大跨度桥梁设计的设计要点及优化措施
探析大跨度桥梁设计的设计要点与优化策略

探析大跨度桥梁设计的设计要点与优化策略摘要:随着我国公路桥梁事业的不断发展,桥梁结构逐渐朝向大跨径、复杂化方向发展,这就对桥梁设计提出了更高要求,文章对大跨径桥梁设计要点进行了分析,并提出优化策略。
关键词:大跨径桥梁;设计要点;优化策略在我国社会经济高速发展的大环境下,对道路运输的要求也越来越高,特别是大跨度桥梁的数量和质量,都呈现逐年增加的局面,这就要求交通运输业必须为了满足要求进行自我发展和变革。
交通压力的增加,对大跨度桥梁的安全性提出了考验,因此,需要对桥梁进行科学合理的设计,保证桥梁的质量。
一、大跨度桥梁设计的设计要点分析(一)大跨径斜拉桥设计的设计要点大跨径斜拉桥的结构属于拉索型,优势主要表现在整个桥梁的跨度非常大,承载的能力较强、稳定性非常高等,和以往梁式结构的桥梁相比,其跨越能力较大。
而且大跨径的斜拉索桥梁主要由主梁、斜拉索及塔柱和主梁等三部分构成,在拉桥的概念设计环节,设计人员可按照三部分间的组合关系,组合成各种形状、结构不同的桥梁,如支承、悬浮及固定等。
而在设计桥梁的索面时,应按照桥梁所能承受的最大力,设计成双平行的索面或是双斜索面,而斜拉桥拉索并不用固定桥梁的锚碇,因其自身具备相应的自锚特征,一般在河流或是峡谷等地方,其跨径在200~800m之间,就能选择大跨径的斜拉桥结构。
(二)大跨度悬索桥设计的设计要点悬索桥属于国内的山区当中,大跨度桥梁的一种主要类型,主要由塔柱、主缆、锚碇及加劲梁等部分构成,而且在山区的跨径比较大,高度较高的环境下,适合使用悬索桥结构。
当前的悬索桥通常会设计出两个塔柱,将其作为桥身支承,塔架应用钢筋的混凝土材料,并将悬索两端经过锚碇,将其固定于桥梁的两端,而两个塔架把整个悬索桥分成三部分,主要是中跨以及两个边跨的部分,边跨长度应该按照锚固的具体位置与工程的成本决定,通常情况下,中跨和边跨主要根据2:1或是4:1的长度比值进行设计,垂跨比值通常设计成1:6或是1:7,设计人员可以按照桥塔的高度进行适当的调整。
分析大跨度桥梁设计的设计要点与优化策略

分析大跨度桥梁设计的设计要点与优化策略摘要:在科学技术迅速发展的过程当中,建筑企业施工技术也在不断的进步。
大跨度桥梁设计是施工技术的一个重要方面该设计过程复杂多变,具有一定的难度性。
因此,桥梁的设计需要针对设计要点进行详细的分析与优化,并且制定合理有效的对策,只有这样才能从整体上提高大跨度桥梁设计的水平以及实际的应用价值。
本文就针对大跨度桥梁设计的设计要点与优化策略展开研究,希望能够为有关人员提供借鉴与支持。
关键词:大跨度桥梁;设计要点;优化策略引言近几年来,我国桥梁设计水平虽然得到了比较大的进步,但由于大跨度桥梁设计对专业程度的要求较高,同时具有一定复杂性,因此在设计过程中也面临着众多问题,所以大跨度桥梁设计就存在着一定的难度。
当前,桥梁的跨度逐渐增多,想要实现大跨度桥梁的长期发展就需要进一步保证桥梁建设的安全性、稳定性以及持久性,所以桥梁设计人员就需要针对设计要点不断进行优化,在建设过程中也需要严格保证质量。
1分析大跨度桥梁设计的设计要点1.1 大跨径斜拉桥设计的设计要点大跨径斜拉桥属于拉索型的结构,其结构特点就是跨度大、承载能力强,稳定性强等。
大跨径斜拉桥主要的构成部分有:主梁、斜拉索、塔柱等,在设计环节中,设计人员需要根据实际情况详细分析这三个部分之间的组合关系,根据不同的需求以及不同的特点进行不同的形状组合,以满足桥梁使用需要,例如支撑能力、悬浮固定能力等。
在桥梁索面设计过程中应当以桥梁最大承受能力为基础,并且充分利用自身所具备的自锚特征。
通常情况下大跨径斜拉桥更多适用于河流峡谷等地,其跨径大约为在200~ 800m之间。
1.2大跨度悬索桥设计的设计要点悬索桥在山区的应用比较广泛,具有跨径大,高度高等特点。
悬索桥的主要部分有桥身、塔柱和塔架等。
塔柱作为桥身的支撑,塔架通常采用混凝土材料,以保证材料的稳定性和高承载能力。
悬索桥主要分为三个部分,分别是一个中跨和两个边跨,通常中跨和边跨可以根据2:1的比值或者是4:1的比值进行设计,而垂跨通常根据1:6的比值或者是1:7的比值进行设计,但在实际的设计施工的过程中,设计人员和现场的工作人员仍然需要根据实际情况进行合理调整,只有这样才能确保大跨度悬索桥设计的质量,从而确保大跨度悬索桥的建设效率和质量。
探析大跨度桥梁设计的设计要点与优化策略

探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁是指跨度达到一定规模的桥梁工程,通常跨度在200米以上。
大跨度桥梁在现代城市化进程中起着至关重要的作用,它不仅连接着人们经济和社会活动的桥梁,也是城市间交通要道的重要组成部分。
而大跨度桥梁的设计要点和优化策略则是保障桥梁设计质量和安全性的重要环节。
一、大跨度桥梁设计的要点1. 跨度确定:大桥梁的跨度是决定桥梁结构形式和荷载的重要参数。
一般情况下,桥梁的跨度越大,所承受的荷载也就越大,因此需要考虑桥梁结构的受力性能和变形特性,并采用恰当的结构形式和材料构造。
2. 梁型选择:大跨度桥梁的梁型选择也是设计的关键环节。
常见的大跨度桥梁梁型有钢梁、混凝土梁和钢-混凝土组合梁等。
不同梁型有各自的优缺点,需要根据桥梁的具体要求和施工条件来选择最适合的梁型。
3. 荷载分析:大跨度桥梁设计需要进行详细的荷载分析,包括静荷载和动荷载的作用效应分析。
静荷载主要包括桥梁自重、活载和温度荷载等,而动荷载主要包括风荷载和地震荷载等。
在设计中需要将各项荷载考虑在内,并对其作用进行综合分析。
4. 梁体结构设计:大跨度桥梁的梁体结构设计需要充分考虑结构的刚度、强度和稳定性,并进行合理的优化。
桥梁的横向和纵向支撑系统、截面形式和构造方式、受力模式和变形特性等都需要进行精确的计算和分析。
5. 施工工艺考虑:大跨度桥梁的设计还需要充分考虑施工工艺的要求,包括梁体吊装、合理的施工顺序、混凝土浇筑工艺等,以确保施工过程中的安全和效率。
二、大跨度桥梁设计的优化策略1. 结构形式优化:结构形式的优化是大跨度桥梁设计的重要环节,通过对结构形式的优化,可以实现结构的轻量化和成本的降低。
在桥梁梁型选择上,针对跨度较大的桥梁可以通过采用空间网架结构、拱桥结构或悬索桥结构等来实现结构的合理化和优化。
2. 材料选用优化:大跨度桥梁的材料选用对结构的安全性和经济性有着重要的影响。
在材料的选择上,需要充分考虑材料的强度、刚度、耐久性和成本等因素,以实现材料的合理使用和优化配置。
大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施摘要:社会的发展和国民经济的不断进步,社会各个行业都发生了巨大的变化,道路建设作为我国发展的重要组成因素,近些年来,较之过去也得到了很大改善,道路的建设的速度也是前所未有,大跨度桥梁作为道路施工建设的关键部分,在道路施工建设中也较为常见,一般而言大跨度桥梁的施工建设所涉及的内容十分发繁杂,尤其是对设计施工水平有着非常高的要求,如果在施工过程中难以有效把握大跨度桥梁的施工特点,就难以有效的进行科学合理的施工,从而影响大跨度桥梁的质量,严重者甚至会给社会带来难以预估的损失,为此想要强化大跨度桥梁的建设质量,就必须在对其施工建设过程中,掌握大跨度桥梁的特点,做到必要的施工优化措施,文章就大跨度桥梁设计要点进行必要的探讨分析,并在此基础上提出了可行性的的优化措施。
关键词:大跨度桥梁;设计要点;优化措施大跨度桥梁在道路建设施工中占据了非常重要的地位,尤其是在我国城乡道路建设中尤为常见,大跨度桥梁的建设,一方面能够提升道路的实用性,节约必要的道路施工建设成本,另一方面由于大跨度桥梁自身的外在性,大大提升了城市的建筑美感,对提升城市文化形象具有重要的促进作用,相对于其他国家而言,我国在大跨度桥梁建设与设计方面相应的研究方案还非常有效,这就使得大跨度桥梁在我国还有着非常大的优化空间,为此只有不断的对大跨度桥梁的设计要点以及施工方案进行必要的优化,就能有效的推进我国大跨度桥梁的向更高层次发展[1]。
一、大跨度桥梁施工优化必要性分析在桥梁施工建设过程中,充分综合考虑各方面设计施工因素尤为必要,尤其是大跨度桥梁在施工设计方面更是如此,这是以为大跨度桥梁在设计施工方面所包含的内容非常的复杂,在对其施工设计之前,需要进行多角度全方位的综合考量,如大跨度桥梁的力学分析,验算、施工设施设备等等,加上桥梁设计方案很大程度上依赖于设计工作人员的主观因素,即使在同一个地方,同一座大跨度桥梁的设计,不同社会人员所制定的大跨度桥梁设计施工方案都会出现很大的差别。
探析大跨度桥梁设计的设计要点与优化策略

探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁是现代桥梁工程中的重要类型,具有通行性好、结构稳定性强等特点,能够有效地解决一些特殊地理条件下道路、铁路等交通建设的问题。
本文探析大跨度桥梁设计的设计要点与优化策略,旨在提供一些有益的参考。
一、设计要点1. 桥梁类型选择:大跨度桥梁的类型选择要基于实际情况进行,如跨度、地形、使用寿命、建设成本等方面考虑。
常见的大跨度桥梁类型包括悬索桥、斜拉桥、拱桥和梁桥等。
2. 结构稳定性设计:在大跨度桥梁设计过程中,结构稳定性设计是至关重要的一个环节。
必须要确保桥梁的刚度、承载能力和抗倾覆能力等方面能够满足实际需要。
3. 材料选用:材料的选择取决于桥梁的使用寿命、环境条件和建设成本等方面。
一般来说,大跨度桥梁采用钢材或混凝土等高强度材料。
4. 断面设计:大跨度桥梁断面设计涉及到桥梁的承载能力、稳定性和抗弯矩性能等方面。
合理的断面设计可以提高桥梁的强度和刚度,确保桥梁工作安全。
5. 节段数量与桥塔位置:大跨度桥梁的节段数量和桥塔位置直接影响桥梁的稳定性和承载能力。
应根据实际情况确定合适的节段数量和桥塔位置。
二、优化策略1. 优化材料:在大跨度桥梁设计中,优化材料可以降低施工成本和桥梁的自重,提高桥梁的承载能力和耐久性。
可根据实际情况选择合适的高强度材料,如高强度混凝土和高强度钢材等。
2. 减轻自重:大跨度桥梁的自重是影响桥梁承载能力的重要因素之一。
通过优化设计,如减小截面尺寸、增加截面发挥率等措施,可以有效降低桥梁的自重。
3. 加强桥塔结构:桥塔是大跨度桥梁的重要组成部分,需要具备良好的稳定性和抗震能力。
通过加强桥塔的结构设计和施工质量,可以提高桥塔的抗震性能和稳定性。
4. 提高桥梁刚度:桥梁刚度是影响正常使用的重要指标。
通过加强桥梁的刚度设计和施工质量,可以提高桥梁的承载能力和稳定性。
5. 细化分析:在大跨度桥梁设计过程中,细化分析可以准确地评估桥梁的稳定性、抗风性能和抗地震性能等方面。
大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施摘要:近年来,我国社会经济呈现出了迅猛发展的态势,城市化进程的加快以及城乡一体化的发展,使得道路交通运输系统的重要性越发凸显。
在道路桥梁设计中,不仅需要关注工程所处区域的地质条件以及桥梁工程的强度需求、质量标准等,还应该将环境因素、交通流量等考虑在内,同时积极借鉴国内外一些先进道路桥梁工程的设计经验,这样得到的设计方案才能真正确保道路桥梁工程的合理性,促进其使用寿命的延长。
关键词:大跨度桥梁;设计要点;优化措施引言我国桥梁建设工程质量要求逐渐提高的今天,设计人员必须形成终身学习意识与习惯,围绕工程建设要求,调整设计方针,更新设计观念,学习现代施工技术与工艺。
整理过往道路桥梁工程在设计方面存在的问题,找到设计工作的关键要素,围绕关键点进行设计,提高桥梁工程设计方案的合理性。
1道路桥梁工程设计的未来发展趋势道路桥梁是当前社会生活中的运输载体,道路桥梁的设计发展在各个行业中都备受关注。
设计人员需要根据自己的设计经验制订出初始的设计方案,不仅需要合理地选择建设的材料,还需要在整体的结构布局中,满足制作工艺的发展需求。
结构化设计是一种理念和技术上的变革,在实际的发展历程中,需要结合BIM技术、云计算等内容保持科学的发展动力。
道路桥梁工程在建设时,工作人员需要根据功能性的发展需求,加大优化设计力度,平衡各个要素之间的逻辑关系,加大设计的风险控制能力,提高设计人员的综合性素养。
在建筑材料的选择上,还需要以项目整体结构设计为基础,保证力学理论,实现方案的优化,满足当前的社会发展需求,为以后的桥梁结构设计明确方向,奠定良好的发展动力。
2道路桥梁设计现状道路桥梁设计是道路桥梁建设非常重要的环节,直接关系着工程的整体质量。
在道路桥梁结构设计中,设计内容不科学、不规范的问题一旦出现,必然会使道路桥梁安全性能或使用性能无法达到规定要求,在投入使用后存在一定的安全隐患。
道路桥梁结构设计应该在掌握设计方案要点的前提下,还需要考察工程现场,梳理设计内容并编制方案,对设计方案进行审核评估。
探析大跨度桥梁设计的设计要点与优化策略

探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁作为现代桥梁工程中的重要组成部分,具有跨度大、结构复杂、技术难度高等特点。
其设计要点和优化策略对于保障桥梁的安全和稳定具有重要意义。
本文将探析大跨度桥梁设计的要点和优化策略,旨在为大跨度桥梁的设计提供参考。
一、大跨度桥梁设计的要点1. 结构稳定性大跨度桥梁跨度大,结构复杂,因此结构稳定性是设计的重点之一。
在设计过程中,需要充分考虑桥梁结构受力特点,采取合理的结构形式和构造方式,确保桥梁能够承受各种外部荷载和环境影响而不失稳定性。
2. 材料选择大跨度桥梁通常采用混凝土、钢材等材料进行构造。
在设计过程中,需要根据桥梁的实际工作环境和受力情况,选用合适的材料并进行合理的组合,以确保桥梁具有足够的承载能力和使用寿命。
3. 抗风性能大跨度桥梁容易受到风力的影响,因此抗风性能是设计的重要考虑因素。
在设计过程中,需要通过风洞实验等手段分析桥梁在风载作用下的响应情况,采取相应的措施提高桥梁的抗风性能。
4. 地震防护大跨度桥梁设计还需要考虑地震的影响。
在设计过程中,需要根据桥梁的地理位置和地震烈度等因素,合理确定桥梁的抗震设防要求,并采取相应的结构措施和材料措施,提高桥梁的抗震性能。
5. 施工工艺大跨度桥梁的施工工艺具有一定的复杂性,需要充分考虑桥梁结构的实际情况和施工条件,合理确定施工方法和工序,确保施工的安全性和有效性。
二、大跨度桥梁设计的优化策略1. 结构优化大跨度桥梁的结构优化是设计的关键环节。
通过采用先进的结构优化方法,如有限元分析、参数化设计等,对桥梁结构进行优化设计,使其在保证强度和稳定性的前提下,达到结构轻量化和材料节约的效果。
2. 材料优化大跨度桥梁的材料优化是提高桥梁整体性能的重要手段。
通过选择新型材料、改进现有材料性能、优化材料组合等方式,提高材料的强度、耐久性和抗腐蚀性能,以达到延长桥梁使用寿命和减少维护成本的目的。
3. 抗风性能优化大跨度桥梁的抗风性能优化是确保桥梁安全稳定运行的重要保障。
探析大跨度桥梁设计的设计要点与优化策略

探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁设计是指横跨较大的河流、峡谷或湖泊等自然地形的桥梁设计。
设计要点和优化策略是确保大跨度桥梁的安全、稳定和经济性的关键因素。
以下是探析大跨度桥梁设计的一些设计要点和优化策略。
1. 结构形式选择:大跨度桥梁的结构形式选择直接关系到施工和维护的难度以及造价的高低。
常见的大跨度桥梁结构形式包括悬索桥、斜拉桥、梁桥等。
在选择结构形式时,需要考虑所需跨度、地质条件、施工工艺和环境影响等因素,并结合经济性和技术可行性进行评估。
2. 材料选择:大跨度桥梁的材料选择对于其结构的安全性、稳定性和经济性都具有重要影响。
常见的桥梁材料包括钢材、混凝土和复合材料等。
在选择材料时需要考虑材料的强度、耐久性、施工性能、维护成本以及环境影响等因素,并综合技术可行性和经济性进行优化。
3. 结构优化设计:大跨度桥梁的结构优化设计是为了提高桥梁的受力性能和抗震性能、减小结构重量和构件数量、降低施工难度和成本等方面进行的优化。
优化设计可以通过参数优化、拓扑优化、材料优化等方式进行。
优化的目标是实现桥梁结构的最佳性能和经济性。
4. 自振频率计算与控制:大跨度桥梁在受到外力作用时容易发生共振现象,造成结构破坏和振动幅度过大。
自振频率的计算和控制是大跨度桥梁设计的重要内容。
通过模态分析和有限元分析等方法,可以计算桥梁的自振频率,并根据计算结果进行结构调整和控制措施的设计,以保证桥梁的稳定性和安全性。
5. 抗风设计:大跨度桥梁容易受到大风的影响,增加结构的风荷载,造成结构的振动和应力集中等问题。
抗风设计是大跨度桥梁设计的重要内容。
通过风洞试验和数值模拟等方法,可以评估桥梁的抗风性能,并设计合理的结构和设备措施,以确保桥梁在大风环境下的安全性和稳定性。
大跨度桥梁设计的设计要点和优化策略包括结构形式选择、材料选择、结构优化设计、自振频率计算与控制以及抗风设计等方面。
通过综合考虑这些因素,并使用适当的设计方法和技术手段,可以实现大跨度桥梁的安全、稳定和经济性设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨度桥梁设计的设计要点及优化措施
作者:梁吉学李闻涛
来源:《建材发展导向》2014年第03期
摘要:随着经济社会的进步,交通事业得到了前所未有的发展,近年来,大跨度桥梁项目不断增多,其结构形式也趋于多样化、复杂化,而且大跨度桥梁的安全运营也关系到整个交通运输事业的发展。
但是我国现有的大跨度桥梁设计还存在很多不足与缺陷需要不断优化。
关键词:大跨度桥梁;设计要点;优化措施
目前的桥梁技术虽然已经能够很好的解决大跨度桥梁现存的问题,但是随着桥梁跨度的不断增加,向着更长、更大、更柔方向发展,为了保证其建设的可靠性、耐久性、行车的舒适性、施工的简易型以及美观性,桥梁设计以及施工人员还有更多的工作要做。
而大跨度桥梁结构优化设计的过程,也是为了更好的处理和解决桥梁结构的安全性、适用性以及经济合理性、美观性的过程。
1 大跨度桥梁的设计要点分析
1.1 大跨径斜拉桥设计要点。
大跨径斜拉桥是一种拉索结构的桥梁,其既具有跨度大、承受力强以及稳定性高的特点,又具有较高的经济比值特点,它相比于传统的梁式结构桥梁具有更大的跨越能力。
斜拉索桥梁有斜拉索、塔柱和主梁三个部分组成,在大跨径斜拉桥概念设计阶段,我们可以根据三者不同关系,组合成为多种形状的结构桥梁,例如悬浮、固定、支承等。
在设计索面时,根据桥梁最大承受力克设计为单索面和双索面(双平行索面或双斜索面)两种斜索平面类型,斜拉桥的拉索不需要固定的锚碇,其本身就带有自锚特征,通常在山区河流或者峡谷跨径在200m以上,800m以下范围时,就可以选用斜拉桥结构。
1.2 大跨度悬索桥的设计要点。
悬索桥是我国山区大跨度桥梁的主要类型,它由主缆、加劲梁、塔柱和锚碇几个部分组成,在山区跨径较大、高度较高的条件下,比较适合采用悬索桥的形式。
现代悬索桥一般设计两个塔柱作为桥身的基本支承,塔架采用钢筋混凝土材料,其悬索的两端通过锚碇固定在两端,两个塔架将悬索桥整体分为三个部分,及中跨部分和两个边跨部分,边跨的长度需根据锚固位置和工程成本来定,一般来说,中跨与边跨多采用2:1或者4:1的长度之比来设计,而其垂跨比一般设计为1:6或者1:7(根据桥塔高度可以适当调整)。
1.3 拱桥的设计要点。
拱桥无疑是我国使用历史最长的桥梁类型,传统拱桥以石拱桥为主,而近现代又加入了钢筋结构拱桥和混合类型的拱桥结构。
现代拱桥结构多以钢筋混凝土、钢管混凝土拱桥为主,其施工简单、建造便捷、经济、承载能力强等特点,使得拱桥结构成为我国山区大跨度桥梁建设的重要桥梁类型。
拱桥结构比较适合跨径相对较短的峡谷V字地形,钢管混凝土拱桥的拱肋可分为实体拱肋(包括单管和哑铃形截面)和桁式拱肋(根据钢管
数可分为三管、四管和六管桁式)。
在采用实体拱肋时需根据跨径来选择单管或者多管形式,单管的抗扭性能较高,施工简单,但是抗弯性较低,其一般用于跨径100m的钢管混凝土拱桥之中。
2 大跨度桥梁结构优化设计
2.1 局部优化。
加劲梁横截面的优化。
大跨度桥梁的加劲梁主要是由钢梁、混凝土梁、混合梁和叠合梁。
就目前建成的大跨度桥梁中,主跨梁的主要形式多数以钢梁为主,钢梁与混凝土结合梁以及混凝土梁较少且相对较小。
斜拉索或主缆的动力优化。
由于斜拉桥和悬索桥是当前大跨度桥梁建设的主要桥式,两者具有共同的特点,即都是由缆索支承,且桥面柔软,属于柔性结构,其阻尼值较低。
在外部激励下,拉索极易出现大幅度的振动,如风雨交加时的出现的主梁和拉索之间的耦合振动引起的参数共振、拉索的自激振等等。
拉索的大幅度振动极易引起拉索锚固端的疲劳、降低了拉索的使用寿命,严重时甚至会直接影响桥梁结构的安全系数。
桥墩及基础的优化。
桥墩以及基础是桥梁重要支撑结构,也是桥梁下部结构中的重要组成部分,对桥梁的稳固性起着重要的作用,因此桥墩及基础不论在数量、位置、还是结构形式上,都对桥梁的稳固、耐久有直接的影响,但对桥梁上部结构的影响较小。
因此,在对桥墩和基础进行设计时,应针对具体的桥梁进行考虑。
2.2 整体优化。
大跨度桥梁都为高次超静定结构,结构复杂,设计变量多,建设和设计又涉及到多方面的因素。
因此,要对其进行全面整体的优化或全过程的优化依然存在困难。
这种困难不仅在于其目标函数的建立,也在于对已建立的目标函数寻求最优解的计算速度和可能性。
为此,对大跨度桥梁结构的优化研究多以局部优化为主。
但是综合评价一座桥梁的优劣不是仅仅凭借局部的进行评判,而是要看整体的效果和运营,因此对桥梁的整体结构进行优化设计存在着一定的难度。
目前对大跨度桥梁的整体优化主要有以下几个方面:整体造价最优,整体动力性能优化,整体施工工艺优化,桥梁结构优化设计与景观优化设计相协调。
2.3 桥梁上部结构优化。
上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。
简支空心板结构的桥型,施工方便,施工技术成熟;但跨径小,梁高大;由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;桥面伸缩缝多,行驶条件差。
因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。
预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。
但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。
但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。
虽然直线设臵的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。
2.4 桥梁下部结构优化。
下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布臵均匀。
桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。
柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。
对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。
但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。
对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。
稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载。
3 结语
随着我国交通事业的快速发展,大跨度桥梁的发展也十分迅速。
如何在满足结构使用要求的前提下对桥梁结构进行合理的优化设计已经成为目前大跨度桥梁设计的重要内容。
本文对大跨度桥梁的设计要点进行了概况,并提出了具体的优化措施,希望可以给同行提供参考。
参考文献
[1] 禹智涛,韩大建.基于可靠度的桥梁结构优化设计[J].广东工业大学学报.2002(03).
[2] 柴志,赵磊,卢彪.基于耐久性的桥梁结构优化设计模型[J].河南科学.2002(03).。