互斥事件PPT教学课件

合集下载

对立事件与互斥事件PPT课件

对立事件与互斥事件PPT课件

例2、某小组有3名男生和2名女生,从中任选2名同学参加 演讲比赛.判断下列每对事件是不是互斥事件,如果是, 再判别它们是不是对立事件.
(1)恰有一名男生与恰有2名男生; (2)至少有1名男生与全是男生; (3)至少有1名男生与全是女生; (4)至少有1名男生与至少有1名女生.
互斥不对立 不互斥 互斥且对立
而对立事件除了要求这两个事件不同时发生外,
还要求这二者之间必须要有一个发生,因此,
对立事件是互斥事件,是互斥事件的特殊情况, A
B
但互斥事件不一定是对立事件。
③从集合角度看,几个事件彼此互斥,是指这 几个事件所包含的结果组成的集合的交集为空
A、B互斥且独立
集;而事件A的对立事件是指A在全集中的补集。
A、B、C彼此互 斥但不独立
A
B
③从集合角度看,几个事件彼此互斥,是指这
几个事件所包含的结果组成的集合的交集为空
A、B互斥且独立
集;而事件A的对立事件是指A在全集中的补集。
例1、把标号为1,2,3,4的四个小球随机地
分发给甲、乙、丙、丁四个人,每人分得一个。
事件“甲分得1号球”与事件“乙分得1号球”
A.① B.② C.③ D.④
分析:从袋中任取3球,可分为四种情形:
{三个白球} {两白一黑} {两黑一白} {三个黑球}
Hale Waihona Puke :本课小结:ABC
①互斥事件可以是两个或两个以上事件的关系,
而对立事件只针对两个事件而言。
②从定义上看,两个互斥事件有可能都不发生, A、B、C彼此互
也可能有一个发生,也就是不可能同时发生; 斥但不独立
是( )
A
(A)互斥但非对立事件
(B)对立事件

互斥事件新课课件

互斥事件新课课件
组合数学问题
互斥事件的概念在组合数学中也有应 用,例如在排列组合的计算中,可以 通过互斥事件来简化计算。
感谢观看
THANKS
互斥事件新课ppt课 件
• 互斥事件定义 • 互斥事件的概率 • 互斥事件的实例 • 互斥事件的意义和作用 • 互斥事件的扩展知识
目录
01
互斥事件定义
什么是互斥事件
01
互斥事件是指两个或多个事件不 能同时发生的事件。
02
在概率论中,互斥事件指的是两 个事件没有交集,即当其中一个 事件发生时,另一个事件一定不 会发生。
互斥事件在概率论中的作用
定义概率空间
互斥事件是概率论中的基本概念 ,用于定义样本空间和事件,是
概率论研究的基础。
计算概率
互斥事件在概率计算中起到关键 作用,通过互斥事件的概率,可
以推导出其他事件的概率。
建立概率模型
互斥事件是建立概率模型的基础 ,通过互斥事件可以将复杂事件 拆分成多个简单事件的组合,便
互斥事件的特点
互斥事件不能同时发生,即它们的交集为空集。 互斥事件的发生是相互排斥的,即一个事件发生时,另一个事件一定不会发生。
互斥事件不一定是对立事件,对立事件一定是互斥事件。
互斥事件的分类
01
按照互斥事件的定义, 可以分为三类:两两互 斥、对立互斥和一般互 斥。
02
两两互斥是指任意两个 事件之间都是互斥的, 即任意两个事件都没有 交集。
互斥事件在数学问题中的应用
解决概率问题
互斥事件是解决概率问题 的基本工具,通过互斥事 件的概率,可以推导出其 他事件的概率。
组合数学
在组合数学中,互斥事件 可以用来计算组合数和排 列数等数学问题。

3.4-2互斥事件PPT优秀课件

3.4-2互斥事件PPT优秀课件

例3 一只口袋有大小一样的5只球,其中3只红球,2 只黄球,从中摸出2只球,求两只颜色不同的概率. 解:从5只球中任意取2只含有的基本事件总数为10. 记:“从5只球中任意取2只球颜色不同”为事件 只球颜色相同”为事件A, “从5只球中任意取2只红球”为事件B, “从5只 球中任意取2只黄球”为事件C,则A=B+C.
江西省赣州一中刘利剑 整理 heishu800101@
回顾小结:
一、知识要点: ⑴ 互斥事件、对立事件的概念及它们的关系; ⑵ n 个彼此互斥事件的概率公式: ⑶ 对立事件的概率之和等于1,即:
P ( A A A ) P ( A ) P ( A ) P ( A ) 1 2 n 1 2 n
29 35 64 16 9 P P2 1 100 100 100 25 25 22.05.2019 江西省赣州一中刘利剑 整理 heishu800101@
例2 班级联欢时,主持人拟出了以下一些节目:跳双人 舞、独唱、朗诵等,指定3个男生和2个女生来参与,把 5个人编号为1,2,3,4,5,其中1,2,3表示男生,4, 5表示女生.将每个人的号分别写在5张相同的卡片上,并 放入一个箱子中充分混和,每次从中随机地取出一张卡 片,取出谁的编号谁就参与表演节目. (1)为了取出2人来表演双人舞,连续抽取 6 2张卡片,求取 7 出的2人不全是男生的概率. P 1 1 20 10 (2)为了取出2人分别表演独唱和朗诵,抽取并观察第一 张卡片后,又放回箱子中,充分混合后再从中抽取第二 张卡片,求: i)独唱和朗诵由同一个人表演的概率; ii)取出的2个不全是男生的概率. 9 16 5 1 P 整理 heishu800101@ 3 1 22.05.2019P 江西省赣州一中刘利剑 2 25 25 25 5

《高一数学互斥事件》课件

《高一数学互斥事件》课件

是0.5。如果要求正面或反面朝上的概率,可以使用互斥事件的概率加
法定理,即P(正或反)=P(正)+P(反)=0.5+0.5=1。
互斥事件的概率应用实例
彩票中奖概率
在彩票游戏中,每个号码出现的概率 是独立的,因此每个号码的出现是互 斥事件。通过计算每个号码出现的概 率,可以得出中奖的概率。
交通信号灯变化概率
互斥事件与对立事件的关系
互斥事件
两个事件不能同时发生。
对立事件
两个事件中必有一个发生,且仅有一个发生。
关系
对立事件一定是互斥事件,但互斥事件不一定是 对立事件。
互斥事件与必然事件的关系
必然事件
在一定条件下一定会发生的事件。
关系
必然事件与任何事件都是互斥的,但互斥事件不一定是必然事件。
05 互斥事件的数学应用
CHAPTER
利用互斥事件解决概率问题
总结词
互斥事件是概率论中的基本概念,利用互斥事件可以解决许多概率问题。
详细描述
在概率论中,互斥事件指的是两个或多个事件不能同时发生的事件。利用互斥事件的性质,可以计算 事件的概率、独立性、条件概率等,从而解决各种概率问题。
利用互斥事件优化决策
总结词
在决策分析中,可以利用互斥事件来优 化决策过程。
《高一数学互斥事件》ppt课 件
目录
CONTENTS
• 互斥事件定义 • 互斥事件的概率 • 互斥事件的实例 • 互斥事件与其他概念的关系 • 互斥事件的数学应用
01 互斥事件定义
CHAPTER
什么是互斥事件
01
互斥事件是指两个事件不可能同 时发生,即两个事件在时间或空 间上具有排他性。
02

《高一数学互斥事件》课件

《高一数学互斥事件》课件

结论和要点
1 互斥事件指的是不可 2 互斥事件的性质包括 3 互斥事件的计算可采
能同时发生的事件。
互不相容、互斥事件
用加法法则、乘法法
的和为全集和互斥事
则和补事件概率等方Fra bibliotek件的概率为0。
法。
4 互斥事件有广泛应用,包括投资组
5 在分析互斥事件时,需要克服互斥
合、可靠性工程和项目管理等领域。
性验证和复杂因素计算等挑战。
互斥事件的应用
投资组合
在投资中,我们可以通过选择互斥事件来降低风险和提高收益。
可靠性工程
在可靠性工程中,互斥事件的分析有助于设计更可靠的系统和产品。
项目管理
在项目管理中,互斥事件的考虑可以帮助我们制定合理的计划和减少冲突。
互斥事件的挑战
互斥事件的挑战之一是确定事件之间的互斥性,有时候事件可能存在交叉影 响或复杂关联。另外,计算互斥事件的概率也需要考虑多种因素。
《高一数学互斥事件》 PPT课件
在这个PPT课件中,我们将讨论高一数学中的互斥事件。通过本讲解,你将深 入了解互斥事件的定义、性质、示例、计算方法、应用领域以及相关挑战。
互斥事件的定义
互斥事件指的是两个或多个事件之间不可能同时发生的情况。当一个事件发 生时,其他相关事件将不会发生。
互斥事件的性质
1 互不相容
互斥事件之间不存在共同元素或交集,它们的结果是互相排斥的。
2 互斥事件的和为全集
互斥事件的所有可能结果加起来等于样本空间。
3 互斥事件的概率为0
互斥事件中的一个事件发生的概率等于其他事件都不发生的概率和。
互斥事件的示例
抛硬币
正面和背面是两个互斥事件,只能同时出现一个。

互斥事件ppt课件

互斥事件ppt课件
复习回顾:
一、什么是互斥事件?
互斥事件:不可能同时发生的两个事件叫做互斥事件.
彼此互斥:一般地,如果事件A1、 A2、 … An中的 任何两个都是互斥的,那么就说事件A1、 A2、… An 彼此互斥.
二、什么是对立事件?对立事件和互斥事件的 关系是什么?
对立事件:必有一个发生的互斥事件互称对立事件.
(2)为了取出2人分别表演独唱和朗诵,抽取并观察第一 张卡片后,又放回箱子中,充分混合后再从中抽取第二 张卡片,求:
i)独唱和朗诵由同一个人表演的概率; ii)取出的2个不全是男生的概率.
例3 一只口袋有大小一样的5只球,其中3只红球,2 只黄球,从中摸出2只球,求两只颜色不同的概率.
解:从5只球中任意取2只含有的基本事件总数为10. 记:“从5只球中任意取2只球颜色相不同”为事件A, “从5只球中任意取2只红球”为事件B, “从5只 球中任意取2只黄球”为事件C,则A=B+C.
2.判别下列每对事件是不是互斥事件,如果是, 再判别它们是不是对立事件. 从一堆产品(其 中正品与次品都多于2个)中任取2件,其中:
(1)恰有1件次品和恰有2件正品;互斥但不对立 (2)至少有1件次品和全是次品; 不互斥 (3)至少有1件正品和至少有1件次品; 不互斥 (4)至少有1件次品和全是正品; 互斥对立
例2 班级联欢时,主持人拟出了以下一些节目:跳双人 舞、独唱、朗诵等,指定3个男生和2个女生来参与,把 5个人编号为1,2,3,4,5,其中1,2,3表示男生,4, 5表示女生.将每个人的号分别写在5张相同的卡片上,并 放入一个箱子中充分混和,每次从中随机地取出一张卡 片,取出谁的编号谁就参与表演节目. (1)为了取出2人来表演双人舞,连续抽取2张卡片,求取 出的2人不全是男生的概率.

互斥事件(课件)


然后根据你的结果,你能 发现P(A+B)与P(A)+P(B) 有什么样关系?
P(A+B)=P(A)+P(B)
思考交流:
前面(4)中事件A=“点数为5”,事件B=“点数超过3”, 在(3)中,我们发现有P(A+B)=P(A)+P(B)=1,那么在(4) 中,P(A+B)=P(A)+P(B)是否成立?
0.1 0.16 0.3 0.3
(1)至少3人排队等候的概率是多少? (2)有人排队等候的概率是多少?
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1 0.16 0.3 0.3 0.1
0.04
不能少
(1)至少3人排队等候的概率是多少? (2) 有人排队等候的概率是多少?
解:记“有0人等候”为事件A,“有1人等候”为事件B,“有2人等候” 为事件C,“有3人等候”为事件D,“有4人等候”为事件E,“有5人 及至5人以上等候”为事件F,则易知A,B,C,D,E,F互斥
某学校成立了数学数学、英语、音乐3个课外兴趣组 分别有39,32,33个成员,一些成员参加了不止1个小组, 具体情况如图所示。随机选取1个成员: 英语 音乐 7 ⑴求他参加不超过2个小组的概率 6 8 8 ⑵求他至少参加了2个小组的概率
11 10
数学 10
分析:从图中可以看出,3个兴趣小组总人数: 6+7+8+8+11+10+10=60
课堂练习
1. 对飞机连续射击两次,每次发射一枚炮弹,记事件A:两 次都击中飞机.事件B:两次都没有击中飞机. 事件C:恰有一 次击中飞机.事件D:至少有一次击中飞机.其中互斥事件 C,B与C,B与D 是 A与B,A与. 2、已知A、B为互斥事件,P(A)=0.4,P(A+B)=0.7, P(B)= 0.3 3、经统计,在某储蓄所一个营业窗口等候的人数为及相应 概率如下: 排队人数 概率 0 1 2 3 4 0.1 5人及5人以上 0.04

互斥事件课件


概率计算上的区别
互斥事件
两个互斥事件的概率之和等于它们所在的全概率空间的总概 率。
独立事件
两个独立事件同时发生的概率等于它们各自概率的乘积。
应用场景的区别
互斥事件
常用于描述资源有限、时间冲突等场景,例如彩票中奖号码的唯一性、比赛中的 冠亚军等。
独立事件
常用于描述不同来源、不同条件下的随机现象,例如天气变化、股票价格波动等 。
交通信号灯中的互斥事件
在交通信号灯中,红灯和绿灯不能同时亮起,否则会导致交通混乱 。这也是互斥事件的一个例子。
概率论中的互斥事件
投掷骰子中的互斥事件
在投掷一个骰子时,每个面出现的概率是相等的,因此, 出现1和2是互斥事件。
摸球游戏中的互斥事件
在一个摸球游戏中,每个球被摸到的概率是相等的,因此 ,摸到红球和蓝球是互斥事件。
组合问题中的互斥事件
在组合问题中,不同的组合方式被视为互斥事件。例如, 从5个不同的球中取出2个球的不同方式有10种,这些方式 是互斥事件。
物理中的互斥事件
01
电磁波中的互斥事件
在电磁波中,不同的波长和频率不能同时存在,因此,波长和频率是互
斥事件。
02
力学中的互斥事件
在力学中,两个物体不能同时占据同一个空间位置,因此,空间位置是
互斥事件。
03
光学中的互斥事件
在光学中,光的干涉现象表明了光的波动性质,而光的衍射现象则表明
了光的粒子性质,这两个现象不能同时发生,因此它们是互斥事件。
04
互斥事件与独立事件的区 别
定义上的区别
互斥事件
两个事件不能同时发生,即一个 事件发生时,另一个事件必然不 发生。
独立事件
两个事件的发生不受彼此影响, 即一个事件的发生与否不影响另 一个事件的概率。

互斥事件的概率公式PPT课件


在上面5×4种结果中,同时摸出白球的结 果有3×2种.因此,从两个坛子里分别摸出1
个球,都是白球的概率是
PA B 3 2
54
另一方面,从甲坛子里摸出1个球,得到
白球的概率:
PA 3
5
从乙坛子里摸出1个球,得到白球的概率:
PB 2
4
由 3 2 3 2 ,我们看到: 54 5 4
PA B PA PB
从甲坛子里摸出1个球得到黑球与从乙坛子里摸出1个球得到白球同时发生的概率从甲坛子里摸出1个球得到白球与从乙坛子里摸出1个球得到黑球同时发生的概率从两个坛子里分别摸出1个球恰得到一个白球的概率为从两个坛子里分别摸出1个球至少得到一个黑球的概率是什么
各位领导、老师、同学们
大家好!
2006.05.26
复习提问
1 3 1 5 10 2
“从两个坛子里分别摸出1个球,至少
得到一个黑球”的概率是什么?
这就是求至少有一个黑球的概率
P(A·)B +P(A·)+BP( ·B)A
1 3 1 7 5 10 5 10
例题讲解
[例1]甲、乙2人各进行1次射击,如果2 人击中目标的概率都是0.6,计算: (1)2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中ห้องสมุดไป่ตู้标的概率.
(3)解法一:“2人各射击1次,至少有1人击 中目标”即为“2人都击中目标”与“恰有1人击中 目标”有一发生则事件发生,因此其概率
P=P(A·B)+[P(A·B)+P(A ·B)]
=0.36+0.48=0.84
解法二:“2人各射击1次,至少有1人击中目标” 与“2人都未击中目标”互为对立事件. 而P(A·B)=P(A)·P(B ) =(1-0.6)×(1-0.6)=0.4×0.4=0.16 因此,至少有1人击中目标的概率 P=1-P(A ·B)=1-0.16=0.84.

高中数学必修三 3.4《互斥事件》ppt课件

返回
两个互斥事件必有一个发生,则称这两个事件为对立事件。事件A的对立事件
记为
A
对立事件与互斥事 件有何异同?
1、对立事件是相对于两个互斥事件来说的 ;
2、我们可用如图所示的两个图形来 区分:
AB
A、B为互斥事件:

为 对 立 事 件
4、在10件产品中,有8件一级品,2件二级
品.从中任取2件,其中至少有1件为二级品
例题选讲:
1、有10张奖券,其中2张有奖,甲、乙先后各抽1张,求: (1)甲中奖的概率 (2)甲乙都中奖的概率 (3)甲乙至少有一人中奖的概率 (4)只有乙中奖的概率 (5)乙中奖的概率。
例题选讲:
1、有朋自远方来,他乘火车、轮船、汽车、 飞机来的概率分别为0.3、0.2、0.1、0.4.求: (1)他乘火车或汽车来到概率; (2)他不乘轮船来的概率;
的概率是多少? 6 37 40 45 52 61 72
1-28/45=17/45
5 26 29 34 41 50 61
5、若以连续两次掷 4
骰子分别得到的点 3
数m,n作为点P的坐 2
标,则点P在圆
1
x2+y2=8外的概率是 *
多少?
8/9
17 20 25 32 41 52 10 13 18 25 34 45 5 8 13 20 29 40 2 5 10 17 26 37 123456
巩固练习
1、判断下列事件是否是互斥事件: 某小组 有3名男生和2名女生,从中任选2两名,
(1)恰有1名男生和恰有2名男生; (2)至少有1名男生和全是男生。 2、袋中有12个小球,分别为4红球、黑球和黄球共5个、黄球和绿球共5个, 从中任取一球,求得到个色球的概率。 3、同时抛掷两颗骰子,求至少有一个5点或6点的概率。 4、抛掷一颗骰子,记A=得到奇数点,B=点数不超过3,求 :P(A+B).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究定义:
两个互斥事件必有一个发生,则称这两个事件为对立事件。
事件A的对立事件记为
A
对立事件与互斥事 件有何异同?
1、对立事件是相对于两个互斥事件来说的 ;
AB
2、我们可用如图所示的两个图形来 区分:
A、B为互斥事件:

为 对 立 事 件
试试看,你会获得成功!
抛掷一颗骰子1次,记“向上的点数是4, 5,6”为事件A,“向上的点数是1,2”为 事件B,“向上的点数是1,2,3”为事件C, “向上的点数是1,2,3,4”为事件D。判 别下列每件事件是不是互斥事件,如果是, 再判别它们是不是对立事件。 (1)A与B (2)A与C (3)A与D
返回
从1、2、3、…… 、9这九个数中任取两个数,分别有 下列两个事件: ⑴恰有一个是奇数和恰有一个是偶数; ⑵至少有一个是奇数和两个都是奇数; ⑶至少有一个是奇数和两个都是偶数; ⑷至少有一个是奇数和至少有一个是偶数。 其中哪一组的两个事件是对立事件?
小结:两个互斥事件在一次试验中必有一个发生时, 这样的两个互斥事件叫做对立事件。所以对立事件是 互斥事件事件中的一种情况,即两个事件互斥,它们 不一定对立;而两个事件对立它们一定互斥,
当A、B是互斥事件时,
P(A+B)=P(A)+P(B)
2、对立事件:其中必有一个发生的两 个互斥事件叫做对立事件。
当A、B是对立事件时,
P(B)=1-P(A)
作 业:
《作业本》相关练习.
1.对飞机连续射击两次,每次发射一枚炮弹.设A {两次都
击中},B {每次都没击中},C {恰有一次击中},D {至少
例1 、一只口袋内装有大小一样的4只白球和4 只黑球,从中一次任意摸出2只球。记摸出2只 白球为事件A,摸出1只白球和1只黑球为事件 B。问:事件A与B是否为互斥事件?是否为对 立事件?
对立事件的概率间关系
A A
由对立事件的意义 必然事件
概 率 为
P(A) P(A) P(A A) 1
A与A互斥
击中:(1)射中10环或7环的概 率(;2)不够7环的概 率.
0.49
0.03
4.袋中有红、黄、白3种颜色的球各1只,从中每次任取1
只,有放回地抽取3次,求:
((13))33只只全颜是色红不球全的相概同率的; 2概17(率2; )38只(4颜)3色 只全 颜相 色同 全的 不概 相率 同; 的19概率.2
斥, A、B有一个发生的情形!
得出结论: 如果事件A,B是互斥事件,那么事件A+B发生
(即A,B中有一个发生)的概率,等于事件A,B分 别发生的概率的和。
即、P(A+B)=P(A)+P(B)
一般地,如果事件A1,A2,…,An彼此互斥, 那么事件A1+A2+…+An发生(即A1,A2,…, An中有一个发生)的概率,等于这n个事件分别发 生的概率的和,即 P(A1+A2+…+An) = P(A1)+P(A2)+…+P(An)
2
A
B
1
第一种排列
A
B
12
6
3
A
54
B
A
于是每两层形成一个 周期,即 AB AB 堆 积方式。
A3型紧密堆积
1
C
再思
如果将密置层C放在刚才堆成 的密置双层的上面,有几种最密 堆积方式?如何堆积?
第二种排列
12
6
3
54
于是每三层形成一个 周期,即 ABC ABC 堆积方式。
A C B A C B A
0.52
0.55
第3章 物质的聚集状态与物质性质
第 1 节 认识晶体(2)
联想·质疑
•晶体具有的规则几何外形源于组成晶体的 微粒按一定规律周期性地重复排列。 那么晶体中的微粒是如何排列的? 如何认识晶体内部微粒排列的规律性?
二、晶体结构的堆积模型
ห้องสมุดไป่ตู้. 等径圆球的密堆积
把乒乓球装入盒中,盒中 的乒乓球怎样排列才能使 装入的乒乓球数目最多?
小球再填充 到大球所形 成的空隙中
配位数:一个原子或离子周围所邻接的原子 或离子数目。
NaCl:Cl- 离 子密先堆以积,AN1a型+ 离紧 子再填充到空 隙中。
ZnS: S2- 离子 先以A1型紧密 堆积,Zn2+ 离 子再填充到空 隙中。
分子晶体属非等径圆球密堆积方式:
• 分子晶体尽可能采取紧密堆积的方式,但受到 分子形状的影响。例如:
【活动提示】
(1)将小球先排成列,然后排成一层, 认真观察每一个小球周围最多排几个小 球,有几个空隙。
(2)将球扩展到两层有几种方式,认真 观察两层球形成的空隙种类。
(3)扩展到三层,有几种排列方式,并 寻找重复性排列的规律。
思考
1. 将等径圆球在一列 上的最紧密排列有几种? 如何排列? 2.等径圆球在同一平面上的堆积方式是唯一的吗? 最紧密堆积有几种排列? 在最紧密堆积方式中每个等径圆球与周围几个球 相接触?
互斥事件
及其
发生的概率
创设问题:
体育考试的成绩分为4个等级;优、良、中、不及格。某班
50名学生参加了体育考试,结果如下:
优 85分以上 9人
良 中 不及格
766500~~分以8744下
12551人人人
问题1:在同一次考试中,某一位同学能否既得优又得良?
问题2:从这个班任意抽取一位同学,那么这位同学的测试 成绩为“优”的概率,为“良”的概率,为“优良”(优或 良)的概率分别是多少?
• 干冰采用A1型紧密堆积方式 而冰中水分子的堆积受到 氢键 的影响
原子晶体不服从紧密堆积方式:
共价键具有饱和性和 方向性,因此一个原子周围结 合其它原子的数目是 有限 (有限、无限)的,方向 是 一定(一定、不固定)的。
优 良 中 不及格
87665500分~~分以以8744上下
129551人人人人
问题2:从这个班任意抽取一位同学,那么这位同学的测试 成绩为“优”的概率,为“良”的概率,为“优良”(优或 良)的概率分别是多少?
了解定义:
事件A+B表示的含义:即A,B中有至少有一个发生。
说明: 本节所研究的和事件“A+B”,只局限于A、B互
1.粉笔盒里有红粉笔, 绿粉笔, 黄粉笔,现从中任取1支,“抽得红粉 笔”, “抽得绿粉笔”, “抽得黄粉笔”;
2.一周七天中,“周一晴天”, “周二晴天”,…,“周六晴天”, “周日晴天”。
3.必然事件与不可能事件
解决问题:
体育考试的成绩分为4个等级;优、良、中、不及格。某班 50名学生参加了体育考试,结果如下:
P(A) 1 P(A)
重要结论:
• 根据对立事件的意义,A+ A 是一个必然
事件,它的概率等于1。
又由于A与 A 互斥,我们得到 P(A+A )=P(A)+P(A )=1
对立事件的概率的和等于1
P( A )=1-P(A)
例2: 某人射击1次,命中7~10环的概 率如下表所示:
命中环数 10环 9环 8环 7环
巩固结论:
1个盒内放有10个大小相同的小球,其中有7 个红球,2个绿球,1个黄球,从中任取一个球, 求:
(1)得到红球的概率; (2)得到绿球的概率; (3)得到红球或者绿球的概率。
巩固结论:
1个盒内放有10个大小相同的小球,其中有7 个红球,2个绿球,1个黄球,从中任取一个球, 求:
(1)得到红球的概率; (2)得到绿球的概率; (3)得到红球或者绿球的概率。
不能同时发生的两个事件称为互斥事件。
给出定义:
不能同时发生的两个事件称为互斥事件。
体育考试成绩的等级为优、良、中、不及格的事件A,B,C,D。
事件A、B、C、D其中任意两个都是互斥的。
推广:
一般地,如果事件A1、A2,…,An中的任何两 个都是互斥事件,那么就说事件A1、A2,…,An
彼此互斥。
强化定义: 判断以下各组中的事件是否是互斥事件?
A1型密堆积
2
C
迁移应用
1. 等径圆球在同一平面上有几种最 紧密排列型式?
2. 同一密置层内与同一球紧密接触 的球有几个? 3. 等径圆球的密置双层有几种型式?
迁移应用
4. 在密置双层上再加一密置层,有几 种最密堆积方式?
5. A3型最密堆积的周期性如何体现? A1型最密堆积的周期性如何体现?
3某地区年降水量(单位:mm)在下列范围 内的概率如下表:
年降 水量 [600,800) [800,1000) [1000,1200) [1200,1400)[1400, 1600) 概率 0.12 0.26 0.38 0.16 0.08
(1)、求年降水量在[800,1200)内的概率; (2)、如果年降水量<=1400mm,就可能发生涝灾, 求该地区可能发生涝灾的概率。
9
9
5. 设M {1,2,3,,20},任 取x, y M , x y.
求 :(1)x y恰 为3的 倍 数 的 概 率3; 2 (2)xy恰 为3的 倍 数 的 概 率.99 95
190
6. 用 数 字0,1,2,3,4,5任 意 组 成 没 有 重 复 数 字的 四 位 数 ,
计 算 :(1)它 是 偶 数 的 概 率 ;(2)它 小 于3450的 概 率.
巩固练习:
袋中有白球和黑球各5个,从中连续摸 两次,每次摸出1个球, 记事件A为“两次摸到黑球”, 事件B为“两次摸到白球”, 事件C为“恰有一次摸到白球”, 事件D为“至少有一次摸到白球”, 其中互为互斥事件的是 _______, 互为对立事件的是________。
小 结:
1、互斥事件:不可能同时发生的两个 事件叫互斥事件。
晶体结构的堆积模型
相关文档
最新文档