高中物理-微积分题型
微积分讲义(高中物理竞赛辅导)

高等数学初步之一
微积分
物理学研究的是物质的运动规律,因此我们以常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.读者在学习基础物理课时若能较早地掌握微积分的一些基本知识,对于物理学的一些基本概念和规律的深入理解是非常有好处的.所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上较多地借助于直观并密切地结合物理课的需要.这里的讲解为将为读者更系统和更深入地掌握微积分的知识和方法奠定坚实的基础.
§1 函数
本节中的不少内容读者在初等数学及中学物理课中已经学过了,现在我们只是把它们联系起来复习一下.
1.1 函数 自变量和因数量 绝对常量和任意常量
在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,我们就称y 是x 的函数,并记作:
()y f x = (A.1) 其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把()y f x =也记作()y y x =,如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号,如()x ϕ、()x ψ等等.
常见的函数可以用公式来表达,例如:。
高中积分微分知识点及习题及答案

积分和微分积分一般分为不定积分、定积分和微积分三种1、不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分. 记作∫f(x)dx.其中∫叫做积分号, f(x)叫做被积函数, x叫做积量,f(x)dx 叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.2、定积分众所周知,微积分的两大部分是微分与积分.微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数.所以,微分与积分互为逆运算.实际上,积分还可以分为两部分.第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分.而相对于不定积分,就是定积分.所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面).之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数.定积分的正式名称是黎曼积分,详见黎曼积分.用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积.实际上,定积分的上下限就是区间的两个端点a、b.我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数.它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系.把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分.这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'(x)=f(x) 那么∫f(x) dx (上限a下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差.正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理.3、微积分积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
微积分在高中物理中的应用

121微积分在高中物理中的应用邓圭恩微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
微积分是指求函数曲线的切线斜率、求函数图形的面积、求图形的体积的一种方法和过程,在高中物理概念、物理定律都包涵微积分的思想。
本文分析了微积分在高中物理的一些具体应用,目的是理解微积分思想的同时也能熟练地运用微积分来解决物理中的问题。
数学作为物理学中的重要工具,它即能准确而又简洁地表达物理概念和规律,也能为物理提供思维语言和方法。
运用数学方法解决物理问题是高中阶段学习目标之一,高中生掌握求导和积分的思想及方法,是为物理学习提供了即方便实用又强大的工具。
1微积分在高中动力学中的应用 1.1利用微积分解决变速运动问题在高中阶段,变速运动问题往往是许多同学的难点,很多变速运动问题的模型都很难建立,对许多同学甚至是教师的思维能力都是一个很大的考验。
但微积分知识和思想能帮助大家用更简洁普适的模型来解决这方面的问题,比如对于下面这一道题:例2:狐狸沿半径R 的圆轨道以恒定速率v 奔跑,在狐狸出发的同时,猎犬从圆心O 出发以相同的速率v 追击过程中,圆心、猎犬和狐狸始终连成一直线。
(1)建立相应坐标系,求出猎犬运动的轨道方程,并画出轨道曲线。
(2)判断猎犬能否追上狐狸。
这道题是一道经典的物理竞赛题,现在也是被选入许多高校的自招理论试题,其经典解法有很多,但绝大多数都复杂冗长,很多同学并不能很好的理解。
而如果我们选用微积分的方法,就会得到很容易为大家所接受,也较容易的解法了。
取圆心O 为坐标原点,从O 到狐狸的初始位置设置极轴,建立极坐标系。
我们先得到猎犬切向、径向加速度、速度与猎犬所在的r、θ的关系狐狸的圆运动角速度为:Rv dt d ==ωθ当狐狸在θ角位置时,圆心O、猎犬D 及狐狸F 共线,如图所示故猎犬的横向速度为猎犬的径向与切向速度为:r Rv dt d rv ==θθ,vRr v v v r 22221-=-=θ 径向与切向加速度为:R r R v v dtd r dt d dt dr r a 122222-⋅==+⋅=ωθθθv r a R r dt dr dr dv r dt dv dt d r d r d r r r 22222222)(-=-⋅=-=-=ωωθθ 由r R v v r d dr r22-==θθ积分:⎰⎰=-θθθ022d r R dr r 可得猎犬的轨道方程为: θ=Rr arcsin 即θsin R r =猎犬的轨道曲线如图中虚线所示。
导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
新课标高中一轮总复习

在区间[a,b]上的定积分,
记作:b f(x)dx,即
b f(x)dx=②
lim
n
n i1
b
n
a(i ).a
a
a
与b分别叫做积分下限与积分上限,区间
[a,b]叫做积分区间,函数f(x)叫做被积
3.求定积分的方法
(1)定义法:
(ⅰ)分割:n等分区间[a,b];
(ⅱ)近似代替:取点ξi∈[xi-1,xi],用
f(ξi)近似地代替f(x)在[xi-1,xi]上的函数值;
n
(ⅲ)求和
b
i1 n
(ⅳ)取极限: ab
a
f(ξi); f(x)dx=
lim
n
n
i1
b
n
a
f(ξi).
(2)利用微积分基本定理求定积分
=
1 0
(t2-4t+3)dt-
1
3
(t2-4t+3)dt+
3
4
(t2-4t+3)dt
=4(m).
即在t=4 s时运动的路程为4 m.
点评 因为位置决定于位移,所以
它 是 v(t) 在 [0,4] 上 的 定 积 分 , 而 路 程是位移的绝对值之和,因此需判 断在[0,4]上,哪些时间段的位移为 负值.
0
3
3
x2
-1
3
x3
)1 0
=2
3
-1
3
=1
3
.
例4 一点在直线上从时刻t=0(s)开
始以速度v=t2-4t+3(m/s)运动,求:
《高中微积分复习》教程

《高中微积分复习》教程《高中微积分复习》教程第一讲函数、连续与极限一、理论要求函数的基本性质(单调、有界、奇偶、周期) 1.函数概念与性质几类常见函数(复合、分段、反、隐、初等函数)极限存在性与左右极限之间的关系 2.极限夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限函数连续(左、右连续)与间断 3.连续理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)arctanxxarctanxx1,,1.limlim(等价小量与洛必达) ,,,33x,,x,,006ln(12x)2x,sin6x,xf(x)6,f(x)2.已知,求lim,0lim32x,,x,,00xxsin6xxf(x)6cos6xf(x)xy',,,limlim,32x,,x,,00解:x3x,36sin6x,2y',xy'',216cos6x,3y'',xy''',lim,limx,,0x,,06x6 ,216,3y''(0),,0?y''(0),7266,()'''72fxyy (洛必达) lim,lim,lim,,362x,,0x,,0x,,0222xx2xx2x,1lim()3. (重要极限) x,,1x,13xxab,x求lim()4.已知a、b为正常数, ,,x023xxa,b3xxxt,(),lnt,[ln(a,b),ln2]解:令 2x33xxlimlnt,lim(alna,blnb),ln(ab)xx00,,,,xx(变量替换) 2a,b3/2?t,(ab)12ln(1,x)lim(cosx)5. x,,0121ln(1,x),,t(cosx),lntln(cosx)解:令 2,ln(1x)tan1,x,1/2limlnlim(变量替换) t,,,?t,exx,,0,,022x2x()ftdt,0f'(x)f(0),0,f'(0),0lim,16.设连续,,求 xx,,02()xftdt,0 (洛必达与微积分性质),2,,ln(cosx)x,x0f(x),7.已知在x=0连续,求a ,a,x0,,2解:令 (连续性的概念) a,limln(cosx)/x,,1/2x,,0三、补充习题(作业)xe,1,xlim,,31. (洛必达) x,,01,x,cosx112.ctgx (洛必达或Taylor) lim(,)x,,0xxsinx2,txedt,03. (洛必达与微积分性质) lim,12,xx,,0e1,第二讲导数、微分及其应用一、理论要求导数与微分的概念、几何意义、物理意义 1.导数与微分会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 3.应用会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导dy,arctanxt,,()yyx由1.决定,求 2t,2,,,5ytye,dxdy232.决定,求 |,1y,y(x)由ln(x,y),xy,sinxx,0dxy',ycosx,y解:两边微分得x=0时,将x=0代入等式得y=1xy3.决定,则 dy|,(ln2,1)dxy,y(x)由2,x,yx,0B.曲线切法线问题 ,,/24.求对数螺线处切线的直角坐标方程。
高中物理必修一-匀变速直线运动位移与时间的关系

匀变速直线运动位移与时间的关系知识集结知识元匀变速直线运动的位移与时间的关系知识讲解匀变速直线运动的位移与时间的关系式:x=v0t+at2.公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示.②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即.结合公式x=vt和v=v0+at可导出位移公式:x=v0t+ at2例题精讲匀变速直线运动的位移与时间的关系例1.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m例2.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2例3.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为()A.B.2C.2D.4当堂练习单选题练习1.一个物体在水平直线上做匀加速直线运动,初速度为3m/s,经过4s它的位移为24m,则这个物体运动的加速度等于()A.1.5m/s2B.2m/s2C.4m/s2D.0.75m/s2练习2.小球以某一较大初速度冲上一足够长光滑斜面,加速度大小为5m/s2则小球在沿斜面上滑过程中最后一秒的位移是()A.2.0m B.2.5m C.3.0m D.3.5m练习3.“蛟龙号”是我国首台自主研制的作业型深海载人潜水器,它是目前世界上下潜能力最强的潜水器.假设某次海试活动中,“蛟龙号”完成海底任务后竖直上浮,从上浮速度为v时开始计时,此后“蛟龙号”匀减速上浮,经过时间t上浮到海面,速度恰好减为零,则“蛟龙号”在t0(t0<t)时刻距离海平面的深度为()A.B.C.D.练习4.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m练习5.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2练习6.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为A.B.2C.2D.4。
微积分高中练习题及讲解

微积分高中练习题及讲解微积分基础练习题1. 导数的概念和计算题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 2 \) 处的导数。
解答:\[f'(x) = \frac{d}{dx}(3x^2 - 2x + 1) = 6x - 2\]当 \( x = 2 \) 时,\( f'(2) = 6 \times 2 - 2 = 10 \)。
2. 复合函数的导数题目:若 \( u(x) = x^3 \) 且 \( v(x) = \sin(x) \),求\( (u \cdot v)' \)。
解答:\[(u \cdot v)' = (x^3 \cdot \sin(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 3x^2 \cdot \sin(x) + x^3 \cdot \cos(x) \]3. 链式法则题目:求 \( y = (x^2 + 1)^3 \) 的导数。
解答:设 \( u = x^2 + 1 \),则 \( y = u^3 \)。
\[y' = (u^3)' = 3u^2 \cdot u' = 3(x^2 + 1)^2 \cdot (2x) =6x(x^2 + 1)^2\]4. 积分的概念和计算题目:计算定积分 \( \int_{0}^{1} x^2 dx \)。
解答:\[\int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}\]5. 微分方程题目:解微分方程 \( y' + 2y = e^{-x} \),其中 \( y(0) = 1 \)。
解答:这是一个一阶线性微分方程。
首先求解齐次方程 \( y' + 2y = 0 \),得到 \( y_h(x) = Ce^{-2x} \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理中微积分思想伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。
微积分是建立在实数、函数和极限的基础上的。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一。
在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢?例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里?【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。
在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。
现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即2021at t v x +=。
【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移km t t t a t v dt at v dt t v x 025.0)10()2()()(50252050050=-=+=+==⎰⎰ 小结:此题是一个简单的匀变速直线运动求位移问题。
对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。
或者,利用定积分就可解决.2、解决变力做功问题恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我们如何求解呢?例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到最高点的过程中,摩擦力做了多少功。
【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用s F W ⋅=来求。
可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置A 和B ,设OA 、OB 与水平直径的夹角为θ。
在θ∆=∆R S 的足够短圆弧上,△S 可看作直线,且摩擦力可视为恒力,则在A 、B 两点附近的△S 内,摩擦力所做的功之和可表示为:)(θμθμ∆-+∆-=∆R N R N W B A f又因为车在A 、B 两点以速率v 作圆周运动,所以:综合以上各式得:θμ∆-=∆22mv W f故摩擦力对车所做的功:22222mv mv mv W W f f πμθμθμ-=∆∑-=∆-∑=∆∑= 【微积分解】物体在轨道上受到的摩擦力N F f μ=,从最低点运动到最高点摩擦力所做的功为22022)(mv d mv d R N R N W B A f πμθμθμμπ-=-=--=⎰⎰小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到的。
利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道。
在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性。
作为大学知识在高中的应用,虽然微积分高中不要求,但他的思想无不贯穿整个高中物理。
“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维。
我们在学习的时候,要学会这种研究问题的思想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。
R mv mg N R mv mg N B A 22sin sin =+=-θθ【例】问均匀带电的立方体角上一点的电势是中心的几倍。
分析:①根据对称性,可知立方体的八个角点电势相等;将原立方体等分为八个等大的小立方体,原立方体的中心正位于八个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ;②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状;根据点电荷的电势公式U=K Qr 及量纲知识,可猜想边长为a 的立方体角点电势为U=CKQ a=Ck ρa 2;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3③ 大立方体的角点电势:U 0= Ck ρa 2;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 24大立方体的中心点电势:U 1=8U 2=2 Ck ρa2;即U 0=12U 1【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。
如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。
导数㈠ 物理量的变化率我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上的微积分。
我们知道,过v-t 图像中某个点作出切线,其斜率即a=△v △t.下面我们从代数上考察物理量的变化率:【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。
(所有物理量都用国际制单位,以下同)分析:我们知道,公式v=△s△t 一般是求△t 时间内的平均速度,当△t 取很小很小,才可近似处理成瞬时速度。
s(t)=3t+2t 2 s(t+△t)=3(t+△t)+2(t+△t) 2△s=s(t+△t)-s(t)=3(t+△t)+2(t+△t) 2-3t-2t 2=3△t+4t △t+2△t 2v=△s△t =3△t+4t △t+2△t2△t=3+4t+2△t当△t 取很小,小到跟3+4t 相比忽略不计时,v=3+4t 即为t 时刻的瞬时速度。
【练】假设一个闭合线圈匝数为100匝,其磁通量为φ=3t+4t 3,求感应电动势随时间t 的函数关系。
【小结】回顾我们求物理量y=f(t)的变化率瞬时值z 的步骤:①写出t 时刻y 0=f(t)的函数表达式;②写出t+△t 时刻y 1=f(t+△t)的函数表达式; ③求出△y=y 1- y 0=f(t+△t)- f(t);④求出z=△y △t=f(t+△t)- f(t)△t;⑤注意△t 取很小,小到与有限值相比可以忽略不计。
㈡ 无穷小当△t 取很小时,可以用V=△s △t求瞬时速度,也可用i=△Q△t 求瞬时电流,用ε=N △φ△t求瞬时感应电动势。
下面,我们来理解△t :△t 是很小的不为零的正数,它小到什么程度呢?可以说,对于我们任意给定一个不为零的正数ε,都比△t 大,即:ε>△t 。
或者从动态的角度来看,给定一段时间t ,我们进行如下操作:第一次,我们把时间段平均分为2段,每段时间△t=t2 ;第二次,我们把时间段平均分为3段,每段时间△t=t3 ;第三次,我们把时间段平均分为4段,每段时间△t=t4 ;…………第N 次,我们把时间段平均分为N+1段,每段时间△t=tN+1;…………一直这样进行下去,我们知道,△t 越来越小,虽然它不为零,但永远逼近零,我们称它为无穷小,记为△t →0。
或者,用数学形式表示为 0lim t ∆→△t=0。
其中“0lim t ∆→”表示极限,意思是△t 的极限值为0。
常规计算:①0lim t ∆→(△t+C )=C ②0lim t ∆→C ·△t=0 ③0lim t ∆→f(△t)=f(0)④0lim t ∆→ f(t+△t)=f(t) ⑤0limt ∆→sin(△t)△t= 1『附录』常用等价无穷小关系(0x →) ①sin x x = ;②tan x x = ;③211cos 2x x -=;④()ln 1x x += ;⑤1x e x -= ㈢ 导数前面我们用了极限“0lim t ∆→”的表示方法,那么物理量y 的变化率的瞬时值z 可以写成:z=0limt ∆→△y△t,并简记为z=dyd t,称为物理量y 函数对时间变量t 的导数。
物理上经常用某物理量的变化率来定义或求解另一物理量,如v=dx d t 、a=dv d t 、i=dq d t 、ε=N d Фd t等,甚至不限于对时间求导,如F=dW F d x 、E x =dU d x 、ρ=dmdl等。
这个dt (也可以是dx 、dv 、dm 等)其实相当于微元法中的时间微元△t ,当然每次这样用0lim t ∆→来求物理量变化率的瞬时值太繁琐了,毕竟微元法只是草创时期的微积分。
如果能把常见导数计算的基本规律弄懂,那么我们可以简单快速地求解物理量变化率的瞬时值(导数)了。
同学们可以课后推导以下公式: ⑴ 导数的四则运算①d(u ±v)d t =du d t ± dvd t ③d(uv )d t = du d t ·v - u ·dv d t u v v 2②d(u ·v)d t =du d t ·v + u ·dv d t uv⑵ 常见函数的导数①dC dt =0(C 为常数); ④dcost dt=-sint ; ②dt ndt =nt n-1 (n 为实数); ⑤de tdt =e t;③dsintdt=cost ;⑶ 复合函数的导数在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自变量。
d u(v(t))d t =d u(v(t))d v(t) ·d v(t)d t复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数——称为链式法则。