八年级数学(上)整章测试(A)(实数)

合集下载

八年级数学上册单元试卷全套

八年级数学上册单元试卷全套

华师大版数学八年级上册第一单元检测题 一、选择题:本题共10小题,每小题3分,共30分1.若一个数的平方根为2a+3和a-15,则这个数是 A -18 B 32-C 121D 以上结论都不是 2、若73-x 有意义,则x 的取值范围是 ; A 、x >37-B 、x ≥ 37-C 、x >37D 、x ≥37 3下列各式中正确的是 A.2008)2008(2-=- B.2008)2008(2=-- C.2008)2008(2±=- D.2008)2008(2±=-±4、下列说法中,错误的是 ;A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 5、16的算术平方根是 ;A 、±4B 、4C 、-4D 、26、已知04)3(2=-+-b a ,则b a3的值是 ; A 、 41 B 、- 41 C 、433 D 、437、计算33841627-+-+的值是 ;A 、1B 、±1C 、2D 、78、有一个数的相反数、平方根、立方根都等于它本身,这个数是 ; A 、-1 B 、1 C 、0 D 、±1 9、下列命题中,正确的是 ;A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数10.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是………A .a 2+2 B .±错误! C .错误! D .错误! 二.填空每小题2分,共20分11、()26-的算术平方根是__________;12、ππ-+-43= _____________;13、2的平方根是__________;14、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________;15、若m 、n 互为相反数,则n m +-5=_________;16、若2)2(1-+-n m =0,则m =________,n =_________;17、在3325,8,2,41.......,8080080008.0,94,3,1.3,2--π,其中是无理数的是_____ 18、12-的相反数是_________;19、 38-=________,38-=_________;20、绝对值小于π的整数有__________________________; 三、解答题:本题共6小题,每小题5分,共30分21、求972的平方根和算术平方根; 22、计算的0)01.0()1(100101.023+--+-值; 23、计算24、解方程x 3-8=0; 25、若0)13(12=-++-y x x ,求25y x +的值;26.设m 是13的整数部分,n 是13的小数部分,求m-n 的值. 四、综合应用:本题共10小题,每小题2分,共20分 27.已知0)8(652=++++-z y x ,求13+-+z y x 的算术平方根;28、已知a-1是64的立方根,3a+b-1的平方根是±4,c 是50的整数部分,求a+2b+c 的算术平方根.实数单元测试题1----10、CDDCD CDCD C 11、6 12、1 13、±2 14、0 15、5 16、1,2 17、-2π2,32518、21- 19、-2,-2 20、±3,,2,±1,0 21、35,35± 22、- 23、26—4 24、225、3 26、6-13、27、2 28、分析:根据平方根、立方根和无理数的估算得到a-1=4,3a+b-1=16,c=7,先求出a=5,把a=5代入3a+b-1=16求出b,再计算出以a+2b+c 的值,然后求算术平方根根据题意得a-1=4,3a+b-1=16,c=7, 解得a=5,b=2,所以a+2b+c=5+4+7=16所以a+2b+c 的算术平方根为4第二单元检测题一、选择题每小题3分,共 30 分 1、下列运算中正确的是A.43x x x =+B. 43x x x =⋅C. 532)(x x =D. 236x x x =÷2、计算()4323b a --的结果是 A、12881b a B 、7612b a C 、7612b a - D 、12881b a -3、若且,,则的值为 A .B .1C .D .4、如果x+qx+15的积中不含x 项,那么q 的值是 A .5 B .-5 C .15 D .-155、已知a -b =3,ab =10,那么a 2+b 2的值为 .A .27B .28C .29D .30 6、计算:ab b a ab 3)46(22•-的结果是 A.23321218b a b a -;B.2331218b a ab -; C.22321218b a b a -;D.23221218b a b a -7、如果 是一个完全平方公式,那么a 的值是A .2B .-2C .D .8、因式分解x 2+2xy+y 2-4的结果是 A .x+y+2x+y-2 B .x+y+4x+y-1 C .x+y-4x+y+1 D .不能分解 9、计算-4×1032×-2×1033的正确结果是A .×101717C. ×1016D. ×101610、一个正方形的边长为,若边长增加,则新正方形的面积增加了 . A . B . C . D .以上都不对二、填空每小题2分,共 18 分11、-x 2·-x 3·-x 2=__________. 12、若x 3m=2,则x 2m x m+x 4m-x 7m=_____. 13、若a+b=3,ab=2,则a 2+b 2=___________ 14、15、若是同类项,则15、如果x+y=-4,x-y=8,那么代数式的值是 cm; 16、若()()6+-x t x 的积中不含有的一次项,则t 的值是_________ 17、已知13x x -=,则441x x+= 18、若x+3x-1=x 2+Ax+B,则A= 、B=19、已知03410622=++-+n m n m ,则n m +=三、解答题:20、计算:每小题4分,共16分1 322)3()2(x m mx -•- 2()()a a a a 296423-÷+-3()()222332ca bc b a -÷-• 42022+202×196+98221、因式分解:每小题4分,共16分 1a 3-4a 2+4a 2a 2x-y+b 2y-x3)2()2(2a y a x --- 4a 2-2ab+b 2-122、当a=-13时,求a -4a -3-a -1a -3的值;5分 23、先化简,再求值:x -1x+2+2x -1x+5-3x 2-6x -1,其中x=312.5分 24、已知矩形的周长为28cm,两边长为x 、y,且x 、y 满足x 2x +y -y 2x +y=0,求该矩形的面积;5分 25、已知多项式()k x k m x +++2可以分解因式为()()42++x x , 求m 、k 的值;5分答案:一、1B2D3C4D5C6A7C8A9B10C二、11、x 712、-2 13、5 14、3 15、-32 16、6 17、119 18、2,-3 19、-2 三、20、1-54m 7x 52-2a 2+3a-29 36ab 3c 49000021、1aa-222x-ya+ba-b 3a-22x+y 4a-b+1a-b-1 22、-3a+9,10 23、28x -4,94 24、依题意得x+y=14, ∵ x 2x +y -y 2x +y=0,∴ 14x 2-14y 2=0, ∴ 14x-yx+y=0, ∴ 14x-y=0, ∴ x=y 又x+y=14 可得x=y=725、()()42++x x =x 2+6x+8,依题意,m+k=6,k=8, 所以k=8,m=-2华师大版八年级上册第一、二章综合练习选择题:每小题3分,共30分1、下列各数中,没有平方根的是A 、2)3(- B 、1- C 、0 D 、1 2、下列等式中,错误的是A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=- 3、下列命题中正确的是A 、有理数是有限小数B 、无限小数是无理数C 、数轴上的点与有理数一一对应D 、数轴上的点与实数一一对应4、计算3(2)(21)a a --的结果是 A 、 4242a a - B 、4242a a -+ C 、43168a a -+ D 、43168a a --5、在实数23- 3.14-中,无理数有A 、1个B 、2个C 、3个D 、4个 6、下列各式中,正确的是A 、a -b 2 = a 2-2ab -b 2B 、-b +ab +a= b 2-a 2C 、a +b 2 = a 2+b 2D 、a +b 2 = a 2+2ab +b 27、下列各式比较大小正确的是A 、32-<-B 、6655->- C 、14.3-<-π D 、310->- 8、计算34(510)(710)⨯⨯的正确结果是A 、 73510⨯B 、 83.510⨯ C 、90.3510⨯ D 、73.510⨯9、已知x m =a, x n =b,那么x3m+2n的值等于A 、3a+2bB 、a 3+b 2C 、a 3b 2D 、a 3m b 2n10、已知 a +b =5,ab=-2 ,那么a 2+b 2的值为 A 、25 B 、29 C 、33 D 、不确定二、填空题每小题3分,共15分11、49的平方根是 ,算术平方根是 ;338-的立方根是______; 12、32a a a ⋅⋅= ;423)2(z xy -= ; 13、填空:a 2+6a + =a + 2a2+b 2=a -b 2+14、计算:19922-1991×1993=____________15、若2(2)(3)x x x ax b +-=++,则a= ,b= ;三、解答题共37分16、把下列各数填入相应的大括号内6分5, -3, 0, ,722, 3+ , 31- , 38-, 2π,… 两个1之间依次多个21无理数集合:{…}; 2非负数集合:{ …}; 3整数集合: {…};17、计算每小题4分,共24分:①2(5)(4)a a --- ②6x 2y 3z 22÷4x 3y 4③1998×2002利用乘法公式 ④3x -12x +1⑤6a 4-4a 3-2a 2÷-2a 2 ⑥ 18、化简求值2x -2y 2-4x +3yx -3y -2x -y2y +x,其中x=4, y=-15分四、一颗人造地球卫星的速度是8×103米/秒,一架喷气式飞机的速度是 5×102米/秒,试问:这颗人造地球卫星的速度是这架喷气式飞机的速度的多 少倍5分2 2 5 5 y x yx五、在做浮力实验时,小华用一根细线将一正方体铁块栓住,完全浸入盛满水的圆柱形烧杯中,并用一量筒量得被铁块排开的水的体积为3cm ,小华又将铁块从烧杯中提起,量得烧杯中的水位下降了cm .烧杯内部的底面半径 和铁块的棱长各是多少用计数器计算,结果精确到cm 6分 六、实践与探究: 9分1= ,= , = ,= ,= , = ; 2根据计算结果,回答:a 吗你发现其中的规律了吗 请你用自己的语言描述出来.②利用你总结的规律,化简:若x<2,= ;=_____ ;答案:选择题:每小题3分,共30分1、B2、B3、D4、C5、A6、D7、C8、B9、C 10、B 二、填空题每小题3分,共15分11、±7;7; 12、a6 ;16x4y12z8 13、9;3;2ab ; 14、1 15、-1;-6三、解答题共37分 16、1无理数集合:{5、3+、2π、…};2非负数集合:{5、0、、722、3+、2π、…};3整数集合:{-3、0、38-、};17、①5a 3+20a ②9xy 2z 4 ③3999996 ④6x 2+x -1 ⑤-3a 2+2a +1 ⑥-20xy 18、化简得:-4x 2-10xy +48y 2 代入计算得:24 四、8×103÷5×102=16倍五、解:设烧杯内部的底面半径为rcm 和铁块的棱长为xcm,则 15.5062.02=r π 25.503=x答:烧杯内部的底面半径约为和铁块的棱长约为.六、13, , 6,34,13,02 a,当0a ≥时a =,当0a <时a =-,总的来说a =3 2x -, 3.14π-2 3八年级数学第13章全等三角形考试时间:120分钟;全卷满分:120分一、选择题:10小题,每题3分,共30分以下每小题都给出了代号为A、B、C、D四个答案,其中只有一个是正确的,请把你认为正确的答案的代号填入题后括号内.1. 下列命题中,其中是真命题的个数有①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A. 3个B. 2个C. 1个个.2.“对顶角相等”是A.定理B. 定义C. 基本事实D.假命题.3.利用刻度尺和量角器,能画出下列三角形的是A.一个三角形的两个角分别是60°,45° B.一条边为4cm的等边三角形C.一个三角形一边长是5cm,一个内角是50°D.一个三角形的两条边分别是3cm、4cm.4. 下列条件中,能使△ABC≌△DEF的条件是A. AB=DE,∠A=∠D,BC=EF B. AB=BC,∠B=∠E,DE=EFC. AB=EF,∠A=∠D,AC=DF D. BC=EF,∠C=∠F,AC=DF5. 如图1所示,在△ABC中,BC边与线段DE相等,以D、E为两端点,作与△ABC全等的三角形,这样的三角形最多可以画A. 1个 oB. 2个o 个个6. 如图2所示, 在△ABC中,AB=AC,AD是BC边上的高线,作DE⊥AC,DF⊥AB,垂足分别是E、F,则下列结论中,正确的有①DE=DF ②CD=BD ③CE=BF ④AE=AF ⑤∠EAD=∠FAD ⑥∠C=∠ADF个个o 个o 个o7. 在△ABC中,AB=5,中线AD=6,则边AC的取值范围是A.1<AC<11 B.5<AC<6 C.7<AC<17 D.11<AC<178. 等边△ABC的两条角平分线BD和CE交于点M,则∠BMC等于A. 60°B. 90°C. 120°D. 150°2√59.如图3所示,在△ABC中,AB边的垂直平分线交AC于点D,交AB于点E,若AD= ,则B、D两点间的距离是√5√5 A. B. C. D.2√54√51210.如图4所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF④BF∥CE,其中正确的有个个个个二、填空题:10小题,每题3分,共30分11.写出命题:“角平分线上的点到角两边的距离相等”的逆命题:.12. 把命题:“正方形的四条边相等”的逆命题改写成“如果……,那么……”的形式为:.13. 如图5所示,AE平分△ABC的外角∠CAD,并且AE∥BC,若AC=5cm,则AB= ,△ABC是三角形;填写等边、等腰或者不等边14. 在Rt△ABC中,CD是斜边AB上的高,若∠B=45°,AD=3cm,则AB的长度是 .15. 如图6所示,在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB,OM ∥AB,ON ∥AC,若△MON 的周长等于16cm,则边BC= .16. 如图7所示,在△ABC 中,D 为BC 边上一点,AD=BD,AB=AC=CD,∠BAC= 17. 如图8所示,在△ABC 中,AB=AC,∠A=40°,BE=DC,CF=BD,则∠EDF=18. 如图9所示,在△ABC 中,AD 平分∠BAC 交BC 于D,AE ⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=19. 如图10所示,在△ABC 中,AB=㎝,AC=㎝,则BC 边上的中线AD 的取值范围是 20. 在△ABC 中,AB=AC,AB 的垂直平分线与AC 所在的直线相交所得的钝角为130°,则∠B 等于 度.三、解答题:共60分21.作图题共10分,每题5分⑴如图11所示是三条交叉公路,请你设计一个方案,要建一个购物中心,使它到三条公路的距离相等,这样的地址有几处 请你画出来 .⑵如图12所示,六个完全相同的小长方形拼成了一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图要求:A. 仅用无刻度直尺,B. 保留必要的画图痕迹.:①在图1中画出一个45°的角,使点A 或者点B 是这个角的顶点,且AB 为这个角的一边;②在图2中画出线段AB 的垂直平分线.22.6分如图13所示,在△ABC 中,AB=AC,点E 是BC 边上一点,连结AE 且使∠BAE=∠CAE,若点D 是AE 上一点点D 不与点A 、点E 重合,连结BD 、CD, 求证:BD = DC.23.6分如图14所示,△ABC 是等边三角形,M 是AC 边上一点,MN ∥AB 交 BC 于点N,判断△MNC 的形状,并说明理由.24.6分如图15所示,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=13cm, 25.BD=8cm,求点D 到AB 边的距离DE 的长..25.6分如图16所示,△ABC 是等腰三角形,AB=AC,点D 、E 、F 分别在AB 、BC 、AC 边上,且BD=CE,BE=CF. ⑴ 求证△DEF 是等腰三角形;⑵ 推想:当∠A 满足什么条件时,△DEF 是等边三角形 并说明理由.26.6分如图17所示,△ABC 中,∠C=90°,CD ⊥AB 于点D,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm,求C F 的长.27.6分如图18所示,E 是∠AOB 的平分线上一点,EC ⊥OA,垂足为C,D 为OB 上一点,且OD=OC,连结ED,连结CD 交OE 于点F,求证:1ED ⊥OB,2OE 平分线段CD.28.6分如图19所示,在四边形ABCD 中,AC 平分∠BAD,过C 作CE ⊥AB 于E,并且1()2AE AB AD =+,试证明:∠ABC 和∠ADC 互补;29.8分 如图20所示,已知∠ABC=∠DBE=90°,DB=BE,AB=BC .1 求证:AD=CE,AD ⊥CE 2若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则1中结论是否仍成立 请证明.第14章试卷 勾股定理一、选择3分×8=24分1、要登上12 m 高的建筑物,为了安全需使梯子底端离建筑物5 m,则梯子的长度至少为 A 、12 m B 、13 mC 、14 mD 、15 m 2、若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的 A 、2倍 B 、3倍 C 、4倍D 、5倍3、有六根小木棒,长度分别为:2,4,6,8,10,12,从中取出三根,首尾顺次连结能够搭成直角三角形,则这三根木棒的长度可以是 A 、2,4,8 B 、4,8,10 C 、6,8,10 D 、8,10,124、如果直角三角形的三边长分别为3,4,m ,则m 的取值可以有 A 、0个 B 、1个 C 、2个 D 、3个5、如果一个等腰直角三角形的面积为2,则斜边长为 A 、2 B 、4 C 、22D 、246、如图,∆ABC 中,︒=∠90C ,︒=∠5.22B ,DE 垂直平分AB,E 为垂足,交BC 于点D,BD=216,则AC 的长为 A 、38 B 、8 C 、16 D 、3127、一旗杆在其31的B 处折断,量得AC=5米,则旗杆原来的高度为A 、5米B 、25米C 、10 米D 、35米8、直角三角形周长为12 cm,斜边长为5cm,则面积为A 、12 cm 2B 、6 cm 2C 、8cm 2D 、10cm 2二、填空3分×10=30分 9、在△ABC 中,∠C=︒90,(1) 若===c b a 则,8,6 (2) 若===b c a 则,5,5 (3) 若a :c =3:5,且a b 则,8==10、Rt ∆ABC 中,︒=∠90C ,AB=2,则AB 2+BC 2+CA 2= ;11、一个直角三角形的三边长是不大于10的偶数,则它的周长为 ; 12、一等边三角形的边长为1,则它的高为 ,面积为 ; 13、如图所示的图形中,所有的四边形都是正方形, 所有的三角形都是直角三角形,其中最大的正方形的边长为5cm,则正方形A,B,C,D 的 面积的和为14、已知:正方形ABCD 的对角线长为22,以AB 为斜边向外作等腰直角三角ABE,则这个等腰直角三角形的直角边长为 ;15、已知等腰直角三角形的斜边长为2,则直角边长为_________,若直角边长为2,则斜边长为_________;16、如图两电线杆AB 、CD 都垂直于地面,现要在 A 、D 间拉电线,则所拉电线最短为 米; 其中AB=4米,CD=2米,两电线杆间的距离BC=6米;17、直角三角形斜边的平方等于两条直角边乘积的2倍,则这个三角形中有一个锐角为 度;18、如图,△ABC 为一铁板零件,AB=AC=15厘米,底边BC=24厘米,则做成这样的10个零件共需 平方厘米的材料;三、解答46分19、已知:每个小方格是边长为1的正方形,求△ABC 的周长;6分20、如图,△ABC 是直角三角形,∠C=︒90,AB=40,BC=24,试求以AC 为直径的半圆的面积;6分21、小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度;6分 22、如图,已知∆ABC 中,AB=10,AC=21,BC=17,求AC 边上的高;7分 23、如图所示,四边形ABCD 中,1=AB ,2=BC ,2=CD ,3=AD ,且BC AB ⊥;试说明:CD AC ⊥;7分24、如图,在△ABC 中,∠C=︒90,D 为BC 的中点,DE ⊥AB 于点E,若AB=12,BC=8,求BE 和DE 的长度;7分25、已知,如图,四边形ABCD 中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD 的面积;7分测试六:1~8:BACCC BDB ;9、10,52,6;10、8;11、24;12、43,23;13、25;14、2;15、1,2;16、102;17、45;18、1080;19、295102++;20、π128;21、12米;22、8;23、略;24、3152,38;25、36;。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

创界学校八年级数学上册第二章实数五个专题加单元测试整章习题汇总试题

创界学校八年级数学上册第二章实数五个专题加单元测试整章习题汇总试题

智才艺州攀枝花市创界学校北师第二章:实数五个专题加单元测试整章全套习题汇总专题一1.以下数中是无理数的是〔〕A.0.12••32 B.2πC.0D.7222.以下说法中正确的选项是〔〕A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.415926是有理数 3.以下语句正确的选项是〔〕A.8788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数 4.在直角△ABC 中,∠C =90°,AC =23,BC =2,那么AB 为〔〕 A.整数B.分数C.无理数D.不能确定5.面积为6的长方形,长是宽的2倍,那么宽为〔〕 A.小数B.分数C.无理数D.不能确定6.在0.351,-32,69696…,51755175551…,0,-333,11010010001…中,无理数的个数有______. 7.______小数或者______小数是有理数,______小数是无理数.8.x 2=8,那么x ______分数,______整数,______有理数.(填“是〞或者“不是〞)9.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是〞或者“不是〞) 10.一个高为2米,宽为1米的大门,对角线大约是______米(准确到0.01).11.:在数-43,-••24.1,π,416,32,0,42,(-1)2n,-24224222…中,〔1〕写出所有有理数; 〔2〕写出所有无理数;〔3〕把这些数按由小到大的顺序排列起来,并用符号“<〞连接.12.我们知道,无限不循环小数叫无理数.试根据无理数的意义,请你构造写出两个无理数. 13.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.14.如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC =6,AD =5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗? 15.设面积为5π的圆的半径为y ,请答复以下问题: 〔1〕y 是有理数吗?请说明你的理由;〔2〕估计y 的值〔结果准确到非常位〕,并用计算器验证你的估计.专题二根底篇: (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________; (3)一个正数的平方根是2a -1与-a +2,那么a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________;(6)4的值等于_________,4的平方根为_________;(7)(-4)2的平方根是_________,算术平方根是_________.(8)2)2(-的化简结果是()A.2B.-2C.2或者-2 D .4(9)9的算术平方根是A.±3B.3C.±3 D.3(10)(-11)2的平方根是()A.121B.11 C.±11D.没有平方根(11)以下式子中,正确的选项是()A.55-=- B.-6.3=-0.6 C.2)13(-=13D.36=±6(12)7-2的算术平方根是()A.71B.7C.41 D.4(13)16的平方根是()A.±4 B.24 C.±2D.±2(14)一个数的算术平方根为a ,比这个数大2的数是()A.a +2B.a -2 C.a +2D.a 2+2(15)以下说法正确的选项是()A.-2是-4的平方根B.2是(-2)2的算术平方根 C.(-2)2的平方根是2D.8的平方根是4(16)16的平方根是()A.4B.-4C.±4D.±2(17)169+的值是()A.7 B.-1 C.1 D.-7进步篇:1.以下各式中,正确的选项是〔〕A.-49-=-〔-7〕=7B.412=121 C.1694+=2+43=243 D.25.0=±0.52.以下说法正确的选项是〔〕A.5是25的算术平方根 B.±4是16的算术平方根 C.-6是〔-6〕2的算术平方根D.0.01是0.1的算术平方根3.36的算术平方根是〔〕A.±6B.6C.±6 D.64.一个正偶数的算术平方根是m ,那么和这个正偶数相邻的下一个正偶数的算术平方根是〔〕A.m +2B.m +2C.22+mD.2+m5.当1<x <4时,化简221x x +--1682+-x x 结果是〔〕A.-3B.3C.2x -5D.56.x 2=(-7)2,那么x =______.7.假设2+x =2,那么2x +5的平方根是______.8.假设14+a 有意义,那么a 能取的最小整数为____.9.0≤x ≤3,化简2x +2)3(-x =______.10.假设|x -2|+3-y =0,那么x ·y =______.11.某数有两个平方根分别是a +3与2a -15,求这个数. 12.:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值 .13.a <0,b <0,求4a 2+12ab +9b 2的算术平方根.14.要切一块面积为36 m 2的正方形铁板,它的边长应是多少?专题三根底篇: 一、判断题(1)(-2)-3的立方根是-21.(2)3a 一定是a 的三次算术根. (3)假设一个数的立方根是这个数本身,那么这个数一定是零.(4)313->413-.二、填空题(1)假设a <0,那么(3a -)-3=_________.(2)假设a 2=1,那么3a =_________.(3)π的5次方根是_________.(4)假设±3aa =,那么a _________.(5)-0.008的立方根的平方等于_________. 3.求以下各式中的x . (1)8x 3+27=0;(2)x 4-5=161;(3)(x +2)3+1=87;(4)(x -1)3=-641. 进步篇:1.以下说法中正确的选项是〔〕A.-4没有立方根B.1的立方根是±1C.361的立方根是61 D.-5的立方根是35-2.在以下各式中:327102=343001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是〔〕A.1B.2C.3D.43.假设m <0,那么m 的立方根是〔〕A.3mB.-3mC.±3mD.3m -4.假设36x -是6-x 的三次算术根,那么〔〕A.x <6B.x =6C.x ≤6D.x 是任意数5.以下说法中,正确的选项是〔〕A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.假设一个数的立方根是这个数本身,那么这个数一定是-1,0,16.364的平方根是______.7.〔3x -2〕3=0.343,那么x =______.8.假设81-x +x -81有意义,那么3x =______.9.假设x <0,那么2x =______,33x =______.10.假设x =(35-)3,那么1--x =______.11.求以下各数的立方根 〔1〕729〔2〕-42717〔3〕-216125〔4〕〔-5〕312.求以下各式中的x .(1)125x 3=8(2)(-2+x )3=-216(3)32-x =-2(4)27(x +1)3+64=013.643+a +|b 3-27|=0,求(a -b )b的立方根.14.第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长.进步篇:1.0.00048的算术平方根在〔〕 A.0.05与0.06之间B.0.02与0.03之间C.0.002与0.003之间D.0.2与0.3之间2.在无理数5,6,7,8中,其中在218+与2126+之间的有〔〕A.1个B.2个C.3个D.4个3.化简2)521(-的结果为〔〕 A.21-5B.5-21C.-21-5D.不能确定4.设a 1=61,b 1=221,以下关系中正确的选项是〔〕A.a >b B.a ≥b C.a <b D.a ≤b5.一个正方体的体积为28360立方厘米,正方体的棱长估计为〔〕 A.22厘米B.27厘米C.30.5厘米D.40厘米6.|2-1|=______,|3-2|=______. 7.将75,75,75三数按从小到大的顺序用“<〞号连接起来________. 9.大于-317且小于310的整数有______.10.a 是10的整数局部,b 是5的整数局部,那么a 2+b 2=______.12.通过估计,比较大小.〔1〕5117+与109〔2〕24与〔3〕10与310专题五1.以下说法中正确的选项是〔〕A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都是无理数 2.在实数中,有〔〕A.最大的数B.最小的数C.绝对值最大的数D.绝对值最小的数 4.实数a 在数轴上的位置如下列图,那么a ,-a ,a1,a 2的大小关系是〔〕 A.a <-a <a 1<a 2B.-a <a 1<a <a 2C.a 1<a <a 2<-a D.a1<a 2<a <-a6.在实数4,-36.0,-66,0.13241324…,39,-π,32中,无理数的个数是______. 7.-6的相反数是______,绝对值等于______.8.等腰三角形的两条边长分别为23和52,那么这个三角形的周长等于______.9.假设2)1(+-a 是一个实数,那么a =______.10.m 是3的算术平方根,那么3x -m <3的解集为______. 15.想一想:将等式23=3和27=7反过来的等式3=23和7=27还成立吗?式子:9271=2792=3和481=842=2成立吗?仿照上面的方法,化简以下各式:〔1〕221〔2〕11112〔3〕6121 单元习题一.选择题:1.边长为1的正方形的对角线长是〔〕 A.整数B.分数C.有理数D.不是有理数2.在以下各数中是无理数的有()-0.333…,4,5,π-,3π,415,2.010101…(相邻两个1之间有1个0),76.0123456…(小数局部由相继的正整数组成).A.3个B.4个C.5个D.6个3.以下说法正确的选项是〔〕A.有理数只是有限小数B.无理数是无限小数 C.无限小数是无理数D.3π是分数 4.以下说法错误的选项是〔〕A.1的平方根是1B.–1的立方根是-1C.2是2的平方根D.–3是2)3(-的平方根5.假设规定误差小于1,那么60的估算值为〔〕A.3B.7 C.8D.7或者86.以下平方根中,已经简化的是〔〕A.31B.20C.22 D.1217.以下结论正确的选项是〔〕A.6)6(2-=--B.9)3(2=-C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8.以下说法正确的选项是〔〕A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000019.以下语句及写成式子正确的选项是〔〕A.7是49的算术平方根,即749±=B.7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=10.假设a 和a -都有意义,那么a 的值是〔〕A.0≥aB.0≤aC.0=aD.0≠a二.填空题:11.把以下各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④实数集合:{…}. 1的算术平方根是;3的平方根是;0的平方根是;-2的平方根是. 13.–1的立方根是,271的立方根是,9的立方根是. 14.2的相反数是,倒数是,-36的绝对值是.15.比较大小:32;3105;65.(填“>〞或者“<〞)16.=-2)4(;=-33)6(;2)196(=.三.解答题:17.求以下各数的平方根和算术平方根: ①1;②410-.18.求以下各数的立方根:①21627;②610--. 19.求以下各式的值:①44.1;②3027.0-;③610-;④649;⑤25241+;⑥327102---. 20.化简:①44.1-21.1;②2328-+;⑦2)3322(+;⑧)32)(32(-+.。

(完整版)八年级数学上册第二章实数知识点总结+练习

(完整版)八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。

2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。

(3)无理数与有理数的和差结果都是无理数。

如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。

如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。

(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。

例如32=9,那么9的算术平方根a 是3,即。

39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。

(2)算术平方根a 本身是非负数。

3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。

4.3实数(十大题型)(解析版) 八年级数学上学期

4.3实数(十大题型)(解析版) 八年级数学上学期

八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。

八年级上册数学实数练习题

八年级上册数学实数练习题

实数单元习题练习(三)一、选择题:(48分) 1. 9的平方根是 ( )A 、3B 、-3C 、 3D 、81 2. 下列各数中,不是无理数的是 ( )A 、7B 、0.5C 、2πD 、…)个之间依次多两个115(3. 下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数 …C 、无限小数是无理数D 、3π是分数 4. 下列说法错误的是( )A 、1的平方根是1B 、–1的立方根是-1C 、2是2的平方根D 、–3是2)3(-的平方根 5. 若规定误差小于1, 那么60的估算值为( ) A 、3 B 、7 C 、8 D 、7或8 6. 和数轴上的点一一对应的是( )A 、整数B 、有理数C 、无理数D 、实数 %7. 下列说法正确的是( )A 、064.0-的立方根是B 、9-的平方根是3±C 、16的立方根是316D 、的立方根是 8. 若a 和a -都有意义,则a 的值是( )A 、0≥aB 、0≤aC 、0=aD 、0≠a 9. 边长为1的正方形的对角线长是( )A 、整数B 、分数C 、有理数D 、不是有理数 10.38-=( )*A 、2B 、-2C 、±2D 、不存在11.2a a =-,则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点右侧C 、原点或原点左侧D 、原点或原点右侧 12.下列说法中正确的是( )A 、实数2a -是负数 B 、a a =2C 、a -一定是正数D 、实数a -的绝对值是a二. 填空题:(32分)13. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 . |14. –1的立方根是 ,271的立方根是 , 9的立方根是 . 15.2的相反数是 , 倒数是 , -36的绝对值是 .16. 比较大小;6 .(填“>”或“<”)17. =-2)4( ;=-33)6( ; 2)196(= .18.37-的相反数是 ;32-= .19.若2b +5的立方根,则a = ,b = .20.a 的两个平方根是方程223=+y x 的一组解,则a = ,2a 的立方根是 . 三、解答题:(20分) }21.求下列各数的平方根和算术平方根:① 1; ② ③ 256 ④8125:22. 求下列各数的立方根: ①21627; ②610--.23.求下列各式的值: $①44.1; ②3027.0-; ③610-; ④649;⑤44.1-21.1; ⑦)32(2+{附加题:(20分)24.若21(2)0x y -+-=,求x y z ++的值。

八年级数学13章章节测试题人教版

十三章实数整章测试题一、选择题(每小题4分,共40分)第十三章 实数测试题(A )一、选择题(每小题4分,共40分)1、下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数。

正确的是( )A :①②B :①③C :②③D :③④ 2、下列各组数中互为相反数的是( )A :-2 与2(2)-B :-2 与38-C :-2 与12- D :2与2-3、若51x +有意义,则x 能取的最小整数是( )A :1-B :0C :1D :2 4、下列等式正确的是( )A :93164=± B :711193-= C :393-=- D :21133⎛⎫-= ⎪⎝⎭5、已知:a =5,2b =7,,且a b a b +=+,则a b -的值为( )A :2或12B :2或-12C :-2或12D :-2或-12 6、在实数:23313.1259,343,0.1020020002169,(),0.326,(0.5),ππ⋯,0.1030030003,-,-21(1)2-,中无理数有x 个,有理数有y 个,非负数有z 个,则x +y +z 等于( ) A :12 B :13 C :14 D :15 7、下列判断正确的是( )A :若x y =,则x y =B :若x y <,则x y <C :若2()x y =,则x y =D :若x y =,则33x y =8、如图: ,那么2()a b a b -++ 的结果是( ) A :-2b B :2b C :―2a D :2a 9、若2x <则,化简2(2)3x x -+-=( )A :-1B :1C :25x -D :52x -10、有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。

其中错误的是( )A :①②③B :①②④C :②③④D :①③④某某班级二、填空题(每小题4分,共40分) 11、719的平方根是,25的算术平方根是;12的平方根是±3,则a=;13的平方根是,的立方根是,14、2的相反数是,的倒数是15=x +y=2=;16a ,则小数部分为;17且0ab <,则a -b=;18、如果一个数的平方根是3+a 和152-a ,则这个数为;19的整数是;20、若y =20082008y x +=; 三、解答题(共70分)21、计算(每小题5分,共10分)(1)2 (2)22、求下列各式中的x 的值(每小题5分,共10分)。

实数(单元测试基础卷)-2023-2024学年八年级数学上册基础知识专项突破讲与练(北师大版)

第2章实数(单元测试·基础卷)【要点回顾】【要点1】平方根、立方根1.平方根定义一般地,如果一个正数x的平方根等于a,即:2,x a=那么这个正数x就叫做a的算术平方根,记作a”;2.立方根定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.【要点2】二次根式的相关概念和性质1.二次根式0)a≥的式子叫做二次根式叫做二次根式.2.二次根式的性质(1);(2);(3).3最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足这两个条件的二次根式,叫做最简二次根式.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.【要点3】二次根式的运算1.乘除法法测0;0)(0,0)a b a b=≥≥≥>2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.一、单选题(本大题共10小题,每小题3分,共30分)1.下列各数中,属于无理数的是()A.17B.1.414C D.32.下列二次根式中,是最简二次根式的是()AB C D3)A .1至1.5之间B .1.5至2之间C .2至2.5之间D .2.5至3之间4合并的是()A B C D5.下列说法错误的是()A .1的平方根是1B .1-的立方根是1-C是2的平方根D .2-是4的平方根6.下列运算正确的是()A2=B .4=C =D 4=7的平方根为()A .2B .2±C .4D .4±8.已知,24m -与31m -是同一个数的平方根,则m 的值是()A .3-B .1C .3-或1D .1-9.已知23.512.25=,23.612.96=,23.713.69=,23.814.44=0.1的近似值是()A .3.5B .3.6C .3.7D .3.810.以单位长度为边长画一个正方形,以顶点A 为圆心、对角线长为半径画弧,与数轴的交点为C (点C 在点B 左侧),再以顶点B 为圆心,对角线长为半径画弧,与数轴的交点为D (点D 在点A 右侧),已知正方形两条对角线相等,设点C 在数轴上表示的数是a ,则点D 在数轴上表示的数是()A .1a +B .1aC .2a +D .1二、填空题(本大题共8小题,每小题4分,共32分)11.1的绝对值是.12a 的取值范围为.13=.140=,则y x =.15.已知3x =,则代数式()()23231x x ---+的值为.16.如图,在原点为O 的数轴上,作一个两直角边长分别是1和2,斜边为OB 的直角三角形,点A 在点O 左边的数轴上,且OA OB =,则点A 表示的实数是.17.(1)若a b +=()2a b +的值为.(2)如下是按规律排列的一列单项式:2345,,2x x -,…则第10个单项式是.18.【动手实践】小明学习了《数学》第63页的“实验与探究”后做了如下探索:他按图1方法把边长为5厘米和3厘米的两个正方形切割成5块,按图2方式拼成的一个大正方形,则大正方形的边长是厘米.三、解答题(本大题共6小题,共58分)19.(8分)(10(3)|32|π---+;(2)2118844-⨯-÷20.(8分)求代数式a 10a =.如图是小明和小颖的解答过程:(1)填空:_______________的解法是错误的;(2)求代数式a +2023a =-.21.(10分)解答下列问题.(1)已知x =,y =22x xy y ++.(2)已知实数x ,y 满足3y =22.(10分)观察下列等式:=;2=;34;==;5……(1)请你按上述规律写出第5个等式:_______;(2)用含字母n(n为正整数)的等式表示这一规律,并给出证明.23.(10分)如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为22cm,则此正方形的边长BC的长为cm,对角线AC的长为cm;(2)如图2,若正方形纸片的面积为212cm的长方16cm,李明同学想沿这块正方形边的方向裁出一块面积为2形纸片,使它的长和宽之比为32:,他能裁出吗?请说明理由.24.(12分)阅读下列材料,然后回答问题:方法一1===+方法二1=【探究】选择恰当的方法计算下列各式:(1;(2.++L =.参考答案1.C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项..故选:C.【点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯⋯,等有这样规律的数.2.A【分析】根据被开方数中不含分母,不含能开得尽方的因数或因式即为最简二次根式,根据最简二次根式的定义依次判断即可.【详解】解:=不是最简二次根式,不符合题意;==不是最简二次根式,不符合题意.故选:A.【点拨】本题考查了最简二次根式的定义,熟记定义是解题的关键.3.B【分析】根据二次根式的乘法,可化简二次根式,根据2.25,3,4的关系,可得答案.,1.52,故选:B.【点拨】本题考查了估算无理数的大小,先化简二次根式,再比较二次根式的大小.4.D【分析】把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,由此即可判断.【详解】解:A=,故A不符合题意;B=,故B不符合题意;CC不符合题意;=DD符合题意.故选:D.【点拨】本题考查的是同类二次根式的含义,熟记同类二次根式的定义是解本题的关键.5.A【分析】根据平方根与立方根的定义逐项分析判断即可求解.【详解】解:A.1的平方根是1±,故该选项不正确,符合题意;B.1-的立方根是1-,故该选项正确,不符合题意;C.2的平方根,故该选项正确,不符合题意;D.2-是4的一个平方根,故该选项正确,不符合题意;故选:A.【点拨】本题考查了平方根、立方根的定义,熟练掌握平方根、立方根的定义是解题的关键.平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a,那么这个数叫做a的立方根.6.C【分析】根据二次根式的性质和运算法则对各选项逐一进行判断即可.【详解】AB、根据二次根式计算法则,同类二次根式相减时,系数相减,应该为=意;C、根据二次根式乘法法则,计算正确,符合题意;D===,不符合题意;2故选C.【点拨】本题考查二次根式的四则运算,解决本题的关键是熟悉二次根式计算法则.7.B4=,再求4的平方根即可.4=,∴4平方根为2故选B.【点拨】本题考查了求立方根,平方根,熟练掌握求根的基本方法是解题的关键.8.C【分析】依据平方根的性质列方程求解即可.【详解】解:当2431m m -=-时,3m =-;当24310m m -+-=时,1m =;综上分析可得:3m =-或1m =,故C 正确.故选:C .【点拨】本题主要考查了平方根的性质,明确24m -与31m -相等或互为相反数是解题的关键.9.B【详解】解:223.612.961313.69 3.7=<<= ,3.6 3.7∴<<,23.612.9613=≈ ,23.713.6914=≈,精确到0.1的近似值是3.6,故选B .【点拨】本题考查了无理数的估算,熟练掌握估算方法是解题关键.10.A【分析】由勾股定理求出AM 的长,从而可求出CD 的长,由C 在数轴上表示的数是a ,即可得到点D 在数轴上表示的数.【详解】解:由题意知1AB =,四边形ABMN 是正方形,90ABM ∴∠=︒,AM BN =,AC AM = ,BD BN =,AC BD ∴=,AM ==Q AC BD ∴==1CD AC BD AB ∴=+-=,点C 在数轴上表示的数是a ,∴点D 在数轴上表示的数是1a +.故选:A .【点拨】本题考查勾股定理,实数与数轴,关键是由勾股定理求出CD 的长.1151【分析】直接利用绝对值的性质得出答案.51>,∴1551.51.【点拨】此题主要考查了实数的性质,正确掌握绝对值的性质是解题关键.12.4a ≤【分析】利用被开方数的非负性即可求解.【详解】解:∵40a -≥,∴4a ≤,故答案为:4a ≤.【点拨】本题考查了二次根式的被开方数的非负性,掌握二次根式的被开方数大于等于零是解题关键.1331-【分析】进行分母有理化运算即可.()()131********--=++-.31-【点拨】此题考查分母有理化运算,掌握分母有理化是解题的关键.14.19【分析】由非负数的性质可得3x =,=2y -,再代入求值即可.320x y -+=,∴30x -=,20y +=,解得:3x =,=2y -,∴2139y x -==,故答案为:19.【点拨】本题考查的是算术平方根的非负性的应用,负整数指数幂的含义,利用非负数的性质求解3x =,=2y -是解本题的关键.15.3-【分析】直接把3x =代入代数式求值即可.【详解】解:把3x =代入代数式得:()()23231x x ---+()()2332331=-++21=-3=-故答案为:3-【点拨】本题考查的是代数式的求值,同时考查了二次根式的平方运算,掌握以上知识是解题的关键.16.【分析】根据勾股定理求出直角三角形斜边OB 的长度,也就求出了OA 的长,结合图中点A 的位置确定点A 表示的数.【详解】解:由题知,在直角三角形中,根据勾股定理得,直角三角形的斜边OB ==,则OA OB ==,∵如图,点A 是以原点O∴点A 表示的数为故答案为:【点拨】本题考查了实数与数轴,根据勾股定理确定斜边的长度,即确定OA 的长度是解答本题的关键.17.310【分析】(1)根据实数的运算法则进行计算即可求解;(2),字母都为x ,指数的规律为对应的序号,系数的符号奇数个时为正,偶数个时为负,乘以()11n +-即可求解.【详解】解:(1)∵a b +=,∴()2a b +3=故答案为:3;(2)2345,,2x x -,…∴第n 个单项式为()11n n +-,∴第10个单项式是10.故答案为:10.【点拨】本题考查了实数的计算,单项式规律,掌握实数的运算法则以及找到单项式的规律是解题的关键.18【分析】先求解边长为5厘米和3厘米的两个正方形的面积之和为34,可得大正方形的面积为34,从而可得答案.【详解】解:由题意可得:边长为5厘米和3厘米的两个正方形的面积之和为225325934+=+=,∴拼成的大正方形的面积为34,【点拨】本题考查的是等面积法的应用,算术平方根的应用,理解拼接前后的面积不变是解本题的关键.19.(1)3;(2)4【分析】(1)利用平方根的性质化简,再结合零指数幂的性质以及绝对值的性质化简即可求出答案.(2)利用平方根的性质化简,再根据实数的运算法则即可解答.【详解】解:(10(3)|32|π----+原式51|1|=---511=--3=(2)2118844-⨯-+÷原式1188442=-⨯-⨯+⨯8416=--+4=【点拨】本题主要考查了实数的运算,熟练掌握运算法则是解此题的关键.20.(1)小明(2)2029【分析】(1)由于当10a =11a a =-=-,由此可知小明的解法是错误的;(2)仿照题意中小颖的解法求解即可.【详解】(1)解:由题意得,小明的解法是错误的,因为小明在化简二次根式的时候没有注意符号问题,当10a =11a a =-=-,故答案为:小明(2)解:a +a =+23a a =+-,当2023a =-时,30a -<,∴原式()236620232029a a a =+-=-=+=.a =是解题的关键.21.(1)19;(2).【分析】(1)先把x 、y 分母有理化,求出x+y 与xy ,再将原式配方后,整体代入计算即可,(2)利用二次根式被开方数有意义,求出x ,y【详解】(1)2x ===,2y ===.22x y ∴+=-=,)22541x y ⋅==-=,()(2222119x xy y x y xy ∴++=+-=-=.(2)3y = ,2020x x -≥⎧∴⎨-≥⎩,2x ∴=,3y ∴=,6==,∴6的平方根为.【点拨】本题考查二次根式的条件求值问题,掌握二次根式的条件求值方法,会分母有理化,会利用被开方数有意义求字母的值是解题关键.22.61n +,证明见解析【分析】(1)根据所给式子的形式进行求解;(2)根据所给式子的形式不难看出式子的值与序号之间的关系:第n 1n +.【详解】(12;3=;4;5==;……∴第56,6=;(2)解:第n 1n +,==1n =+,∵n 为正整数,1n +.【点拨】本题考查了规律型:数字的变化类,掌握将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式是解题关键.23.2(2)他不能裁出,理由见解析【分析】(1)由正方形面积,确定出正方形边长,即可利用勾股定理确定正方形的对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】(1)解:∵正方形纸片的面积为22cm ,∴此正方形的边长BC∴正方形的对角线长AC 为:2cm AC ==,,2.(2)解:他不能裁出,理由如下:根据题意设长方形的长和宽分别为3cm x 和2cm x .∴2312x x ⋅=,解得:x∴长方形的长为.∵正方形的面积为216cm ,∴正方形的边长为4cm ,∵1816>,∴4>,∴他不能裁出.【点拨】本题考查了二次根式和算术平方根在长方形和正方形面积中的应用,勾股定理,灵活的进行二次根式和算术计算及无理数大小比较是解题的关键.24.(11(21+(3【分析】(1)利用分母有理化计算;(2)先分别分母有理化,然后合并即可;(3)猜想部分与(2)计算一样,利用规律即可求解.【详解】(11===(211(3++L=11...2+=(112=12.故答案为12.【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.。

苏教版数学八年级上册第4章《实数》检测卷(含答案)

八年级上册第4章《实数》检测卷满分120分姓名:___________班级:___________学号:___________一.选择题(共8小题,满分24分,每小题3分)1.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个2.以下说法正确的是()A.两个无理数之和一定是无理数B.带根号的数都是无理数C.无理数都是无限小数D.所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数.3.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052 B.0.005 C.0.0051 D.0.00519 4.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应5.a2的算术平方根是2,则a的值为()A.±2 B.2 C.4 D.±4 6.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9 7.实数a、b、c满足a<b且ac>bc,它们在数轴上的对应点的位置可以是()A.B.C.D.8.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7二.填空题(共8小题,满分32分,每小题4分)9.实数81的平方根是.10.计算:=.11.比较2和大小:2 (填“>”、“<“或“=”).12.一个正数的两个平方根是a﹣4和3,则a=.13.将1299万取近似值保留三位有效数字为,该近似数精确到位.14.若的整数部分为a,小数部分为b,则a﹣b=.15.若+|b+1|=0,则(a+b)2020=.16.对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.三.解答题(共8小题,满分64分)17.(6分)计算:.18.(8分)求下列各式中x的值:(1)25x2﹣36=0;(2)x3﹣3=;19.(6分)已知2a﹣1的一个平方根是3,3a+b﹣1的一个平方根是﹣4,求a+2b的平方根.20.(8分)阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:21.(8分)车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?22.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.23.(10分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i+1=3+i;i3=i2×i=﹣1×i=﹣ii4=i2×i2=﹣1×(﹣1)=1根据以上信息,完成下列问题:(1)填空:3i3=;(2)计算:(1+i)×(3﹣4i)+i5;(3)计算:i+i2+i3+i4+ (i2022)24.(10分)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.2.解:A、两个无理数之和一定是无理数,错误,例如+(﹣)=0;B、带根号的数都是无理数,错误,例如;C、无理数都是无限小数,正确;D、所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数,错误,实数与数轴上的点一一对应.故选:C.3.解:0.00519精确到千分位的近似数是0.005.故选:B.4.解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA=1,OC=2,则OB =,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.5.解:∵a2的算术平方根是2,∴a2=4,则a=±2,故选:A.6.解:∵≈2.646,∴与最接近的是2.6,故选:B.7.解:A由图可知,因为a>b,不符合题意,所以A选项不正确;B由图可知,因为a<b<0,c<0,根据不等式的性质ac>bc,所以B选项正确;C由图可知,因为a<b<0,c>0,根据不等式的性质ac<bc,所以C选项不正确;D由图可知,因为a>b,不符合题意,所以D选项不正确.故选:B.8.解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.二.填空题(共8小题,满分32分,每小题4分)9.解:实数81的平方根是:±=±9.故答案为:±9.10.解:=﹣0.1.故答案为:﹣0.1.11.解:∵1<3<4,∴<<,∴1<<2,∴2>,故答案为:>.12.结:由题意得a﹣4+3=0,解得a=1,故答案为1.13.解:根据分析得:将1 299万取近似值保留三位有效数字为1.30×107,该近似数精确到十万位.14.解:∵92<93<102,∴,∴a=9,b=,∴a﹣b=9﹣()=18﹣.故答案为:18﹣.15.解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.16.解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.三.解答题(共8小题,满分64分)17.解:=5﹣1+2+(﹣4)=2.18.解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:x3=,开立方得:x=.19.解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.20.解:根据题意,在数轴上分别表示各数如下:∴.21.解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.22.解:(1)由题意A点和B点的距离为2,A点的坐标为,因此B点坐标m=2.(2)把m的值代入得:|m﹣1|+m+6=|2﹣1|+2﹣+6,=|1|+8﹣,=﹣1+8﹣,=7.23.解:(1)3i3=3×i×(﹣1)=﹣3i,故答案为﹣3i;(2)原式=3﹣4i+3i﹣4i2=3﹣i﹣4×(﹣1)=3﹣i+4=7﹣i;(3)原式=[i+(﹣1)+i×(﹣1)+1]×505+(﹣1)=0+(﹣1)=﹣1.24.解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11;(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN=EH,则N 表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣9|=|7﹣3x|,∴4x﹣9=7﹣3x,或4x﹣9=3x﹣7,∴x=,或x=2,∴x=秒或x=2秒时,OM=ON;(3)∵在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,两个长方形重叠部分的面积为6,∴重叠部分的的长方形的长为3,∴①当点D运动到E点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(DE+3)÷2=(12+3)÷2=(秒),②当点A运动到H点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(AD+DE+EH﹣3)÷2=(4+12+8﹣3)÷2=(秒),综上,长方形ABCD运动的时间为秒或秒.。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(上)实数整章测试(A )
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、填空题(每题2分,共32分)
1.若零上5℃记作 +5℃,则零下3℃记作 。

2.
53的相反数是__ __,53的倒数是 ,5
3
的绝对值是 ; 3.用科学记数法表示:570000=_____ ;
4.1
21-⎪⎭

⎝⎛-= ,21-的倒数是 ,|1-2| = ;
5.8-的立方根是 ,2的平方根是 ; 6.写出一个3到4之间的无理数 .
7.近似数1999.9保留三个有效数字,用科学计数法表示为_______________; 8.364
37
1-
的平方根是_______ ; 9.如果0)12(322
=-++y x ,那么2001)(y x += 。

10.若0)1(1=-+n n ,则n
)1(-= 。

11.如果a =5,b =3,比较大小:b
a a
b 12.计算:3
1515
)2(125.0⋅= 。

13.若0<a <1,则a 2,a ,
a
1
之间的大小关系是 。

14.实数P 在数轴上的位置如图1所示,
化简=-+
-22
)2()1(p p ______________。

15.用“
”、“”定义新运算:对于任意实数a 、b ,都有a b =a 和a
b =b ,例如
3
2=3,3
2=2.则(2009
2008)
(2007
2006)=_______________.
16.观察下列等式,21 ×2 = 21 +2,32 ×3 = 32 +3,43 ×4 = 43 +4,54 ×5 = 5
4
+5
ͼ1
12
第14题图
设n 表示正整数,用关于n 的等式表示这个规律为_______ ____;
二、解答题(共68分)
17.(8分)计算: (1)6195.3645.1181876597÷+⨯-⨯⎪⎭

⎝⎛+-
(2)3
1
11132131512÷⨯⎪⎭⎫ ⎝⎛-⨯
18.(5分)化简:123
1
27+-.
19.(5分)先化简,再求值:)1()1(2---a a a ,其中12-=a 。

20.(5分)已知2a-1的平方根是±3,4是3a+b-1的算术平方根,求a+2b 的值。

21.(5分)若│x-1│x
y
的值。

22.(5分)设x、y,试求x、y的值与x-1的算术平方根。

23.(5分)如图所示,正方形网格中的每个小正方形边长都是1,每个小格顶点为格点,
以格点为顶点按要求画一个三角形,使三角形的三边分别为3、22、5。

24.(6分)如图,一根旗杆在其
3
1
的B 处折断(即AB 是旗杆高度的三分之一),量得AC=6m ,则旗杆原来的高度是多少?
25.(6分)阅读下列解题过程: (1)
(
)(
)()()
2545454
54
54
5)45(14
512
2
-=-=--=
-+-⨯=
+;
(2)
(
)(
)
565
65
6)56(15
61-=-+-⨯=
+;
请回答下列问题:
(1)观察上面解题过程,请直接写出
1
1-+n n 的结果为__________________。

(2)利用上面所提供的解法,请化简:
100
991
99981......431321211+++++++++。

26.(6分)(1)观察:
211=
2231=+ 23531=++
……
可得)12(531-+⋅⋅⋅+++n = 。

如果361531=+⋅⋅⋅+++x ,则奇数x 的值为 。

(2)观察式子:2
2
)31(31⨯+=
+; 2
3
)51(531⨯+=
++; 2
4
)71(7531⨯+=+++
……
按此规律计算13572009++++⋅⋅⋅+= 。

27.(6分)如图,OA ⊥OB ,OA =45㎝,OB =15㎝,一机器人在点B 处发现有一个
小球自A 点出发沿着AO 方向匀速滚向点O ,机器人立即从B 处出发以相同的速度匀速直线前进去拦截小球,在点C 处截住了小球,求机器人行走的路程BC 。

B
28.(6分)探究数字黑洞:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来。

无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数通过一种运算,都能被它“吸”进去,无一能逃脱它的摩掌。

臂如:任意找一个3的倍数的数,先把这个数的每个数位上的数字都立方,再相加得到一个新数,然后把这个新数的每个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数T=,我们称它为数字“黑洞”,T为何具有如此魔力?通过认真观察、分析、,你一定能发现它的奥秘。

26.(1)2n、37;(2)
28.T=153。

相关文档
最新文档