布洛赫定理及它的指导意义

布洛赫定理及它的指导意义
布洛赫定理及它的指导意义

JISHOU UNIVERSITY

《固体物理》期末

考核报告

布洛赫定理及它的指导意义

布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch )而得名。

布洛赫波由一个平面波和一个周期函数u (r )(布洛赫波包)相乘得到。其中u (r )与势场具有相同周期性。布洛赫波的具体形式为:

式中k 为波矢。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质:

这一结论称为布洛赫定理(Bloch's theorem ),其中

为晶格周期矢量。可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。

平面波波矢k(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。这些能带的能量在k的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。

上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢k是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。

从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。

布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程(Hill's equation)。

在量子力学建立以后,布洛赫( F.Bloch )和布里渊( Brillouin )等人就致力于研究周期场中电子的运动问题。他们的工作为晶体中电子的能带理论奠定了基础,下面我们作些简单介绍。

一个在周期场中运动的电子的波函数应具有什么特点?布洛赫定理指出了在周期场中运动的电子波函数的特点。

我们知道,在一维情形下,周期场中运动的电子能量E ( k ) 和波函数必须满足定态薛定谔方程

k——波数,表示电子波的波数

U ( x ) ——周期性的势能函数,它满足

a——晶格常数

n——任意整数

布洛赫定理:

满足(1)式的定态波函数必定具有如下的特殊形式

(2)

式中是以晶格常数a为周期的周期函数,即

具有(2)式形式的波函数称为布洛赫波函数,或布洛赫函数。

布洛赫定理说明了一个在周期场中运动的电子的波函数为:一个自由电子波函数e ikx与一个具有晶体结构周期性的函数u k(x) 的乘积。

从布洛赫定理,我们认识到下面几点:

周期场中运动的电子波是行波,它受到以晶格周期a为周期的函数u k(x) 的调制。

这在物理上反映了晶体中的电子既有共有化的倾向,又有受到周期性排列的离子影响的特点。

只有在u k(x) 等于常数时,在周期场中运动的电子的波函数才完全变为自由电子的波函数。

因此,布洛赫函数是比自由电子波函数更接近实际情况的波函数。

贝叶斯定理

贝叶斯定理 (重定向自后验概率) 贝叶斯定理(Bayes theorem),是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。 作为一个规范的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,概率如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯定理。本文深度讨论了这些争论。 贝叶斯定理的陈述 贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词都有约定俗成的名称: 按这些术语,Bayes定理可表述为: 后验概率= (相似度* 先验概率)/标准化常量 也就是说,后验概率与先验概率和相似度的乘积成正比。 另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为: 后验概率= 标准相似度* 先验概率 从条件概率推导贝叶斯定理 根据条件概率的定义 . 在事件B发生的条件下事件A发生的概率是

同样地, 在事件A发生的条件下事件B发生的概率 整理与合并这两个方程式, 我们可以找到 这个引理有时称作概率乘法规则.上式两边同除以P(B), 若P(B)是非零的, 我们可以得到贝叶斯定理: 二中择一的形式 贝叶斯定理通常可以再写成下面的形式: 在更一般化的情况,假设{A i}是事件集合里的部份集合,对于任意的A i,贝叶斯定理可用下式表示:

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

贝叶斯定理在定位与跟踪上应用参考

2.1贝叶斯定理 贝叶斯定理是关于随机事件A和B的条件概率的一则定理。 贝叶斯定理公式:P(A|B)=P(B|A)*P(A)/P(B) (2.1.1) 上面的公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A) (2.1.2) 这里,P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词定义如下: P(A)是A的先验概率。之所以称为"先验"是因为它不考虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。 P(B)是B的先验概率。 2.2贝叶斯估计 2.2.1 贝叶斯估计的基本原理。 A.贝叶斯估计的4个步骤 ?假设 ?将待估计的参数看作符合某种先验概率分布的随机变量 ?估计方式 ?通过观察样本,将先验概率密度通过贝叶斯规则转化为后验概率密度。 B.概率密度估计的两种基本方法 方法1:参数估计(parametric methods) 根据对问题的一般性的认识,假设随机变量服从 某种分布,分布函数的参数通过训练数据来估计。 如:ML 估计,Bayesian估计。 方法2:非参数估计(nonparametric methods): 不用模型,而只利用训练数据本身对概率密度做 估计。 C.贝叶斯估计应用及其框图 贝叶斯估计应用在很多领域,在概率、数理统计学中以贝叶斯姓氏命名的有贝叶斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝叶斯估计量、贝叶斯方法、贝叶斯统计等等. 贝叶斯统计学派把任意一个未知参数都看成随机变量,应用一个概率分布去描述它的未知状况,该分布称为先验分布。 图 2.1 贝叶斯估计应用框图

布洛赫定理

§布洛赫定理 今天我们这一节课要讲的内容是布洛赫定理。 经过前面的学习,我们知道,晶体是由大量电子和原子核组成的多粒子系统,但晶体的许多电子过程仅与外层的价电子有关,而内层电子和原子核组成的原子实在一些近似条件下是保持稳定的,因此,为了了解晶体的性质必须首先了解晶体中电子的运动状态,而晶体中电子的运动状态可由薛定谔方程 ()()H E ψψ=r r (1) 的解来描述。式中H 是电子的哈密顿算符,()ψr 是电子的波函数,E 是能量本征值。这 里H 可以表示为电子的动能与电子所受到的等效势场之和 () 2 22H V m =- ?+r r (2) 其中第一部分表示电子的动能,第二部分表示电子所受到的等效势场。对于理想晶体,原子排列成晶格,晶格具有周期性,因而等效势场()V r 也具有周期性, ()()n V V =+r r R (3) 这里()n 112233,1,2,3m m m m ααα=++==R a a a a 为晶格周期矢量,它是原胞的三个基失1a ,2a 和3a 的线性组合。这个式子表明将位置矢量从r 移到n +r R 处,等效势场具有相同 的值。从这里可以看出,晶体中的电子就是在一个具有晶格周期性的等效势场中运动,那么,一个在周期场中运动的电子,它的波函数应该具有什么样的特征呢?布洛赫定理就回答了这么一个问题。 布洛赫定理指出,当势场具有晶格周期性时,晶体中电子的波函数具有这样的特征 ()() n n i e ψψ?+=k R r R r (4) 其中k 为一矢量,我们称之为波失。从这个式子我们可以看到,位置矢量为n +r R 处的波函数与位置矢量为r 处的波函数只相差一个位相因子n i e ?k R ,因为位相因子不影响波函数的 模的大小,所以,在不同原胞的对应点上找到电子的几率是相同的,这也说明晶体中的电子是公有化的,它不再束缚于某一单个的原子,而是在整个晶体中运动。 根据布洛赫定理,我们还可以把晶体中电子的波函数写成 ()()i e u ψ?=k r r r (5) 其中()u r 具有与晶格相同的周期性,即 ()()n u u =+r r R . 我们把(5)式表达的波函数称之为布洛赫波函数,或者说布洛赫波,它描述的电子叫布洛赫电子。我们看到,布洛赫波是平面波与周期函数的乘积,其中i e ?k r 表明它是一个平面波, ()u r 为平面波的振幅,它不是一个常数,而与位置有关,并且具有晶格周期性。换句话说, 在周期场中运动的电子的波函数不再是平面波,而是调幅平面波。 下面我们来证明布洛赫定理。 由于晶体具有平称对称性,因此我们引入平移算符αT ,当αT 作用于任意函数()f r 上时将使函数的自变量发生一个平移,从r 平移到α+r a , ()()f f αα=+T r r a , 显然如果αT 作用两次,就有

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

布洛赫定理证明

对于理想晶体,原子规则排列成晶格,晶格具有周期性,由此等效势场)(r V 也具有周期性,晶体中的共有化电子所满足的波动方程在坐标表象中为: )()()(2)(2r E r r V m i ψψ=????????+?-,)()(n R r V r V += 这里n R 为正格子空间是格矢量,考虑的是定态薛定谔方程。 布洛赫定理指出:当势场具有周期性时,波函数具有如下形 式:)()(r e R r n R k i n ψψ?=+,)()(r u e r r k i ?=ψ,)()(r u R r u n =+ 即波函数是按晶格周期函数调幅的平面波。具有该形式是函数又称为布洛赫函数。 布洛赫定理的证明 如果用)(?n R T 代表使位矢r 平移到n R r +的平移操作算符(n R 为格矢),则单电子的在周期性势场中的势能具有: )()()(?n n R r V r V R T += 在周期场中运动的单电子满足的定态薛定谔方程为: )()()(2)(?22r E r r V m r H ψψψ=??? ?????+?-= 其中:)(2?22r V m H +?-=为体系哈密顿量。 对于任意函数)(r f 在平移算符的作用下有: )()(2)](?)[(?22n n R r n R r f R r V m r f H R T n +??? ?????++?-=+ )()(??)(?)()(222r f R T H R r f H R r f r V m n n n =+=+????????+?-= 由此可知体系哈密顿量和平移算符是对易的,即

0)(???)(?=-n n R T H H R T 根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选择哈密顿量的本征态)(r ψ为共同本征态。 采用波恩-卡曼周期性边界条件有: )()()(?)(?)(?)()(?)()(111111111r r a T a T a T r a N T a N r r N ψλψψψψ===+= )()()(?)(?)(?)()(?)()(22 2222222r r a T a T a T r a N T a N r r N ψλψψψψ===+= )()()(?)(?)(?)()(?)()(333333333r r a T a T a T r a N T a N r r N ψλψψψψ===+= 这里321,,λλλ分别为)(?),(?),(?321a T a T a T 在本征态)(r ψ的本征值;321,,a a a 分别为正格子空间的基矢。 由上式可以得到:j j N l i j e πλ2=,j l 取j N 2,1,0的整数,3,2,1=j ,引入倒矢量:33 3222111b N l b N l b N l k ++=,则有:j a k i j e ?=λ 于是: )()(?)(?)(?)()(?)(3 32211r a n T a n T a n T r R T R r n n ψψψ==+ )()()(321332211321r e r a n a n a n k i n n n ψψλλλ++?== =)(r e n R k i ψ? 这里k 为简约波矢,可将其限制在简约布里渊区内取值,其在倒格子空间的取值点是均匀分布的,其在每一个布里渊区取值的个数等于晶格元胞数,在倒空间的密度为3)2(πV 。 如果取:)()(r u e r r k i ?=ψ,代入上式有: )()()()(r u e R r u e n n R r k i n R r k i +?+?=+ 则:)()(r u R r u n =+

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别 (哈尔滨工业大学 材料科学与工程系1419002班) 摘要:在1928年,布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体物理特性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill ,1877年),加斯东·弗洛凯(Gaston Floquet ,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov ,1892年)等独立地提出。随后表产生了布洛赫电子的概念。本文主要探讨自由电子与布洛赫电子的区别。 关键词:自由电子;布洛赫电子;区别 1 基本概念 1.1 自由电子 自由电子(free electron)按照电子的运动范围定义指不被约束在某一个特定原子内部的电子,在化学中是指在分子中与某个特定原子或共价键无关的电子。当这种电子在受到外电场或外磁场的作用时,能够在物质(晶体点阵)中或真空中运动。因此自由电子也叫做离域电子。 由金属的电子云模型理论可以确定,金属晶体中存在自由电子。自由电子的多少会影响晶体的导电性和导热性,自由电子愈多,电传导的能力愈强,而大部分的金属晶体都有较多的自由电子,所以金属都具有良好的导热性和导电性。 1.2 布洛赫定理 晶体中电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式 其中k 为电子的波矢,Rn 是晶格矢 上述理论称为布洛赫(Bloch)定理。 布洛赫定理的另一种表述为,存在以波矢 使得 对属于布拉维格子的所有格矢 成立。 1.3 布洛赫电子 用布洛赫函数描述的电子称为布洛赫电子。 )(e )(r u r k r k i k ?=ψ)()(r u R r u k n k =+k n R 3 32211a n a n a n R n ++=)(e )(r R r n R k i n ψψ?=+

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

(完整版)勾股定理典型练习题

新人教版八年级下册勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222 a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=? , 则c = ,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形” 来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b , c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b , c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222 ,2,m n mn m n -+(,m n >m ,n 为正整数) c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理经典例题题库完整

勾股定理练习一 1、观看上图,每一小方格为单位1,填表: 2、求下列图形中未知正方形的面积或未知边的长度: 3、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则 X的长为厘米? 4、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积是多少? 5、如图,从电线杆离地面6米处向地面拉一条长10米的缆绳, 这条缆绳在地面的固定点距离电线杆底部为米。 6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏 离欲到达点B 200m,结果他在水中实际游了520m,求该河流 的宽度为多少.?

一、选择题。 1、以下列各组数为边长,能组成直角三角形的是() A.2,3,4 B.10,8,4 C.7,25,24 D.7,15,12 2、已知一个Rt△的两边长分别为3和4,则第三边长的平方是() A.25 B.14 C.7 D.7或25 3、以面积为9 cm2的正方形对角线为边作正方形,其面积为() A.9 cm2 B.13 cm2 C.18 cm2 D.24 cm2 4、如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=() A.6 B.8 C.10 D.12 5、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米, 如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了() A.4米 B.6米 C.8米 D.10米 二、填空题。 1、如图,在等腰直角△ABC中, AD是斜边BC上的高,AB=8,

则AD 2= 。 2、如图,在一个高为3米, 长为5米的楼梯表面铺地毯,则地毯长度为 米。 三、 计算题。 “中华人民国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗? 1、已知在Rt △ABC 中,∠C=90°。 ①若a=3,b=4,则c=________; ②若a=40,b=9,则c=________; ③若a=6,c=10,则b=_______; ④若c=25,b=15,则a=________。 2、已知等边三角形ABC 的边长是6cm 。求:(1)高AD 的长; (2)△ABC 的面积ABC S 。 3、已知在Rt △ABC 中,∠C=90°,AB=10。

布洛赫波

布洛赫波 在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch)而得名。布洛赫波由一个平 面波和一个周期函数(布洛赫波包)相乘得到。其中与势场具有相同周期性。布洛赫波的具体形式为: 式中k为波矢。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质: 这一结论称为布洛赫定理(Bloch's theorem),其中为晶格周期矢量。可以 看出,具有上式性质的波函数可以写成布洛赫函数的形式。 硅晶格中的布洛赫波 平面波波矢(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。这些能带的能量在的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成

了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。 上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。 从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。 布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程(Hill's equation)。 参考资料 黄昆原著,韩汝琦改编,《固体物理学》,高等教育出版社,北京,1988,ISBN 7-04-001025-9 Charles Kittel, Introduction to Solid State Physics (Wiley: New York, 1996). Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976). Felix Bloch, "über die Quantenmechanik der Elektronen in Kristallgittern," Z. Physik 52, 555-600 (1928). George William Hill, "On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon," Acta. Math. 8, 1-36 (1886).(本文初版于1877年,后曾被私下传阅)。 Gaston Floquet, "Sur les équations différentielles linéaires à coefficients périodiques," Ann. école Norm. Sup. 12, 47-88 (1883). Alexander Mikhailovich Lyapunov, The General Problem of the Stability of Motion (London: Taylor and Francis, 1992).(李雅普洛夫的博士论文,1892年完稿,稳定性理论的奠基之作)

相关文档
最新文档