高中数学高一知识点及题型
高一数学重点题型及答案

高一数学重点题型及答案一、函数与方程1. 一元一次方程一元一次方程是高一数学中最基础的知识点,常见于数学的各个分支中。
它的一般形式为ax+b=0。
下面是一些典型的解题方法:•立式法:把常数项移到等号右侧,系数合并减法求解。
•代数法:用代数的方式进行计算分解。
•图象法:在曲线上从根轴上读出解。
2. 一元二次方程一元二次方程是指最高项次数为2的一元方程,它的一般形式是ax2+bx+ c=0。
下面是一些常见的解法:•因式分解法•公式法•前后关系法•配方法3. 不等式不等式是指数与数之间大小关系表达式。
在数学中,不等式是与等式相对应的一个种数学表达式。
主要有以下几种类型:•一次不等式•二次不等式•一元有理不等式•一元无理不等式•一元绝对值不等式二、解析几何1. 平面向量平面向量是指在平面内表示自由向量的量。
在高中数学中,平面向量是一种非常重要的概念,主要知识点包括:•向量的概念•向量加减法•向量数量积、向量积的概念2. 直线与平面•直线与平面的位置关系•直线的方程•平面的方程3. 空间几何体•空间点、向量、直线、平面的概念•点、直线、面之间的关系•球、圆锥、圆柱、圆台等空间几何体的概念和基本性质三、三角函数三角函数是高三数学中最为复杂,但也是最为重要的一个知识点。
1. 三角函数的基本概念•正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数•三角函数的诱导公式•诱导公式的应用2. 三角函数的性质和变换•三角函数的周期性•三角函数的奇偶性•三角函数的单调性•三角函数的图象•三角函数的合成、反函数3. 三角函数的应用•三角函数在直角三角形中的应用•三角函数在数学物理中的应用•三角函数在球面三角学中的应用四、数列数列是数学中的一类常见概念,它由若干有序的数构成,通常用英文字母a n 表示。
包括以下几个重要的知识点:1. 数列的基本概念与性质•数列、通项公式、递推公式、公比的概念•数列的极限•数列的等比数列、等差数列、等差数列的和公式、似等比数列、变比数列等2. 数列极限和等比数列•数列的极限的定义、性质•数列的极限运算法则•等比数列、等比数列的求和公式3. 数列的应用•数列的递推和通项公式在实际问题中的应用•数列极限在实际问题中的应用以上是高一数学重点题型及答案。
高中数学必修1知识点总结及题型

高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示名称非负整数集(自然数集) 整数集实数集符号N N*或N+Z Q R知识点四集合的表示方法1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集________(或________)真子集如果集合A⊆B,但存在元素________,且________,我们称集合A是集合B的真子集________(或________)2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六 集合的运算 1.交集 2.并集自然语言符号语言图形语言由_________________ _________________组成的集合,称为A 与B 的并集A ∪B =_______________3.交集与并集的性质交集的运算性质并集的运算性质 A ∩B =________ A ∪B =________ A ∩A =________ A ∪A =________ A ∩∅=________ A ∪∅=________ A ⊆B ⇔A ∩B =________A ⊆B ⇔A ∪B =________4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________. 5.补集文字语言 对于一个集合A ,由全集U 中__________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________符号语言 ∁U A =________________图形语言定义符号语言图形图言 (Venn 图)集合相等 如果集合A 是集合B 的子集(A ⊆B),且________________,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等A =B自然语言符号语言图形语言由___________________ _____________________ 组成的集合,称为A 与B 的交集A ∩B =_________典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
高一数学函数知识点总结及例题

高一数学函数知识点总结及例题函数是高中数学中的重要概念,也是后续学习数学的基础。
本文将对高一数学中的函数知识点进行总结,并提供一些例题帮助读者更好地理解和应用这些知识。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素,可以用来描述两个变量之间的依赖关系。
函数通常记作f(x),其中x为自变量,f(x)为函数值或因变量。
函数的性质包括定义域、值域、单调性、奇偶性等。
定义域是自变量的取值范围,值域是函数值的取值范围。
函数可以是单调递增、单调递减或既不递增也不递减。
奇偶性是指函数的对称性,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
例题1:已知函数f(x)=-2x+3,求函数的定义域和值域。
解:由于函数中的x没有任何限制,所以定义域为全体实数。
对于值域,由于函数是线性函数,可以取到任意的实数值,所以值域也是全体实数。
例题2:已知函数g(x)=x^2-4x,判断函数的单调性和奇偶性。
解:函数g(x)是二次函数,当系数a>0时,函数是开口向上的抛物线,函数是单调递增的;当系数a<0时,函数是开口向下的抛物线,函数是单调递减的。
由于g(x)是二次函数,所以它是偶函数。
二、函数的图像及其性质函数的图像是函数在平面直角坐标系上的几何表示,可以通过绘制函数的图像来更直观地理解函数的性质。
1. 幂函数:幂函数是指形如y=ax^n的函数,其中a和n为常数,且a≠0,n为整数。
幂函数的图像的特点是曲线形状与n的正负和大小有关,其中当n为偶数时,图像关于y轴对称;当n为奇数时,图像关于原点对称。
2. 指数函数:指数函数是以常数e(自然对数的底数)为底数的幂函数,形如y=a*e^x,其中a为常数。
指数函数的图像特点是在右侧逐渐上升,在左侧逐渐下降,且经过点(0,1)。
3. 对数函数:对数函数是指以常数a(a>0且a≠1)为底数的对数函数,形如y=loga(x),其中x为正实数。
人教版高中数学必修第一册知识点及题型总结---不等关系与不等式

目录不等关系与不等式 (2)考点1 :不等关系与不等式 (2)考点2 :等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a=b. a<b.思考 F+1与2%两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较W+1与2%的大小吗?答案作差:x2+l-2x=(x-l)2^0,所以x2+1^2x.知识点二重要不等式bWR,有R+夕仝2db,当且仅当a=b时,等号成立.型1 :用不等式(组)表示不等关系例1《铁路旅行常识》规左:一、随同成人旅行,身高在1.2〜L5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一爼成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.十、旅客免费携带物品的体枳和重量是每件物品的外部长、宽、高尺寸之和不得超过160 厘米,杆状物品不得超过200厘米.重量不得超过20千克……设身高为加米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用力(米)表示•物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系•解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2〜1.5米可表示为1.20W1.5,身高超过1.5米可表示为Q1.5,身高不足1.2米可表示为*1.2,物依长、宽、高尺寸之和不得超过160厘米可表示为PW160.如下表所示:变式某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提髙0.1元,销售量就可能相应减少2 000本.若把提价后试卷的立价设为X元,怎样用不等式表示销售的总收入仍不低于20万元呢?解提价后销售的总收入为(8—讦尹X0.2》万元,那么不等关系'‘销售的总收入仍不低于20万元”可以表示为不等式(8—违尹X0.2》220(2.5Wx<6.5).题型2 :作差法比较大小例2已知e b均为正实数.试利用作差法比较”+沪与Hb+a,的大小.解•/,+,一(a2b+abr)=(a3—crb)+&—air)=a2(a—b)+b2(b—a)=(a—b)(a2—b2)=(a—b)2(a + b)・当a=b 时,a-b=Q. a3+b3=a2b+a^;当a^b时,(a-b)2>09 a+bX), a3-^b3>a2b+ab2.综上所述.变式已知;r<l,试比较W—1与R-h的大小.解 V(X3-1)-(2A2-2X)=X3-2X2+2X-1=(x3—X2)—(A2—2x+l)=x2(x—1)—(x—I)2= (x_ l)(x2-x+ l) = (x- 1{卜-齐+ ||又V (x-|)2+|>0, x-KO,考点1 :练习题1. 下列说法正确的是()A. 某人月收入x 元不高于2 OOO 元可表示为“*2 000”B. 小明的身高为x,小华的身髙为),,则小明比小华矮可表示为“心,”C. 变量x 不小于a 可表示为“xMa”D. 变量y 不超过a 可表示为 答案C解析 对于A, x 应满足xW2 000,故A 错误;对于B, x, y 应满足xvy,故B 错误;C 正 确;对于D, y 与“的关系可表示为“yWa”,故D 错误.2. 在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m, 为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足 的不等式为() A ・ 4X^2100 B ・ 4X 吉W10° ° 4X 吉>100 答案cD ・4X 着100解析导火索燃烧的时间*秒,人在此时间内跑的路程为4Xyr m .由题意可得4X 点 >100.3・设M=x2, N=-x-l,则M 与N 的大小关系是() A. M>NB ・ M=N C. M<N答案AD.与x 有关解析 TM —"=工+乂+1=卜+少+弓>0,:.M>N,4.若>*i=2x 2—2x+L V2=x 2—4x —h 则yi 与尹2的大小关系是( )A. yi>y^2 B ・ yi =1^2.•・仗_1林_期+詐0,:.x 3-l<2x 2-2x.D ・随x 值变化而变化5・如图,在一个而积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于 宽b 的4倍,则表示上述的不等关系正确的是()答案C解析由题意知a>4b,根据面积公式可以得到@+4)0+4)=200,故选C.6. 某次数学智力测验,共有20道题,答对一题得5分,答错一题得一2分,不答得零分.某 同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列岀英中的不等关 系: _______ •(不用化简) 答案 5x-2(19-x)^80, xWPT解析 这个学生至少答对X 题,成绩才能不低于80分.即5x-2(19-x)^80, xGN 4.7. 某商品包装上标有重疑500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表 示该商品的重量的不等式为 _________ . 答案 |x-500|Wl解析:•某商品包装上标有重量500±1克,若用X 表示商品的重量, 则一 1WX —500W1, "一 50001.8. ____________________________________ 若MR,则占与扌的大小关系为• • X 1 二厲一1一工_一&一1)2 • 1+W 2(1+F) — 2(1+F)、U9.已知a, bWR, b, y=a 2b~a.试比较x 与y 的大小.解因为 x —y =a i—b —a 1b^a =a 2(a — b)'¥a—b — (a —b)(g 2^V).所以当a>b 时,:r —y>0,所以x 刁;C ・ yi<y 2A. a>4b a>4b 9 C.\[(“+4)9+4)=200 2-2 m-仓 库-2 m-绿地2ma>4b,D|4"=200解析B ・(a+4)(b+4)=200 答案当a=b时,x—y=O,所以x=y;当a<b时,x—3<0,所以10.已知甲、乙、丙三种食物的维生素A, B含捲及成本如下表:若用甲.乙、丙三种食物各xkg.ykg’kg配成100kg的混合食物,并使混合食物内至少含有56 000单位维生素A和63 000单位维生素B.试用x,表示混合食物成本c元,并写出x, y所满足的不等关系.解依题意得c=llx+刘+4z,又x+y+z=100, •••C=400+7X+5N600x+70Qy+4(XhM56 000,由], 及z=100—x—800.Y+400V+500z^63 000•*Q+3&160,得{L3x-y^l30.去+3舞160,3x-v^l30.•••x, y所满足的不等关系为(,亠0<y^Q.11・已知0勺01,0勺2<1,记N=ai+d2—1,则A/与N的大小关系是()A. M<NB. M>NC. M=N D・无法确定答案B解析 TOva产 1、0勺2<1, •: —1<^1 —1<0, —1<^2 —1<0, /.Af—N=ag2—(心+。
高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)

第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中数学必修1知识点总结及题型
高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。
构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。
不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可以分为有限集和无限集。
有限集包含有限个元素,无限集包含无限个元素。
知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。
列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。
描述法是用集合所含元素的共同属性来表示集合的方法。
知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。
如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。
空集是任何集合的子集,任何集合都是其本身的子集。
如果A是B的子集,B是C的子集,则A是C的子集。
如果A是B的真子集,B是C的真子集,则A是C的真子集。
集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。
知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。
并集是指两个集合中所有元素构成的集合,记作A∪B。
1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。
2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。
高中数学题型总结160题
高中数学题型总结160题高中数学题型总结高中数学题型共有160题,包括代数、几何、函数、概率与统计等内容。
下面将对这些题型进行总结,希望能帮助同学们全面复习和掌握这些知识点。
1. 代数题型(40题)代数题型主要涉及方程、不等式、函数、数列等内容。
其中,方程类型包括一元一次方程、一元二次方程、高次方程、二次根式方程等。
不等式类型包括一元一次不等式、一元二次不等式、分式不等式等。
函数类型包括一次函数、二次函数、分式函数、指数函数等。
数列类型包括等差数列、等比数列、递推数列等。
2. 几何题型(40题)几何题型主要涉及几何形状的性质、图形的计算等内容。
其中,基本图形类型包括点、线、面的性质、计算等。
直线和曲线类型包括直线的斜率、截距等计算,以及曲线的一些性质。
多边形类型包括三角形、四边形、五边形等的周长、面积计算。
圆类型包括圆周长、面积计算等。
3. 函数题型(40题)函数题型主要涉及函数的性质、图像、极值、零点等内容。
其中,函数性质类型包括奇偶性、周期性、单调性等。
函数图像类型包括一次函数、二次函数、指数函数、对数函数等的图像绘制以及变换。
函数极值类型包括求解函数的最大值、最小值等。
函数零点类型包括求解函数的零点、方程的解等。
4. 概率与统计题型(40题)概率与统计题型主要涉及随机事件的概率、数据的统计分析等内容。
其中,随机事件概率类型包括计算事件的概率、互斥事件、独立事件等。
数据统计类型包括数据的频数、频率、中位数、平均数等的计算。
通过总结以上四个题型,我们可以看出高中数学的内容十分广泛,包含了代数、几何、函数、概率与统计等各个方面。
掌握这些题型需要同学们具备扎实的基础知识和灵活运用的能力。
因此,在复习过程中,同学们应该注重基础知识的学习和强化,并通过大量的练习来提高运用能力。
此外,高中数学的题型往往需要综合运用各个知识点来解决问题,因此,同学们在解题过程中应注重思维的灵活性和综合运用的能力。
通过对题型的总结和分类,同学们可以更好地理解知识点之间的联系,提高解题的效率和准确性。
高一上册数学知识点全面总结及详细解析2024版
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
高一数学章节知识点及试题
高一数学章节知识点及试题在高中数学教学中,高一的数学学科是至关重要的一环。
它奠定了学生数学学习的基础,同时也承接了初中数学的延续。
本文将针对高一数学章节知识点及试题进行探讨,帮助学生更好地理解和应用数学知识。
一、代数与函数1. 一元一次方程与一元一次不等式高一数学的第一个重要章节是代数与函数。
其中,一元一次方程与一元一次不等式是最基础的内容之一。
学生需要学会如何通过等式或不等式来表示实际问题,并利用代数方法求解。
【例题】解方程:2x + 3 = 7解答过程:首先将3移到右侧,得到等式2x = 4。
然后将2除以2,解得x = 2。
2. 函数的概念与性质函数理论是高中数学的重要组成部分,高一的数学课程也会系统地介绍函数的概念与性质。
学生需要理解函数的定义、对应关系、自变量与因变量的关系等,同时掌握常见函数图像的特征与变化规律。
【例题】已知函数y = x^2 + 3x - 2,求函数在区间[-2, 1]上的最大值和最小值。
解答过程:首先求得函数的导数y' = 2x + 3。
然后,我们可以通过求导数为零的点,即2x + 3 = 0,解得x = -1.5。
带入原函数可以求得在该区间上的最大值和最小值分别为2.25和-3.75。
二、数列与数学归纳法数列与数学归纳法是高一数学中的另一个重要章节。
学生将学会如何用数列来表达规律,掌握数列的通项公式和递推关系,同时也将学习数学归纳法的基本思想与应用。
【例题】已知数列{an}满足a1 = 3,an+1 = 2an + 1 (n ∈ N*),求数列的第n项通项公式。
解答过程:通过观察前几项的数值,可以猜测an = 2^n + 1。
然后,我们可以通过数学归纳法来证明这个猜想。
首先验证n = 1时成立,然后假设当n = k时成立,即ak = 2^k + 1。
接下来证明当n= k + 1时也成立,即ak+1 = 2^(k+1) + 1。
代入递推关系可以证明等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高一知识点及题型
高中数学作为学生们必修的科目之一,在整个高中阶段都占据着重
要的地位。
而在高一的学习中,数学知识点的掌握和理解程度,将对
接下来的学习产生重要的影响。
本文将针对高一数学的知识点和题型
进行探讨,帮助学生们更好地应对高中数学学习。
一、方程与不等式
在高一的数学学习中,方程与不等式是一个重要的知识点。
其中包
括一元一次方程、一元一次不等式等的学习。
学生们需要熟练掌握解
方程和不等式的方法,并能够应用到实际问题中。
在做题时,要注意
化简等价变形和审题,对方程和不等式的性质有清晰的认识。
例如,下列方程的解集为多少?
1. 3x + 2 = 11
2. 2(x - 5) = 3x + 6
二、函数与图像
函数与图像是高中数学的核心概念之一。
在高一的学习中,学生们
需要掌握函数的概念、函数的表示方法以及函数的性质等。
尤其是要
熟悉一次函数、二次函数和指数函数等常见函数的图像特点,并能够
根据函数的表达式进行图像的绘制。
此外,还需要理解函数的增减性、奇偶性等性质,以及函数之间的复合、反函数等关系。
例如,绘制函数y = 2x - 3和y = x^2的图像,并分析其基本特点。
三、平面向量与坐标系
高一的数学学习还包括平面向量与坐标系的相关内容。
这一部分的学习主要包括向量的表示、向量的运算、向量的模和方向等。
在学习过程中,学生们需要掌握平面向量的加法和减法、数量积和向量积等运算法则,并能够将其应用到实际问题解决中。
此外,还需要熟悉直角坐标系和极坐标系的基本概念和用法,能够灵活地在不同的坐标系中进行运算和表示。
例如,已知向量A = (3, 2)和向量B = (-1, 4),求向量A与向量B的数量积。
四、三角函数
三角函数是高中数学中的一个重要内容,也是数学与实际问题结合的一个重要工具。
学生们需要熟悉正弦、余弦、正切等三角函数的定义和性质,并能够在不同的三角形中灵活地应用三角函数进行解题。
在学习过程中,要注意角度的度量方法和弧度制的转换,还要掌握常用角的相关计算公式,如和差化积、倍角公式等。
例如,已知α为锐角,sinα = 3/5,求cosα的值。
五、排列与组合
排列与组合是高中数学中的一个复杂而又有趣的内容。
学生们需要掌握排列和组合的概念和计算方法,并能够在实际问题中应用到排列和组合的解决中。
在学习过程中,要注意对问题的分析和建模,对不
同情况下的排列和组合进行分类讨论,并能够运用乘法原理和加法原理进行问题的求解。
例如,有6个人,从中任选3人,按顺序进行比赛,求总共的比赛次数。
通过以上的学习内容和题型,同学们可以初步了解高一数学的知识点和解题思路。
在学习过程中,要注重基础知识的牢固掌握和理解,同时注重实际问题的应用能力的培养。
只有在理论和实践相结合的过程中,才能真正掌握高中数学的学习要点,为接下来的学习打下坚实的基础。
希望同学们能够善于思考、勤于练习,在数学学习中迈出坚实的步伐!。