐近线
40dB / Dec-4
-8
1
1
1
1
2
0.8 1.0
5
10
(deg)0° -30°
10T 5T
2T
T
T
T
T
左图是不同阻尼系数情况下的
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1
2T T 2
2
几个特征点: 0,() 0; 1 ,() ; ,() 。
T
2
相频特性曲线在半对数坐标中关于( 0, -90°)点是斜对称的。
这里要说明的是当 (0, 1 ) 时,() (0,90) ,当 ( 1 , )
20log K
() 180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log 相频特性:
() K 0
180
Thursday, May 02, 2019
K 1 K 1 0 K 1
-20

-45°
-90°
1
1
1
1
1
2
5 10 20
20T 10T 5T
2T T
T
T
T
T
图中,红、绿线分别是低频、高频渐近线,蓝线是实际曲线。
Thursday, May 02, 2019
5
惯性环节的Bode图
波德图误差分析(实际频率特性和渐近线之间的误差):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

围与惯性环节类似。
相频特性是: 当 时,
一阶微分环节的相频特性
如图5-16 所示,相角变化 范围是00至900,转折频率 1/T处的相角为450。
图5-16 一阶微分环节的Bode图
比较图5-16和5-14,可 知,一阶微分环节与惯性 环节的对数幅频特性和相 频特性是以横轴(ω轴) 为对称的。
五振荡环节 振荡环节的频率特性是:
很明显,距离转折频率 愈

, 愈能满足近似条
件,用渐近线表示对数幅频
特性的精度就愈高;反之,
距离转折频率愈近,渐近线
的误差愈大。 等于转折频率
时,误差最大,最大误差为:
时的误差是:
时的误差是:
误差曲线对称于转折频率 ,如 图5-15所示。由图5-15可知,惯 性环节渐近线特性与精确特性的误 差主要在交接频率 上下十倍频程 范围内。转折频率十倍频以上的误 差极小,可忽略。经过修正后的精 确对数幅频特性如图5-14所示。
通常将这两个图形上下放置(幅频特性在上,相频特性 在下),且将纵轴对齐,便于求出同一频率的幅值和相角 的大小,同时为求取系统相角裕度带来方便。
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是: 对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与 角频率ω无关且平行于横轴的直线,其纵坐标为20lgK 当有n个。放大环节串联时,即:
振荡环节对数相频特性图
六二阶微分环节
二阶微分环节的频率特性是:
其对数幅频特性是: 相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对 称,如图5-21。渐近线 的转折频率为,相角变 化范围是00至+1定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
的直线。两个积分环节串联
的Bode图如图5-13所示。
图5-13 两个积分环节串联的Bode图
三惯性环节 惯性环节的频率特性是:
其对数幅频特性是:
用两条直线近似描述惯性环节的对数幅频特性, 即在
的低频段时,

的高频段时
,与零分贝线重合; 是一条斜率为
-20(dB/dec.)的直线。
两条直线在 处相交, 称为转折频率,由这两条直 线构成的折线称为对数幅频特性的渐近线。如图5-14所 示。
渐近线与精确对数幅频特性曲线的误差分析如下:
当 时,
,它是阻尼比ξ的函数;当ξ=1
时为-6(dB);
当ξ=0.5时为0(dB);
当ξ=0.25时为+6(dB);误差曲线如图5-18所示。
图5-17 振荡环节渐进线对数幅频特性 图5-18 振荡环节对数幅频特性误差修正曲线
由图知,振荡环节的误差可正可负,它们是阻尼比ξ的 函数,且以 的转折频率为对称,距离转折频率愈远误 差愈小。通常大于(或小于)十倍转折频率时,误差可 忽略不计。经过修正后的对数幅频特性曲线如图5-19所 示。 由图5-19可看出,振 荡环节的对数幅频特性 在转折频率 附近产生 谐振峰值,这是该环节 固有振荡性能在频率特 性上的反映。前面已经 分析过,谐振频率ωr 和谐振峰Mr分别为:
振荡环节对数幅频率特性图
其中 称为振荡环节的无阻尼(ξ=0)自然振 荡频率,它也是渐近线的转折频率。由式(5-81) 可知,当阻尼比ξ愈小谐振频率ωr愈接近无阻尼自 然振荡频率ωn,当ξ=0时,ωr=ωn
振荡环节的相频特性是:
除上面三种特殊情况外,振荡环节相频特性还是阻 尼比ξ的函数,随阻尼比ξ变化,相频特性在转折频率 附近的变化速率也发生变化,阻尼比ξ越小,变化速 率越大,反之愈小。但这种变化不影响整个相频特性 的大致形状。不同阻尼比ξ的相频特性如图5-20 所示 。
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环节 的对数幅频特性和相频特性如图 5-12所示。
(5-68)
当有n个积分环节串联时,即:
其对数幅频特性为:
是一条斜率为-n×20dB/dec ,且在ω=1(弧度/秒)处过 零分贝线(ω轴)的直线。
相频特性是一条与ω无关, 值为-n×900 且与ω轴平行
其对数幅频特性为:
(5-79) (5-80)
渐近线的第一段折线与零分贝线(ω轴)重合,对应的 频率范围是0至 ;第二段折线的起点在 处,是一条斜率 为-40(dB/dec)的直线,对应的频率范围是 至∞。两 段折线构成振荡环节对数幅频特性的渐近线,它们的转折 频率为 。对数幅频特性曲线的渐近线如图5-17所示。
不稳定惯性环节的Bode图
其对数幅频特性与惯性环节相同;相频特性与惯性环
节相比是以
为对称,相角的变化范围是 至 。
Bode如图5-22所示
(5-62)
幅值的总分贝数为:
放大环节的相频特性是:
(5-63) (5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
二积分环节 积分环节的频率特性是: 其幅频特性为:
对数幅频特性是:

,则有:
可见,其对数幅频特性是一条在 ω=1(弧度/秒)处穿过零分贝线 (ω轴),且以每增加十倍频率降 低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:
惯性环节的相频特性为:
对应的相频特性曲线如图5-14所 示。它是一条由 至 范围内变化 的反正切函数曲线,且以 和 的交点为斜对称.
四一阶微分环节 一阶微分环节频率特性为: 其对数幅频特性是:
一阶微分环节的对数幅频特性如图5-16所示,渐
近线的转折频率为 ,转折频率处渐近特性与精确特
性的误差为
,其误差均为正分贝数,误差范
典型环节伯德图演示文稿
伯德图又叫对数频率特性曲线,是将幅频特性和相频 特性分别绘制在两个不同的坐标平面上,前者叫对数幅 频特性,后者叫对数相频特性。
两个坐标平面横轴(ω轴)用对数分度,对数幅频特性的 纵轴用线性分度,它表示幅值的分贝数, 即L(ω)=20lg|G( jω)|(dB);对数相频特性的纵轴也是线 性分度,它表示相角的度数,即φ(ω)=∠G( jω)(度)。
相关文档
最新文档