7年级方程应用题及答案

合集下载

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。

①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。

求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。

2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。

3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。

4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。

解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。

初一解方程10道应用题及答案

初一解方程10道应用题及答案

初一解方程10道应用题及答案1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

解:设四月份的利润为x则x*(1+10%)=13.2所以x=12设3月份的增长率为y则10*(1+y)=xy=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。

如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。

求有多少人?解:设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=7×50+6=356人6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决设可以炸a千克花生油1:0.56=280:aa=280×0.56=156.8千克完整算式:280÷1×0.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?解:设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。

七年级上册数学一元一次方程应用题及答案

七年级上册数学一元一次方程应用题及答案

1.一块石头从高处自由下落,下落时间t与下落距离h之间的关系可以用一元一次方程表示为h=5t。

如果已知下落时间为2s,则求下落距离。

解:将已知条件代入方程中,得到h=5*2=10,所以下落距离为10米。

2.一家利用机器生产玩具,生产每个玩具需要2元的原材料费和3元的人工费。

如果每天生产了x个玩具,总成本为10x+6元。

求每天生产的玩具个数。

解:成本等于每个玩具的原材料费和人工费之和,所以可以列出方程10x+6=2x+3x,化简得到10x+6=5x,再化简得到5x=6,解得x=6/5=1.2、所以每天需要生产1.2个玩具。

3.一辆汽车每小时行驶a千米,行驶x小时后剩余距离为b千米。

如果已知汽车行驶总里程为100千米,求未知数a、b和x的值。

解:根据已知条件可列出方程ax + b = 100。

由于未指定具体数值,无法求得具体解。

4.一块土地在过去10年内每年平均涨价100元,现在的价格是1000元。

求10年前这块土地的价格。

解:设10年前土地价格为x元。

根据题意可列出方程x+10*100=1000,解得x=1000-1000=0。

所以10年前这块土地的价格为0元。

5.甲、乙两人一起做作业,甲一小时能做1/3份,乙一小时能做1/4份。

如果两人共用4小时做完了作业,求甲和乙一共做了多少份。

解:设甲共做了x份,乙共做了y份。

根据每个人的工作效率可列出方程x/1/3+y/1/4=4,化简得到4x/3+4y/4=4,化简得到4x+3y=12、由于只有一个方程无法求得具体解。

6.一个数的三倍减去7等于25,求这个数。

解:设这个数为x。

根据题意可列出方程3x-7=25,化简得到3x=32,解得x=32/3=10.67、所以这个数约为10.677.一个角的度数减去30等于它的三分之一,求这个角的度数。

解:设这个角的度数为x。

根据题意可列出方程x-30=x/3,化简得到3x-90=x,解得2x=90,解得x=45、所以这个角的度数为45度。

七年级一元一次方程:分配问题应用题(答案)

七年级一元一次方程:分配问题应用题(答案)

《一元一次方程:分配问题》应用题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2×1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)2、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?3、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【解】设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天4、用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?【解】设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x =100-60=40.答:用60张做盒身,40张做盒底.5、用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒。

现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【解】设 用(150-x )张制盒身,x 张制盒底x x 43)150(162=-⨯ x = 64 答:用86张制盒身,64张制盒底6、一批学生在礼堂就座,如果一条长凳上坐3人,就有25人没有座位;如果一条长凳上坐4人,就正好空出19条长凳,问这批学生共有多少人?【解】328人7、一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?【解】设汽车有x 辆,则650448-=+x x 5=∴x 答: 汽车5辆,学生244人8、把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?设这个班有x 个学生,则3x+20=4x-25x=459、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?【解】设X 人挖土,运土的则有(48-X)人,则:5X=3×(48-X )5X=144-3X 8X=144X=18 48-X=30答:应安排18人挖土,30人运土10、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?【解】设租x辆45做客车45x=60(x-1) -3045x=60x-90 15x=90x=6 6×45=270人11、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.12、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?13、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?14、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?15、某厂一车间有64人,二车间有56人。

初一方程应用题带答案大全

初一方程应用题带答案大全

初一方程应用题带答案大全
一、小明的身高问题
小明今年13岁,他的身高为x厘米。

一年后,他的身高将是他现在身高的1.1倍。

请问小明明年多高?
解答:小明明年身高为1.1x厘米。

二、小红的年龄问题
小红现在的年龄是x岁,三年前她的年龄是x - 3岁。

请问她3年后年龄是多少?
解答:小红3年后的年龄为x + 3岁。

三、小李的数学成绩
小李数学考试的分数是x分,如果他再多得10分,分数将是他现在的1.2倍。

请问小李这次数学考试得了多少分?
解答:小李这次数学考试得了x + 10分。

四、小张的大米问题
小张的家里有一袋大米,重x千克。

他领走了一半的大米,还剩下10千克。

请问小张领走了多少千克大米?
解答:小张领走了0.5x千克大米。

五、小王的钱袋问题
小王的钱袋里有x元钱,他花了一半的钱之后还剩下8元。

请问小王一共有多
少元钱?
解答:小王一共有2x元钱。

六、小刘的苹果问题
小刘一共有x个苹果,他卖掉一半的苹果之后还剩下6个。

请问小刘一共有多
少个苹果?
解答:小刘一共有2x个苹果。

以上为初一方程应用题带答案大全,希望对初中学生学习方程有所帮助。

七上 一元一次方程 解决问题 应用题 题型全面含答案

七上 一元一次方程 解决问题 应用题 题型全面含答案

用方程解决问题(1)1.将360分成三个数,使这三个数的比为l︰2︰3,求分成的三个数.2.将面积为160m2的土地分成两部分,使两部分的面积之比为3︰5,求各部分的面积.3.为创建卫生城市,市容部门组织30位工作人员到甲、乙、丙三个社区检查工作,要使分配到甲、乙、丙三个社区的人数之比为2︰3︰5,应怎样分配?4.某学生把98分成两个数,使第一个数加上5等于第二个数减去5,求分成的两个数分别是多少?5.某商场春节期间销售彩电、微波炉、DVD共228台,其中销售彩电与DVD的数量之比为3︰2,销售的微波炉比彩电少20台,春节期间销售DVD多少台?6.在日历中:(1)圈出一竖列上相邻的三个数,它们的和能为60吗?75呢?21呢?(2)圈出2×2的正方形,若这4个数的和为76,这4天分别是几号?(3)圈出3×3的正方形,若这9个数的和为90,这9天分别是几号?(4)爷爷生日那天的上、下、左、右4个日期的和为80,爷爷的生日是几号?7.某校七年级的美术、声乐和体育三个特长班共有115人,其中美术班与声乐班的人数之比为4︰3,美术班与体育班的人数之比为8︰9,每个特长班各有多少人?8.在一个多边形的各边上标上数,它们依次为2,4,6,8,…,并且后面一边上标的数比前面一边上标的数大2.现已知某相邻三边上所标的数之和为24.(1)这三边上所标的数分别是多少?(2)是否存在这样的相邻三边上所标的数之和为32?为什么?9.将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数.(1)图中框出的这16个数的和是;(2)在图中,要使一个正方形框出的16个数之和分别等于2000,2004,可能吗?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.参考答案1.60,120,180 2.60,100 3.6,9,15 4.44,54 5.62 6.(1)①能圈出一竖列上相邻的三个数的和为60②不能圈出一竖列上相邻的三个数的和为75③不能圈出一竖列上相邻的三个数的和为21(2)15,16,22,23(3)这9天分别是2号、3号、4号、9号、10号、11号、16号、17号、18号(4)20 7.45 8.(1)8,6,10(2)设中间一边上标的数为x,则(x-2)+x+(x+2)=32,x=323,不合题意9.(1)352 (2)框出的16个数的和可能为2000,其中最小数为113,最大数为137,而框出的16个数的和不可能为2004用方程解决问题(2)1.某人买甲、乙两种笔记本共20本,付款40.8元.甲种笔记本的单价为2.2元,乙种笔记本的单价为1.8元,两种笔记本各买了多少本?2.有一批重39 t的货物,准备用载重量分别为6 t和7.5 t的卡车一次运走.已知载重量为6 t的卡车比载重量为7.5 t的卡车多2辆,两种卡车各要多少辆?3.小王去超市购物,买了什锦糖和荔枝共7 kg,付款92.4元.已知每千克什锦糖16.8元,每千克荔枝8.4元,小王买了什锦糖和荔枝各多少千克?4.甲仓库有化肥100 t,乙仓库有化肥88 t,从这两个仓库一共运出50 t化肥后,这两个仓库的剩余化肥的数量相等,从这两个仓库各运出了多少吨化肥?5.某小组原来的女生人数是全组人数的13,后来又加入了4个女生,于是女生人数占全组人数的一半,该小组原来有多少人?6.某服装加工车间有54人,每人每天可加工上衣8件或加工裤子10条,应怎样分配加工上衣的人数和加工裤子的人数,才能使每天加工的衣裤配套?7.乒乓球集训队一队有42人,二队有19人,能否从一队调若干人到二队,使得一队的人数是二队人数的两倍?8.现有水果1000kg,入库时测得含水量为96%,一个月后因水果中水分损耗,测得含水量为95%,这批水果的总重量损失了多少?9.小刚的叔叔到他家做客,小刚问叔叔多大年纪了,叔叔说:“我像你这么大时,你才4 岁.你到我这么大时,我已经37岁了.”你知道小刚和叔叔现在各多少岁了吗?参考答案1.甲种笔记本买了12本,甲种笔记本买了8本2.设载重量为7.5 t的卡车有2辆,载重量为6 t的卡车有4辆3.小王买了什锦糖4千克,荔枝3千克.4.从甲仓库运出化肥31 t,从甲仓库运出化肥19 t.5.该小组原来有12人,6.安排30人加工上衣,安排24人加工裤子.7.不能8.这批水果的总重量损失了200kg9.小刚现在15岁,叔叔现在26岁.用方程解决问题(3)1.把一批课外书分给若干个小组,若每个小组分8本,则多3本;若每个小组分l0本,则少9本.有多少个小组?有多少本课外书?2.若干辆汽车装运一批货物,若每辆车装3.5 t,则有2 t货物不能运走;若每辆车装4 t,则这批货物全部运完后,还可以装运1 t其他货物.有多少辆汽车?这批货物有多少吨?3.某工人在规定时间内加工一批零件,若每天加工44个,则比规定任务少加工20个;若每天加工50个,则可以超额10个.求规定时间和这批零件的个数.4.给一块农田施肥,若每亩施肥6 kg,则缺少17 kg化肥;若每亩施肥5 kg,则余下3 kg 化肥.这块农田有几亩?化肥有多少千克?5.七年级美术班举办了一次美术作品展览,展出的美术作品若平均每人3张,则多24张;若平均每人4张,则少26张.一共展出了多少张美术作品?6.学校安排学生住宿,若每间宿舍住8人,则有12人没有地方住;若每间宿舍住9人,则空出2间宿舍.共有多少间宿舍?多少名住宿生?7.幼儿园有一批卡通书,若3个小朋友合看一本,则多2本;若2个小朋友合看一本,则有9个小朋友没有书看.一共有多少个小朋友?8.甲、乙两人生产同一种零件,月初两人的计划生产量之比为4︰5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产的零件总数为1632个,甲、乙两人原计划各生产多少个零件?9.一位工人接到加工一批零件的任务,必须在规定时间内完成.若每小时加工10个,则可以超额完成3个;若每小时加工11个,则可以提前1 h完成.求要加工的零件个数和规定的时间.参考答案1.有6个小组,51本课外书2.有6辆汽车,有23吨货3.规定时间为5天,这批零件的个数为240个4.这块农田有20亩,化肥103千克5.一共展出了174张美术作品6.有30间宿舍,252名住宿生7.一共有39个小朋友8.甲原计划生产640个零件,乙原计划生产800个零件9.规定8h完成,加工77个零件用方程解决问题(4)1.一辆汽车与一辆拖拉机从相距232 km的A、B两地同时出发,相向而行,4 h后相遇.已知汽车每小时走的路程比拖拉机的2倍多4 km,求拖拉机的速度.2.甲、乙两站相距274 km,一列慢车从甲站开往乙站.慢车出发1 h后,一列快车从乙站开往甲站,快车开出1.5 h后,两车在途中相遇.已知快车每小时比慢车多行20 km,求快车的速度.3.一艘轮船航行于甲、乙两地之间,顺水要7 h,逆水要9 h,已知水流的速度为3 km/h,求甲、乙两地之间的距离.4.小明从甲地到乙地,若每小时走4.5 km,则在规定时间内离乙地还有0.5 km;若每小时走5.5 km,则可比规定时间早1 h到达乙地.求甲、乙两地之间的距离和规定时间.5.一位邮递员骑自行车在规定时间内把特快专递送到某单位,若他每小时行15 km,则可以早到24 min;若他每小时行12 km,则要迟到15 min.规定的时间是多少?他去的单位有多远?6.某人游览水路风景区,乘坐摩托艇顺流而下,然后返回登艇处,水流的速度为2 km/h,摩托艇在静水中的速度是18 km/h,为了使游览时间不超过3 h,此人驶出多远就应回头?7.一个自行车车队进行训练,训练时所有队员都以35 km/h的速度前进.突然,1号队员以45 km/h的速度独自行进,行进10 km后掉转车头,仍以45 km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?8.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700m处,然后继续前进,到目的地后都立即返回,第二次相遇在距B点400m处,求A、B两地的距离.参考答案1.拖拉机的速度为18 km/h 2.快车的速度为81 km/h3.甲、乙两地之间的距离为189 km4.规定时间为6 h,甲、乙两地之间的距离27.5 km5.规定的时间为3h,他去的单位有39 km6.此人驶出803km就应回头7.1号队员从离队开始到与队员重新会合,经过了0.25 h 8.1700 m用方程解决问题(5)1.一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做2天,乙再加入一起做,完成这项工程还需多少天?2.一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天后,剩下的工程由甲队做,甲队还需多少天才能完成?3.完成一项工作,甲单独做需要3h,乙单独做需要5h,若两人合作这项工作的45,需要几小时?4.一块农田,若由甲拖拉机耕,20h可以耕完;若由乙拖拉机耕,15h可以耕完.现在,甲耕了13h后,让乙加入一起耕,还要几小时才能耕完?5.一件工作,甲单独做12h完成,乙单独做20h完成,现由乙单独做4h,剩下部分由甲、乙合作,还需几小时完成?6.一项工程,甲独做需12天完成,乙独做需24天完成,丙独做需6天完成,现在甲与丙合作2天后,丙因事离去,由甲、乙合作,甲、乙还需几天才能完成这项工程?7.甲、乙两人承包一项工程,共得报酬610元,已知甲做l0天,乙做13天,但因甲的技术比乙的技术好,因而预先就约定甲做4天的工资比乙做5天的工资还要多40元,甲、乙两人各分得多少元?8.一个农场有甲、乙两台打谷机,甲机的工作效率是乙机的2倍.若甲机打完全部谷子的2 3后,乙机继续打完,前后所需的时间比同时用两台打谷机打完全部谷子所需的时间多4天.若分别用甲、乙打谷机打谷,打完谷子各需几天?参考答案1.完成这项工程还要3 天2.甲队还需4天完成3.需要5h 4.还要3h才能耕完5.还需6 h完成6.甲、乙还要4天才能完成这项工程7.甲分得350元,乙分得260元8.甲打谷机打完谷子要6天,乙打谷机打完谷子要12天.用方程解决问题(6)1.某种服装现在的售价为56.1元,比原来的售价降低了15%,求原来的售价.2.某商品的进价为2400元,若按标价的9折销售,利润率为20%,该商品的标价是多少?3.某商品的标价为每件1100元,若按标价的80%出售,仍可获利10%,此商品的进价是多少元?4.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?5.某种家电标价2400元,现在按9折出售,并且送20元“打的”费,仍可获得7%的利润,求该家电的进价.6.一商场搞换季促销活动,若每件羽绒衫按标价的5折销售可赚50元,按标价的6折销售可赚80元.(1)每件羽绒衫的标价和成本各是多少元?(2)为保证盈利不低于20元,最多打几折?7.某服装个体户同时卖出两套服装,每套均卖168元,以原价为准,其中一套盈利20%,另一套亏本20%.在这次销售中,服装个体户是盈利还是亏本?盈利或亏本多少元?8.某商场的电视机原价为2500元,现在以8折销售,如果想使降价前后的销售额都为l0 万元,那么销售量应增加多少?9.据了解,个体服装销售只要高出进价的20%便可盈利,但老板们常以高出进价的50%~100%标价.若你准备买一件标价为180元的服装,应在什么范围内还价?参考答案1.原来的售价为66元2.该商品的标价是3200元3.此商品的进价是800元4.此商品的进价是700元,5.设该家电的进价为2000元6.(1)每件羽绒衫的标价为100元,成本是300元(2)为保证盈利不低于20元,最多打4折7.盈利的那套原价为140元,亏本的那套原价为210元,因为140+210=350>168×2,所以350—168×2=14(元).即服装个体户亏本14元8.销售量应增加10台9.应在108元与144元之间还价。

7年级方程应用题精选45题-解析 (1)

7年级方程应用题精选45题-解析 (1)

方程应用45题答案1.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.【分析】上午8时同时出发,到上午10时,两人还相距36千米说明,这2小时所走过的路程的和是A、B两地间的路程﹣36千米,即两人速度的和是:;到中午12时,两人又相距36千米,即从上午10点到中午12点这2个小时内,两人所走的路程的和是36+36=72千米,即这段时间两人速度的和是千米.两段时间内速度的和相等,因而就可以得到相等关系.【解答】解:设A、B两地间的路程为x千米,根据题意得:解得:x=108.答:A、B两地间的路程为108千米.2.甲、乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时向相反方向跑,多少分钟后两人第一次相遇?(2)若两人从同一地点同时同向起跑,多少分钟后两人第一次相遇?【分析】(1)根据两人长跑的过程中当第一次两人相遇时路程的和为400米列出方程求解即可;(2)根据两人长跑的过程中当第一次两人相遇时路程的差为400米列出方程求解即可.【解答】解:(1)设两人从同一地点同时向相反方向跑,x分钟后两人第一次相遇,根据题意得出:200x+160x=400,解得:x=.答:设两人从同一地点同时向相反方向跑,分钟后两人第一次相遇;(2)设两人从同一地点同时同向起跑,经过y分钟两人第一次相遇,根据题意得:200y﹣160y=400,解得:y=10.答:两人从同一地点同时同向起跑,10分钟后两人第一次相遇.3.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,问:快车开出多长时间与慢车相遇?【分析】首先设快车开出xh与慢车相遇,根据题意可得慢车先行1.5h的路程+快车行驶xh 的路程+慢车行驶xh的路程=300km,根据等量关系列出方程即可.【解答】解:设快车开出xh与慢车相遇,由题意得:40×1.5+80x+40x=300,解得:x=2.答:快车开出2h与慢车相遇.4.A、B两地相距49千米,某人步行从A地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.【分析】此题是路程问题(路程=速度×时间),解题的关键是找到等量关系:(1)三段用时为10小时.可设第一段路程长为x千米,则第二段路程为(49﹣x﹣15)千米,则第一段用时为千米/时,第二段用时为千米/时;(2)三段距离和为49千米,可设走第一段所用时间为t小时,由于第三段所用时间为(小时),则第二段所用时间为(10﹣3﹣t)小时,列方程即可求得.【解答】解:第一段路程长为18千米,第二段路程长为16千米.解法一:三段路程之和为49千米,而路程等于时间与速度的乘积.可设第一段路程长为x千米,则第二段路程为(49﹣x﹣15)千米,用时间的相等关系列方程得:,解得:x=18答:第一段路程长为18千米,第二段路程长为16千米.解法二:又可设走第一段所用时间为t小时,由于第三段所用时间为:(小时),则第二段所用时间为:(10﹣3﹣t)小时,于是可用路程的相等关系列方程:6t+(10﹣t﹣)×4+15=49,解得:t=3,答:第一段路程长为18千米,第二段路程长为16千米.5.从A码头到B码头顺水航行需行驶9小时,在进行河道改弯取直工程后,路程近了50千米,而船航行速度每小时增加了40千米,且顺水航行只需6小时即可到达,求A,B两地码头之间改弯取直后的路程.【分析】设从A码头到B码头之间改弯取直后的路程为xkm,则在改湾取值之前的路程为(x+50)km,根据速度之间的数量关系建立方程求出其解即可.【解答】解:设从A码头到B码头之间改弯取直后的路程为xkm,则在改湾取值之前的路程为(x+50)km,由题意,得,解得:x=820.答:从A码头到B码头之间改弯取直后的路程为820km.6.小张开车去火车站,如果速度为30千米/时,则早到15分钟到达,如果18千米/时,则迟到5分钟,现在打算提前10分钟到达,那么他开车的速度是多少?【分析】可设开车到火车站准点所用的时间为x小时,根据等量关系:从家开车到火车站的路程是一定的,列出方程求解即可.【解答】解:设开车到火车站准点所用的时间为x小时,依题意有30(x﹣)=18(x+),解得x=,则30(x﹣)÷(x﹣)=30×(﹣)÷(﹣)=.答:他开车的速度应该是千米/小时.7.一艘货轮往返于上下游两个码头之间,逆流而上需要48小时,顺流而下需要32小时,若水流速度为8千米/时,则两码头之间的距离是多少千米?【分析】设两码头之间的距离为x千米,货轮的速度为y千米/小时,根据逆流而上需要48小时,顺流而下需要32小时,列方程组求解.【解答】解:设两码头之间的距离为x千米,货轮的速度为y千米/小时,由题意得,,解得:.答:两码头之间的距离为1536千米.8.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.【分析】所用的时间,再根据路程相等,列出等式,求解即可.应先设出飞机在无风时的速度为x,从而可知在顺风时的速度为飞机在无风中的速度加上风速,飞机在逆风中的速度等于飞机在无风中的速度减去风速,又已知了顺风飞行和逆风飞行【解答】解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.9.四个相同的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x、y表示长方形的长和宽,求小长方形的长和宽.【分析】首先根据大正方形的面积可得大正方形的边长为12,再由小正方形的面积是4可得小正方形的边长为2,再根据图示可得长﹣宽=2,长+宽=12,根据等量关系列出方程组,解方程组即可.【解答】解:设小长方形的长为x,宽为y,由题意得:,解得.答:小长方形的长和宽分别是7和5.10.在长方形ABCD中,放入8个形状和大小都相同的长方形,位置与尺寸如图所示(单位:cm),则阴影部分的面积是多少?【分析】设长方形的宽为xcm,则由宽为3x+4=16+x,求得宽,进一步得出长方形ABCD的长和宽,利用阴影部分的面积=长方形ABCD的面积﹣8个小长方形的面积求得答案即可.【解答】解:设长方形的宽为xcm,由题意得3x+4=16+x解得:x=6,则长方形ABCD的长=16+4×6=40cm,宽=16+6=22cm,阴影部分面积=40×22﹣16×6×8=880﹣768=112(cm2).答:阴影部分的面积是多少112cm2.11.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).【分析】根据水的体积不变可得长方体盒和圆柱水桶的体积相等,根据长方体和圆柱的体积公式即可列出关于水桶高的方程,求解即可.【解答】解:设圆柱形水桶的高为x毫米,依题意,得π•()2x=300×300×80,解得:x≈229.3.答:圆柱形水桶的高约为229.3毫米.12.桌子上有甲、乙、丙三个圆柱形的杯子,杯深20厘米,且各装有10厘米高的水,且甲、乙、丙三个杯子的底面积分别为60、80、100平方厘米.现在,小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:7.若不计杯子厚度,则甲杯内水的高度变为多少厘米.【分析】根据甲、乙、丙三杯内水的高度比变为3:4:7,设后来甲、乙、丙三杯内水的高度为3x、4x、7x,进而列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.【解答】解:设后来甲、乙、丙三杯内水的高度为3x、4x、7x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×7x,解得:x=2,则甲杯内水的高度变为3×2=6(厘米).答:高度变为6厘米.13.某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?【解答】解:设乙再做x天可以完成全部工程,由题意得:++=1,解得:x=≈3.答:乙再做3天可以完成全部工程.14.某管道由甲、乙两工程队单独施工分别需30天、20天.(1)如果两队从两端同时相向施工,需要多少天铺好?(2)又知甲队单独施工每天需付200元的施工费,乙队单独施工每天需付280元的施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工,请你按照少花钱多办事的原则,设计一个方案,并说明理由.【解答】解:(1)若这项工程的工程总量为1,则甲乙的工作效率为:、.设两队从两端同时相向施工,需要x天铺好,由题意得:x===12(天),答:两队从两端同时相向施工,需要12天铺好.(2)设完成这项工程所需总费用为y元,由题意得:方案一:甲单独施工,所需费用y=200×30=6000元;方案二:乙单独施工,所需费用y=20×280=5600元;方案三:甲、乙同时施工,所需费用y=12×(200+280)=5760元,即:6000元>5760元>5600元,方案二所需总费用最少,所以,按照少花钱多办事的原则,应选择方案二:整项工程由乙单独施工.15.某工人若每小时生产38个零件,在规定时间内还差15个不能完成;若每小时生产42个,则可超额完成5个.规定时间是多少小时?共生产多少个零件?【分析】设规定时间为x小时,根据“每小时生产38个零件,在规定时间内还差15个不能完成;若每小时生产42个,则可超额完成5个”表示出零件个数得出等式求出即可.【解答】解:设规定时间为x小时,则38x+15=42x﹣5,解得:x=5,38x+15=38×5+15=205.答:规定时间为5小时,共生产205个零件.16.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【分析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.17.一水池安有甲、乙、丙三入水管,甲独开12h注满水池,乙独开8h注满水池,丙独开24h 可排掉满池的水,一个空水池,如三管齐开多少小时后,刚好水池的水是满的?【解答】解:设三管同开需x小时注满,则:(+﹣)x=1,解得:x=6,故三管齐开需6小时注满.答:三管齐开6小时后,刚好水池的水是满的.18.甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等.求原来甲、乙车间各有多少人?【分析】首先设乙车间x人,根据“从甲车间调100人去乙车间,则两车间的人数相等”可得甲车间(x+200)人,再根据“从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍”可得等量关系甲车间人数+100=(乙车间人数﹣100)×6,根据等量关系列出方程即可.【解答】解:设乙车间x人,则甲车间(x+200)人,由题意得,x+200+100=6(x﹣100),解得x=180.答:乙车间180人,则甲车间380人.19.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,一个螺栓配两个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?【解答】解:设应分配x人生产螺栓,则(28﹣x)人生产螺帽,由题意,得2×12x=18(28﹣x),解得:x=12,∴生产螺帽的有:28﹣12=16人.答:应分配12人生产螺栓,则16人生产螺帽.20.某班学生计划按规定组数进行分组学习,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?【分析】设该班共有x名学生,根据“若每组5人,则多出4人,若每组6人,则有一组只有2人”即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该班共有x名学生,根据题意得:=,解得:x=44.答:该班共有44名学生.21.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.答:12年后爸爸的年龄是小明年龄的2倍.22.学生问老师:“老师,你今年多大了?”,老师风趣地说:“我像你那么大时,你才1岁;你到我这么大时,我已经37岁了.”则老师今年多少岁?【解答】解:设老师今年x岁,学生今年y岁,根据题意得:,解得:.答:老师今年25岁.23.在一次有12个队参加的足球循环赛(每两队之间必须比赛一场)中,规定胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中所胜场数比所负场多两场,结果积18分,问该队战平几场?【分析】本题是12个队进行单循环赛,每个队都要与除了它自己之外的11个队赛一场,所以一个队的比赛总场数为11.本题中有两个等量关系:胜的场数+平的场数+负的场数=11;胜的积分+平的积分=18.【解答】解:设该队胜x场,平y场.则解得. 答:该队战平3场.24.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛?【分析】由“共赛7场”可设胜利x 场,则平(7﹣x )场,由“积分17分”作为相等关系列方程,解方程即可求解.【解答】解:设胜利x 场,平(7﹣x )场,依题意得:3x +(7﹣x )=17解之得:x=5答:该班共胜了5场比赛.25.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元正好达到盈利45%的预期目标。

七年级上册数学列方程解应用题

七年级上册数学列方程解应用题

七年级上册数学列方程解应用题题目 1:和差倍分问题。

某工厂三个车间共有 180 人,第二车间人数是第一车间人数的 3 倍多 1 人,第三车间人数是第一车间人数的一半还少 1 人,三个车间各有多少人?解析:设第一车间有x人,则第二车间有(3x + 1)人,第三车间有((1)/(2)x - 1)人。

根据题意,可列方程:x + (3x + 1) + ((1)/(2)x - 1) = 180x + 3x + 1 + (1)/(2)x - 1 = 180(9)/(2)x = 180x = 40第二车间人数:3x + 1 = 3×40 + 1 = 121(人)第三车间人数:(1)/(2)x - 1 = (1)/(2)×40 - 1 = 19(人)答案:第一车间 40 人,第二车间 121 人,第三车间 19 人。

题目 2:行程问题。

甲、乙两地相距 162 千米,甲地有一辆货车,速度为每小时 48 千米,乙地有一辆客车,速度为每小时 60 千米,求两车同时相向而行,多长时间相遇?解析:设两车相遇的时间为x小时。

根据路程 = 速度×时间,可得货车行驶的路程为48x千米,客车行驶的路程为60x千米。

两车相向而行,它们行驶的路程之和等于两地的距离,可列方程:48x + 60x = 162108x = 162x = 1.5答案:1.5 小时相遇。

题目 3:工程问题。

一项工程,甲单独做 20 天完成,乙单独做 30 天完成,两人合作多少天可以完成这项工程?解析:设两人合作x天可以完成这项工程。

把这项工程的工作量看作单位“1”,甲每天的工作效率为(1)/(20),乙每天的工作效率为(1)/(30)。

根据工作总量 = 工作时间×工作效率,可列方程:((1)/(20) + (1)/(30))x = 1(1)/(12)x = 1x = 12答案:12 天可以完成。

题目 4:销售问题。

某商品的进价是 1500 元,标价为 2500 元,商店要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?解析:设售货员最低可以打x折出售此商品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7年级方程应用题及答案
列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。

以下是7年级方程应用题及答案,欢迎阅读。

1.一辆汽车,从甲地到乙地.如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达.问甲乙两地的距离及原计划行驶的时间.
2.小红、小乔买了一本习题集,利用暑假做习题.小红做了364道,小乔做了228道后剩下的题目正好是小红剩下的2倍,问此书共有多少习题?
3.父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?
4.一个植树小组去栽树,如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗.问这个小组有多少人?一共有多少棵树苗?
5.甲、乙、丙三人现在的岁数的和是113岁,当甲的岁数是乙的.岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,求乙的年龄.
6.甲、乙、丙、丁四人一共做了370个零件,如果把甲做的个数加10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,四人做的零件数就正好相等,那么乙实际做了多少个?
7.有一辆公共汽车从始站出发,车上每个座位上坐着一位乘客,没有站着,那么车上的座位数是多少呢?
仅供参考:
1.设原计划行驶x小时,则
45×(x+0.5)=50×(x-0.5)
45x+22.5=50x-25
50x-45x=25+22.5
5x=47.5
代入50×(x-0.5)=5×(9.5-0.5)=450所以原计划行驶9.5小时,两地相距450千米.
2.设此书共有x道习题,则
(x-364)×2=x-228
2x-728=x-228
x=728-228
x=500
所以此书共有500道习题.
3.设x年以前,父亲的年龄是儿子年龄的4倍,则
47-x=(20-x)×4
47-x=80-4x
4x-x=80-47
3x=33
x=11
所以11年前,父亲的年龄是儿子年龄的4倍.
4.设植树小组有x人,则
5x+14=7x-4
7x-5x=14+4
2x=18
x=9
代入5x+14=5×9+14=59
所以这个小组有9人,共有59棵树苗.
5.设甲比乙小x岁,当甲是x岁时,由题意知,乙是2x岁,丙是38岁,当甲17岁时,乙的岁数是x+17岁,丙是2(x+17)岁,由甲、丙的岁数差可得:
38-x=2(x+17)-17
38-x=2x+34-17
38-x=2x+17
3x=38-17
x=7
所以甲7岁时,乙14岁,丙是38岁.设已从14岁到现在经过y年,则
(7+y)+(14+y)+(38+y)=113 59+3y=113
3y=54
y=18
14+18=32
所以乙现在的年龄是32岁.
6.由题意知:
甲+10=乙-20=丙×2=。

相关文档
最新文档