随机事件的概率课件完美
合集下载
概率论课件之随机事件PPT课件

(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
随机事件的概率课件

方差
对于连续型随机变量X,其方差 D(X)表示X取值的离散程度,计算 公式为D(X)=∫(X−E(X))2f(x)dx, 其中f(x)是X的概率密度函数。
07
大数定律与中心极限定理
大数定律
大数定律定义
大数定律是指在大量重复实验中,某一事件发生的频率将 趋近于该事件发生的概率。
大数定律的数学表达
设随机事件A发生的概率为P,则当实验次数n趋于无穷时, 事件A发生的频率f趋近于概率P,即lim(n->∞) f(n)=P。
如果一个事件是完备的,那么它的概 率等于1,即$P(Omega) = 1$。
独立事件的概率乘法规则
如果两个事件是独立的,那么它们的 概率可以相乘,即$P(A cap B) = P(A) times P(B)$。
条件概率
条件概率的定义
在某个条件下,某个事件发生的概率称为条件概率。记作 $P(A|B)$,表示在事件B发生的条件下,事件A发生的概率。
3
离散型随机变量的概率
每个取值的概率通常由实验或经验数据得出,表 示为P(X=x),其中X是随机变量,x是取值。
几种常见的离散型随机变量的概率分布
二项分布
当一个随机事件只有两种可能的结果,且这两种结果发生的概率是 已知的,那么这个随机事件的概率分布就是二项分布。
泊松分布
当一个随机事件在单位时间内发生的次数是一个离散型随机变量时 ,这个随机变量的概率分布就是泊松分布。
独立事件的概率计算
01
独立事件
两个或多个事件的发生相互独立,一个事件的发生不影响另一个事件的
发生。
02
概率计算公式
对于独立事件 A 和 B,其概率计算公式为 P(A∩B) = P(A) * P(B),其中
对于连续型随机变量X,其方差 D(X)表示X取值的离散程度,计算 公式为D(X)=∫(X−E(X))2f(x)dx, 其中f(x)是X的概率密度函数。
07
大数定律与中心极限定理
大数定律
大数定律定义
大数定律是指在大量重复实验中,某一事件发生的频率将 趋近于该事件发生的概率。
大数定律的数学表达
设随机事件A发生的概率为P,则当实验次数n趋于无穷时, 事件A发生的频率f趋近于概率P,即lim(n->∞) f(n)=P。
如果一个事件是完备的,那么它的概 率等于1,即$P(Omega) = 1$。
独立事件的概率乘法规则
如果两个事件是独立的,那么它们的 概率可以相乘,即$P(A cap B) = P(A) times P(B)$。
条件概率
条件概率的定义
在某个条件下,某个事件发生的概率称为条件概率。记作 $P(A|B)$,表示在事件B发生的条件下,事件A发生的概率。
3
离散型随机变量的概率
每个取值的概率通常由实验或经验数据得出,表 示为P(X=x),其中X是随机变量,x是取值。
几种常见的离散型随机变量的概率分布
二项分布
当一个随机事件只有两种可能的结果,且这两种结果发生的概率是 已知的,那么这个随机事件的概率分布就是二项分布。
泊松分布
当一个随机事件在单位时间内发生的次数是一个离散型随机变量时 ,这个随机变量的概率分布就是泊松分布。
独立事件的概率计算
01
独立事件
两个或多个事件的发生相互独立,一个事件的发生不影响另一个事件的
发生。
02
概率计算公式
对于独立事件 A 和 B,其概率计算公式为 P(A∩B) = P(A) * P(B),其中
随机事件的概率(1)(共27张PPT)

0≤ ≤1.
(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
人教版1随机事件的概率-数学 (共21张PPT)教育课件

人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
口
罗
不
–
■
电
今天我们进行掷硬币试验,若记“正面向上” 为事件A,P(A)=?
随机事件的概率课件-

0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
观察:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?
抛掷次数n
频率m/n
0.5
1
2048
4040
12000
24000
30000
ห้องสมุดไป่ตู้可能发生也可能不发生
可能发生也可能不发生
事件的表示:一般用A、B、C等大写字母表示。
必然事件: 在条件S下,一定会发生的事件
不可能事件:在条件S下,一定不会发生的事件
随机事件: 在条件S下,可能发生也可能不发 生的事件
定义中“在条件S下”重要吗?如何理解?
必然事件,随机事件,不可能事件
课堂练习
3、孟德尔的豌豆试验数据,孟德尔用黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的,又有绿色的.具体的数据如下表:(用概率的知识解释一下这个遗传规律)
性状
显性
隐性
显性:隐性
颜色
黄色6022
绿色2001
3.01:1
解:用YY表示纯黄色的豌豆,yy表示纯绿色的豌豆。因为当这两种豌豆杂交时,下一代是从父母辈中各随机地选取一个特征。于是:
分析:投篮100次,相当于做100次试验,每次试验的结果是随机的。因此,该运动员投篮100次,可能命中100次,也可能命中不到90次。
课程讲授与变式练习
例3:某中学高二年有12个班级,要从中选2个班级代表学校成绩某项活动,规定一班必须参加,另外从二班至十二班中选1个班,有人提议:抛掷两枚骰子得到点数和是几,就选几班,你认为哪个班级被选中的概率最大?哪一班被选中的概率最小?
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
观察:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?
抛掷次数n
频率m/n
0.5
1
2048
4040
12000
24000
30000
ห้องสมุดไป่ตู้可能发生也可能不发生
可能发生也可能不发生
事件的表示:一般用A、B、C等大写字母表示。
必然事件: 在条件S下,一定会发生的事件
不可能事件:在条件S下,一定不会发生的事件
随机事件: 在条件S下,可能发生也可能不发 生的事件
定义中“在条件S下”重要吗?如何理解?
必然事件,随机事件,不可能事件
课堂练习
3、孟德尔的豌豆试验数据,孟德尔用黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的,又有绿色的.具体的数据如下表:(用概率的知识解释一下这个遗传规律)
性状
显性
隐性
显性:隐性
颜色
黄色6022
绿色2001
3.01:1
解:用YY表示纯黄色的豌豆,yy表示纯绿色的豌豆。因为当这两种豌豆杂交时,下一代是从父母辈中各随机地选取一个特征。于是:
分析:投篮100次,相当于做100次试验,每次试验的结果是随机的。因此,该运动员投篮100次,可能命中100次,也可能命中不到90次。
课程讲授与变式练习
例3:某中学高二年有12个班级,要从中选2个班级代表学校成绩某项活动,规定一班必须参加,另外从二班至十二班中选1个班,有人提议:抛掷两枚骰子得到点数和是几,就选几班,你认为哪个班级被选中的概率最大?哪一班被选中的概率最小?
随机事件的概率 课件

(2)让硬币竖直着自由下落
投币要求: (3)距离桌面40cm
(4)落在桌面上
第一步:两人一组,每组重复投币10次,记录正面向 上出现的次数,计算正面向上的频率,填入下表中。
姓名
试验总次 数
正面向上次数
正面向上的频 率
第二步: 由组长把本小组同学的试验结果汇总一下,填入表中:
组别
试验次数 正面向上频 正面向上的频率
2、频率与试验次数有关吗?概率呢?
析概率是一个确定的常数,是客观存在的,与每次试验 结果无关,与试验次数无关,甚至与做不做试验无关.
3、随着试验次数的增加,频率
概率;
概率是频率的稳定值 ,频率是概率的 近似值;
因此在实际中我们求一个事件的概率时, 有时通过进行大量的重复试验,用这个事件 发生的频率近似地估计它的概率.
50 100 200 400 600 800 48 94 196 380 582 760
手机合格率 m 0.96 0.94 0.98 0.95 0.97 0.95 n
当抽查的iPhone5s手机越来越多 时,手机合格率接近于常数0.95
姚明投篮命中率如下表所示
n 投篮总次数
50 100 200 400 600 800
m 投篮命中次数
25 56 110 215 340 422
投篮命中率 m 0.5 0.56 0.55 0.54 0.57 0.53 n
当姚明投篮很多次时,投篮命中 频率趋于常数0.55
结论:
随机事件A在每次试验中是否发生是不能 预知的,但是在大量重复试验后,随着次数的 增加,事件A发生的频率会逐渐稳定在区间 [0,1]中的某个常数上。
第三章 概率
3.1.1 随机事件的概率 —— 频率与概率
投币要求: (3)距离桌面40cm
(4)落在桌面上
第一步:两人一组,每组重复投币10次,记录正面向 上出现的次数,计算正面向上的频率,填入下表中。
姓名
试验总次 数
正面向上次数
正面向上的频 率
第二步: 由组长把本小组同学的试验结果汇总一下,填入表中:
组别
试验次数 正面向上频 正面向上的频率
2、频率与试验次数有关吗?概率呢?
析概率是一个确定的常数,是客观存在的,与每次试验 结果无关,与试验次数无关,甚至与做不做试验无关.
3、随着试验次数的增加,频率
概率;
概率是频率的稳定值 ,频率是概率的 近似值;
因此在实际中我们求一个事件的概率时, 有时通过进行大量的重复试验,用这个事件 发生的频率近似地估计它的概率.
50 100 200 400 600 800 48 94 196 380 582 760
手机合格率 m 0.96 0.94 0.98 0.95 0.97 0.95 n
当抽查的iPhone5s手机越来越多 时,手机合格率接近于常数0.95
姚明投篮命中率如下表所示
n 投篮总次数
50 100 200 400 600 800
m 投篮命中次数
25 56 110 215 340 422
投篮命中率 m 0.5 0.56 0.55 0.54 0.57 0.53 n
当姚明投篮很多次时,投篮命中 频率趋于常数0.55
结论:
随机事件A在每次试验中是否发生是不能 预知的,但是在大量重复试验后,随着次数的 增加,事件A发生的频率会逐渐稳定在区间 [0,1]中的某个常数上。
第三章 概率
3.1.1 随机事件的概率 —— 频率与概率
随机事件课件(共23张PPT)

B. 4
C. 5
D. 6
25.1.1 随机事件
3. 已知地球表面陆地面积与海洋面积的比约为 3∶7, 如果宇宙中飞
来一块陨石落在地球上,那么“落在海洋里”的可能性__A____“落在
陆地上”的可能性
A. 大于
B. 等于
C. 小于
D. 以上三种情况都有可能
25.1.1 随机事件
4. 如图,电路图上有3个开关A,B,C和1个小灯泡,同时闭合开关A,C 或B,C都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随 机事件的是( B ) A. 只闭合1个开关 B. 只闭合2个开关 C. 闭合3个开关 D. 不闭合开关
片(2)长、宽为m,n的矩形面积是mn(3)掷一枚质地均匀的硬
币,正面朝上(4)π是无理数A. 1个 B. 2个 C. 3个 D. 4 个
25.1.1 随机事件
2.“把三个分别标有数字1,3,m且其余完全相同的小球放入一个不透
明的暗盒中,摇匀后随机从中摸出一个小球,摸出的小球上的数字小
于4”是必然事件,则m的值可能是( A )A. 3
例如,天气预报说明天的降水概率为90%,就意味着明天下雨(雪)的可
能性很大. 这就是我们本章要学习的概率!
你还能想到生活 中那些是运用了
概率的例子呢?
第25章 概 率 章起始课
本章学习目标 1.了解必然事件、不可能事件和随机事件的概念 2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能 性大小的数学概念,理解概率的取值范围的意义. 3.能够运用列举法(包括列表法和画树状图法)计算简单随机试验中事件发 生的概率. 4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可 以用频率估计概率,了解频率与概率的区别与联系. 5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.
《311随机事件的概率》课件(共29张PPT)

知识小结
1.随机事件的概念: 在一定条件下可能发生也可能不发生的 事件,叫做随机事件.
2.随机事件的概率的定义: 在大量重复进行同一试验时,事件 A 发 m 生的频率 总是接近于某个常数,在它附近 n 摆动,这时就把这个常数叫做事件 A的概 率.
3.概率的性质: 0 P A 1
课外探究
思考:你能举几个例子吗?
返回8
2.在条件S下,一定不会发生的事件,
叫做相对于条件S的不可能事件.
(3)“一天内在常温下,石头风化” (4)“在标准大气压下且温度低于 0℃时,雪融化”
不可能发生
思考:你能举几个例子吗?
3.在条件S下,可能发生也可能不
发生的事件,叫做相对于条件S的 随机事件
(6)“某人射击一次,中靶”
实例分析
某批乒乓球产品质量检查结果表:
抽取球数 优等品数
m
50 45
100 92
200 194
500 470
1000 954
2000 1902
n
优等品频率 m 0.9 0.92
0.97
0.94
0.954
0.951
n
当抽查的球数很多时,抽到优等品的频 m 率 接近于常数0.95,在它附近摆动。 n
这时,我们就可以说,抽到优等品的概率是0.95.
随机事件的概率
新乐一中
郭秀英
观察下列事件:
事件一:
回答此事件是 不可能发生、必然 发生、可能发生也可能不发生中的哪一种?
事件二:
地球在一直运动吗?
木柴燃烧能产生 热量吗?
必然发生
必然发生
事件三:
事件四:
一天内,在常温下, 这块石头会被风化吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nH
f
nH
f
nH f
2 3
0.4
22 0.44 251 0.502
0.6
2在5 1 处波0动.50较大 249 0.498
2
1
0.2 21 0.42 256 0.512
5 1
在随11n处.0的波增动大较25小, 频率0.f5呈0 现出24稳7 定0性.494 20.2 24 0.48 251 0.502
A.三个都是正品
B.至少有一个是次品
C.三个都是次品
D.至少有一个是正品
②若在同等条件下进行 n次重复实验得到某个事件 A发
生的频率 f(n),则随着n的增大,有(D)
A.f(n)与某个常数相等 B.f(n)与某个常数的差逐渐减小 C.f(n) 与某个常数的差的绝对值逐渐减小 D.f(n) 在某个常数的附近摆动并趋于稳定
这个常数才叫做事件 A的概率;
(3 )概率是频率的稳定值,而频率是概率 的近似值;
(4 )概率反映了随机事件发生的可能性 的大小; (5 )必然事件的概率为1,不可能事件的
概率为0.因此 0 ? P?A?? 1
①从12个同类产品 (其中10个正品,两个次品) 中,任抽三
个产品,则下列事件中哪个是必然事件( D)
2
0.4 18 0.36 波26动2 最0小.524
4
0.8 27 0.54 258 0.516
例如,历史上曾有人做过抛掷硬币的大量重复 试验,结果如下表 :
抛掷次数(
)m
2048
正面向上次数
(频数n )
1061
频率(m ) n
0.5181
4040 12000 24000 30000 72088
Hale Waihona Puke 2048 6019 12012 14984 36124
1. 掌握随机事件、必然事件、不可能事件的概念。 2.对概率含义的正确理解。 3. 理解频率与概率的关系。
问题情境
木柴燃烧,能产生热量吗?
明天,地球还会转动吗?
煮熟的鸭子,能跑了吗?
一天内,在常温下,石头会被风 化掉吗?
试分析:“从一堆牌中任意抽一张抽到红牌”这 一事件的发生情况?
必然发生
必然不会发生
n 成 fn ( A).
2. 概率的定义
在大量重复进行同一试验时,事件 A 发生
的频率 fn ( A) 总是接近于某个常数,在它附近摆
动,这时就把这个常数叫做事件 A 的概率.
频率与概率的关系
(1)联系随: 着试验次数的增加 , 频率会在概率的附近
摆动,并趋于稳定 . 在实际问题中 ,若事件的概率未知 ,常用频率
0.5069 0.5016 05005 0.4996 0.5011
当抛掷硬币的次数很多时,出现正面的频率值 是稳定的,接近于常数 0.5 ,在它左右摆动.
某批乒乓球产品质量检查结果表:
抽取球数 m
优等品数 n
优等品频率 m n
50 100 200 500 1000 2000 45 92 194 470 954 1902
3.1 随机事件的概率
本课主要学习随机事件的概率的相关内容,主要研 究事件的分类、概率的定义、概率的意义及统筹算法 。
因此本课开始以几个不同性质的事件案例作为课前 导入,引导学生发现各种事件的不同之处,故而引入 随机事件、必然事件、不可能事件的概念。接下来通 过课堂实验以及已统计的实验数据,引入频数、频率 和概率的概念,并指出频率和概率的联系。重点把握 二者的联系与差别。最后通过一系列例题及习题对内 容进行加深巩固。
0.9 0.92 0.97 0.94 0.954 0.951
当抽查的球数很多时,抽到优等品的频 率 m 接近于常数0.95 ,在它附近摆动。
n
某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽 发芽的频率m 接近于常数0.9 ,在它附近 摆动。 n
1. 频率的定义
在相同的条件下 , 进行了 n 次试验 ,在这 n 次试验中 , 事件 A 发生的次数 nA 称为事件 A 发 生的频数 .比值 nA 称为事件 A 发生的频率 ,并记
”
不可能发生
(1)必然事件、不可能事件、随机事件
随机事件:在一定条件下可能发生也可能不 发生的事件叫随机事件。
必然事件 在一定条件下必然要发生的事件
:
叫必然事件。
不可能事件:在一定条件下不可能发生的事 件叫不可能事件。
确定事件和随机事件统称为事件,一般 用大写字母A,B,C…表示。
这些事件发生与否,各有什么特点呢?
不不可可能能发事生件
指出下列事件是必然事件,不可能事件,还是随机事件:
(1)某地明年 1月1日刮西北风;
随机事件
(2)当x是实数时, x2 ? 0 ;
必然事件
(3) 手电筒的电池没电,灯泡发亮;
不可能事件
(4)一个电影院某天的上座率超过 50%; 随机事件
(5)从分别标有 1,2,3,4,5,6,7,8,9,10的 10张号签中任取一张,得到 4号签; 随机事件
作为它的估计值 .
(2)区别频: 率本身是随机的 ,在试验前不能确定 ,做
同样次数或不同次数的重复试验得到的事件 的频率都可能不同 .
而概率是一个确定数 ,是客观存在的 ,与每 次试验无关 .
注意以下几点:
(1)求一个事件的概率的基本方法是通 过大量的重复试验;
(2 )只有当频率在某个常数附近摆动时,
(1)“地球不停地转动” 必必然然事发件生 (2)“木柴燃烧,产生能量”必必然然发事生件 (3)“在常温下,石头风化”不可能事发件生 (4)“某人射击一次,中靶” 可随能机发事生件也可能不发生 (5)“掷一枚硬币,出现正面”可随能机发事生件也可能不发生
(6)“在标准大气压下且温度低于0℃时,雪融化
”
可能发生, 也 可能不发生
这些事件发生与否,各有什么特点呢?
(1)“地球不停地转动” 必然发生 (2)“木柴燃烧,产生能量”必然发生 (3)“在常温下,石头在一天内风化”不可能发生 (4)“某人射击一次,中靶” 可能发生也可能不发生
(5)“掷一枚硬币,出现正面”可能发生也可能不发生
(6)“在标准大气压下且温度低于0℃时,雪融化
(2)概率的定义及其理解
随机事件在一次试验中是否发生虽然不能事 先确定,但是在大量重复试验的情况下,它的发 生呈现出一定的规律性.
实验 有人将一枚硬币抛掷 5 次、50 次、500 次, 各 做7 遍, 观察正面出现的次数及频率 .
试验 序号
1 2 3 4 5 6 7
n? 5
n ? 50
n ? 500