解一元一次方程过程中的“五心”
7年级-上册-数学-第5章《一元一次方程》分节知识点

浙教版-7年级-上册-数学-第5章《一元一次方程》分节知识点一、方程及等式1、定义:含有未知数的等式叫做方程.要点诠释:(1)判断一个式子是不是方程,只需看两点:一是等式;二是含有未知数.2、方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:(1)判断一个数(或一组数)是否是某方程的解,只需看两点:①它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它(或它们)是方程的解,否则不是.3、解方程:求方程的解的过程叫做解方程.4、方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).5、建立方程:把所要求的量用字母x(或y,…)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程。
要点二、一元一次方程的有关概念1、定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①是一个方程;②必须只含有一个未知数;③含有未知数的项的最高次数是1;④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是常数).(3)一元一次方程的最简形式是:ax=b(其中a≠0,a,b是常数).要点三、等式的性质1、等式的概念:用符号“=”来表示相等关系的式子叫做等式.2、等式的性质:(1)等式的性质1:等式两边加(或减)同一个数(或式子),所得结果仍是等式.即:如果,那么(c为一个数或一个式子).(2)等式的性质2:等式两边都乘(或除以)同一个数(或式子),(除数或除式不能为0),所得结果仍是等式.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(2)移项要变号(2)不要丢项合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变两边同除以未知数的系数(系数化成1)在方程两边都除以未知数的系数a,得到方程的解.不要把分子、分母写颠倒要点诠释:(1)移项的定义:把方程中的项改变符合后,从方程的一边移到另一边,这种变形叫做移项.(2)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(3)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(4)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1、含绝对值的一元一次方程(1)解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,然后分类讨论:(1)当时,无解;(2)当时,原方程化为:;(3)当时,原方程可化为:或.2、含字母的一元一次方程:此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)知识点一、用一元一次方程解决实际问题的一般步骤1、列方程解应用题的基本思路为:问题方程解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1、和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2、行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ、基本量及关系:相遇路程=速度和×相遇时间;Ⅱ、寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ、基本量及关系:追及路程=速度差×追及时间;Ⅱ、寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ、基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ、寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3、工程问题:如果题目没有明确指明总工作量,一般把总工作量设为1。
北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

第五章《一元一次方程》期末复习基础知识梳理一、主要概念1.方程的概念:含有未知数的等式叫方程.2.一元一次方程的概念:只含有一个未知数,未知数的指数是1,这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.4.解方程:求方程的解的过程叫做解方程.5.同类项:如果两项所含字母相同,并且相同字母的指数也相同,那么这样的两项叫做同类项.二、主要性质1.等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并同类项法则同类项相加(减),把它们的系数相加(减)作为结果的系数,字母部分不变.3.去括号法则(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.三、解一元一次方程的注意事项1.分母是小数时,根据分数的基本性质,分子、分母都扩大相同的倍数,把分母转化成整数,此时和不含分母的项无关,不要和去分母相混淆.2.去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号.3.去括号时,不要漏乘括号内的项,要依据法则,不要弄错符号.4.移项时切记要变号,不要丢项,另外合并同类项和移项要灵活运用,如:有时去括号后等号的某一边或两边有同类项,可先合并,再移项,以免丢项.5.系数化为1时,不要弄错符号,分子、分母不要颠倒.6.不要生搬硬套解方程的步骤,要根据具体题目灵活运用,以便找到一个最简便的解法.四、列一元一次方程解决实际问题的步骤1.审:审题,多读几次,理清题中各量之间的关系.2.设:把题中某个未知数用字母代替,有时直接设元,有时间接设元.为了比较容易列方程或列出的方程比较简单易解,不直接把题目的问题设成未知数,而间接地把和题目中要求的问题有关的量设成未知数,即间接设元.3.找:把已知数和未知数放在一起找出一个相等的关系,有时可借助图形来找相等关系.4.列:根据等量关系列出方程.5.解:求出方程的解.6.验:检验方程的解是否符合问题的实际意义.7.答:写出答案(包括单位)巩固练习一、选择题:1. 下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x xD.由7)1(2+=+x x 移项、合并同类项得x =52.方程2-2x 4x 7312--=-去分母得( )。
一元一次方程的解法有哪些方法和技巧

一元一次方程的解法有哪些方法和技巧一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程的解法两个一元一次方程的解,就是所求一元二次方程的解。
或:首先是分解因式法,看能否分解成(x-a)(x-b)=0。
如果能,解就是a和b。
其次,如果不能分解因式,那么用公式。
ax^2+bx+c=0。
x=[-b+√(b^2-4ac)]/(2a)和x=[-b-√(b^2-4ac)]/(2a)。
一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。
一般情况下,一元二次方程的解也称为一元二次方程的根,只含有一个未知数的方程的解也叫做这个方程的根。
等号左边是一个数的平方的形式而等号右边是一个常数。
降次的实质是由一个一元二次方程转化为两个一元一次方程。
1、方法是根据平方根的意义开平方。
去分母:在方程的两边都乘以分母的最小公倍数,注:不要漏乘分母为1的项,分母是个整体,含有多项式时要加上括号。
2、去括号:一般地,先去小括号,再去中括号,最后去大括号,注:不要漏乘括号里的项,不要弄错符号。
3、移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。
注:移项要变号,不要丢项。
4、合并同类项:把方程化成ax=b的形式。
注:字母和其指数不变。
5、系数化成1:在方程的两边都除以未知数的系数a,(a≠0),得到方程的解x=。
注:不要把分子、分母位置颠倒。
解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧:整体思想、换元法、裂项、拆添项等。
当方程中的系数用字母表示时,这样的方程叫做含有字母系数的方程,也叫含参数的方程。
用因式分解法解一元二次方程:一、将方程右边化为(0)。
二、方程左边分解为(两个)因式的乘积。
三、令每个一次式分别为(0)得到两个一元一次方程。
浙教版数学七年级上册第五单元一元一次方程知识点+例题

知识点一 方程的概念 含有未知数的等式叫方程方程必须具备两个条件 一是等式,二是含有未知数注意:方程中的未知数可以用x 表示,也可以用其他字母表示,方程中的未知数的个数不一定是一个,可以是两个或两个以上。
知识点二 解方程和方程的解1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2解方程是一个过程,方程的解是一个结果。
3检验一个数是不是方程的解,只需要将这个数代入原方程即可。
若方程两边相等,则这个数是方程的解,反之则不是。
例2 x=5方程23)36(3)42(=-++x x 的解吗?解:将x=5代入原方程,两边成立,所以,x=5是原方程的解。
解一元一次方程的一般步骤(重点)解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用。
解含分数系数的一元一次方程的一般步骤总结如下表:注意(1)解一元一次方程时,应灵活运用一般步骤中的各种做法,采取哪些步骤要看解什么样的方程,有分母则去分母,有括号就去括号(2)解一元一次方程时,不一定是按照上表中自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤. 解方程2.04.05.05.15.05.0-x 2.0x+=+ 知识点三 一元一次方程的特点一元一次方程的定义:只有一个未知数,未知数的次数都是1的方程。
特点:1只有一个未知数; 2未知数的次数是1;3可带分母,但分母不能带有未知数。
如421=-x 就不是一元一次方程。
例3下列各式哪些是一元一次方程?①56-1=55;②2x+6=0;③6x=0;④8y-3=12;⑤0532=+-x x ;⑥2x 十5z=23;⑦11-x 22x 1=++例4已知43654=+-n x 是一元一次方程,求n 的值。
【变式2】若关于的方程是一元一次方程,则_______【变式3】若关于的方程()523=+--mx x m m 是一元一次方程,则_______. 【变式4】若关于的方程()5)2()2(22=+++-x m x m m 是一元一次方程,则_______.知识点四 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
一元一次方程知识点总结_学习总结_

一元一次方程知识点总结一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1. 和、差、倍、分问题:增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 )常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=16.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7. 商品销售问题(1)商品利润率=商品利润/商品成本×100%(2)商品销售额=商品销售价×商品销售量(3)商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价8. 储蓄问题⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵ 利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息/本金×100%。
一元一次方程知识点总结

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
人教版 数学 七年级 上册 第三单元 一元一次方程 知识点
人教版 数学 七年级 上册 第三单元 一元一次方程知识点3.1 从算式到方程(1)方程:含未知数的等式;(2)一元一次方程:只含一个未知数(元)且未知数的次数都是1的方程;标准式:ax+b=0(x 是未知数;a 、b 是已知数;且a ≠0);(3)方程的解:使方程等号左右两边相等的未知数的值;(4)等式的性质1:等式两边加(或减)同一个数(或式子);结果仍相等;如果a=b ;那么a ±c=b ±c;等式的性质2:等式两边乘同一个数;或除以同一个不为0的数;结果仍相等; 如果a=b ;那么ac=bc;如果a=b ;c ≠0;那么cb c a =; 3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母(1)合并同类项:把含x 的项合并在一起;(2)移项:把等式一边的某项变号反移到另一边;(3)一元一次方程解法的一般步骤:去分母----------两边同乘最简公分母去括号----------注意符号变化移项----------注意要变号合并同类项--------合并后注意符号系数化为1---------等式右边除以x 的系数3.4实际问题与一元一次方程(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系;“工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;(2)列一元一次方程解应用题:①读题分析法: 多用于“和;差;倍;分问题”仔细读题;找出表示相等关系的关键字;例如:“大;小;多;少;是;共;合;为;完成;增加;减少;配套……”;利用这些关键字列出文字等式;并且据题意设出未知数;最后利用题目中的量与量的关系填入代数式;得到方程.②画图分析法: 多用于“行程问题”仔细读题;依照题意画出有关图形;使图形各部分具有特定的含义;通过图形找相等关系是解决问题的关键;从而取得列方程的依据;最后利用量与量之间的关系(可把未知数看做已知量);填入有关的代数式是获得方程的基础.(3)列方程常用公式1.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距2.工程问题:工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1工程问题常用等量关系:先做的+后做的=完成量3.顺水逆水问题:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度;抓住两码头间距离不变;水流速和船速(静不速)不变的特点考虑相等关系. 顺水逆水问题常用等量关系: 顺水路程=逆水路程4.商品利润问题: 售价=定价 ; %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润商品销售额=商品销售价×商品销售量商品的销售利润=(销售价-成本价)×销售量商品打几折出售;就是按原价的百分之几十出售;如商品打8折出售;即按原价的80%出售.5.若干应用问题等量关系的规律(1)和、差、倍、分问题 此类题既可有示运算关系;又可表示相等关系;要结合题意特别注意题目中的关键词语的含义;如相等、和差、几倍、几分之 几、多、少、快、慢等;它们能指导我们正确地列出代数式或方程式。
精编北师大版七年级数学上册第五章一元一次方程5.2 求解一元一次方程(3课时)PPT课件
5.2 求解一元一次方程 (第1课时)
导入新知
约公元825年,中亚细亚 数学家阿尔—花拉子米写了 一本代数书,重点论述了怎 么解方程.这本书的拉丁译本 为《对消与还原》,“对消” 与“还原”是什么意思呢?
素养目标
2. 会用移项、合并同类项解ax+b=cx+d型的方 程.
巩固练习
5.2 求解一元一次方程/
变式训练
解方程:(1)2(x+0.5)+2x=45;(2)要解这两个方程可按去括号法则先将括号去掉,
然后按照移项法则移项,合并同类项,将未知数的系
数化为1,要注意符号问题.
解:(1)去括号,得 2x+1+2x=45.
移项,得 2x+2x=45-1.
探究新知
易错警示 1.移项时必须是从等号的一边到另一边,并且不要忘记对 移动的项变号,如从2+5x=7得到5x=7+2是不对的.
2.没移项时不要误认为移项,如从-8=x得到x=8,犯这 样的错误,其原因在于对等式的基本性质(对称性)与移项 的区别没有分清.
巩固练习
变式训练
下面的移项对不对?如果不对,应怎样改正? (1)5+x=10移项得x= 10+5 ; 10-5 × (2)6x=2x+8移项得 6x+2x =8;6x-2x × (3)5-2x=4-3x移项得3x-2x=4-5;√ (4)-2x+7=1-8x移项得-2x+8x=1-7.√
合并同类项,得-x=14,
系数化为1,得x=-14.
探究新知
5.2 求解一元一次方程/
交流探究 观察下面的方程,结合去括号法则,你能求 得它的解吗?
4 ( x+0.5 ) +x= 10-3
方程的左边有带括 号的式子,可以尝 试去括号!赶快动 手试一试吧!
一元一次方程的解法初中数学解题技巧
一元一次方程的解法初中数学解题技巧解一元一次方程的基本步骤1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。
一元一次方程介绍一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程解题技巧无括号、无分母类型解题步骤1.移项(未知数移到等号的左边,数字移到等号的右边,移项之前先变符号)2.合并同类项(俗称"找朋友")3.化未知数系数为1(注意两边同时乘除同一个数以及符号是否需要变化)有括号类型解题步骤1.去括号2.移项3.合并同类项4.化未知数系数为1有分母类型解题步骤1.去括号2.移项3.合并同类项4.化未知数系数为1数学一元一次方程拓展资料一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
七年级上册数学《一元一次方程》知识点整理
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行 2)当括号内含有分数时,常由外向内先去括号,再去分母 3)当分母中含有小数时,可用分数的基本性质化成整数 4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2)根据数量关系与解题需要设出未知数,建立方程; 3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题; 4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形; 8)优化方案问题9)浓度问题:溶液×浓度=溶质 10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解一元一次方程过程中的“五心”
方程是表示现实世界中一类具有等量关系问题的重要数学模型,是解决问题的重要工具之一,它既与现实生活密切联系,又贯穿于整个初中阶段的数学学习,它在义务教育阶段的数学课程中占有重要地位.
“一元一次方程”是继“有理数”、“整式”两个单元后对“数与代数”领域的进一步探索,方程是代数学的核心内容,而一元一次方程是最简单的代数方程,也是所有代数方程的基础,其中一元一次方程的解法是二元一次方程组、一元二次方程的解法的基础,与一元一次不等式(组)和函数的学习也有密切的联系,同时也是学习物理、化学及其他科学技术不可缺少的数学工具.
著名的荷兰数学教育家弗赖登塔尔说过:“与其说学习数学,倒不如说学习‘数学化’” . 方程就是将众多实际问题“数学化”的一个重要模型,为了使学生牢固掌握解方程的方法,体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列出方程,然后尝试主动探究方程的解法.并通过练习归纳掌握解方程的基本步骤和技能.在解决问题的过程中,使学生了解到数学的价值,发展“用数学”的信心,提高学生的数学素养.
学生在学习解一元一次方程的过程中,由于对等式的性质、分
数的性质等知识的理解存在缺陷,加上不良的学习习惯,导致解方程过程中出现各种类型的错误,常见的错误有:
(1)解方程时连等.如解方程x-5=8,解:x-5
=8=x=8+5=x=13.
(2)忽视分数线的括号作用.如解方程■-■=1,解:去分母,得2(2y+1)-4y-1=6.
(3)混淆分数的性质与等式的性质. 如解方程■ - ■ = 1.2. 解:原方程化为■ - ■ = 12.
(4)移项没有变号.
(5)系数化成1时错写分子、分母的位置.
(6)去括号时没有遵循去括号法则.
(7)去分母时,漏乘没有分母的项.
解一元一次方程的过程一般分成五个步骤,去分母、去括号、移项、合并同类项、系数化为1. 解一元一次方程时,根据方程的具体特点,可以灵活采用这五个步骤中的几个步骤去解方程,但对于初学方程的初一学生,教师应要求他们先掌握基本的解一元一次方程的方法和步骤,这样有助于学生形成良好的解题习惯. 在具体的教案过程中,采用什么方式将数学知识和解题方法传授给学生,才能使学生容易理解和接受,并能在学习和应用数学知识的过程中感受到学习数学的乐趣,从而提高学习数学的积极性和主动性,是我们数学教师在备课、上课和课后经常要思考的主要问题.
幽默的语言、生动有趣的故事都是提高学生学习数学的兴趣、集中学生注意力的有效工具,简单的口诀也有助于学生将抽象的知识生活化,从而加深对知识的理解和掌握. 笔者在解一元一次方程的教案过程中针对学生普遍存在的上述几种常见错误,为了帮助学生理解、掌握解一元一次方程的步骤和方法,改正解题过程中可能出现的错误,将解一元一次方程的五个步骤的注意事项归纳成简单易记、形象生动的“五心”口诀,使学生在学习解方程的过程中,感觉到学习数学也是一件开心的事情.
一、去分母要有“爱心”
学生在解含有分母的一元一次方程时,去分母经常会忽略没有分母的项,如解方程■ - 2 = ■,去分母,得3(x-3)-2=2(2x+1).我便以开玩笑的方式告诉他们:没有分母的项就好像没有母亲的孤儿,你们要多关心它们,对它们要有更多的“爱心”. 并在学生作业中做错的地方批示“要有爱心”. 学生之间也会将犯这种错误的同学戏称为“没爱心的人”. 学生出错的情况得到明显的改善.
二、去括号不要“偏心”
学生解含有括号的一元一次方程时,去括号时常漏乘后面的项,如解方程3(x-3)-12=2(2x+1),去括号,得3x-3-12=4x+1. 我采用打比喻的方式告诉学生:括号内前面的项就好像你的同桌好友,后面的项就好像其他邻桌的同学,派发礼物时,不要“偏心”,不能只
派给同桌好友,要与其他同学一起分享你的快乐.
三、移项要“变心”
为了帮助学生记住移项时,移动到方程另一边的项要改变符号这个知识点,将这个过程戏称为“变心”过程,学生自然会联想到生活中的“变心”,便会在会心一笑的同时记住这个要点. 四、合并同类项要“细心”
合并同类项过程中,学生会出现漏项、计算错误、符号错误等情况,我便告诫学生,在这个过程中,先在同类项的下面作好不同的标记,分清“敌我”,不要放过任何一个“怀疑对象”,“正面人物”(系数为正的项)放在前面,反面人物(系数为负的项)放在后面,然后再细心计算,这样才能减少各种计算错误.
五、系数化成1要“虚心”
学生在将系数化成1时,有时将分子、分母的位置写错,如将3x=-2系数化成1,得x= -■. 为了帮助学习改正这种错误,我提示学生,将未知数的系数写到另一边去,就好像你到别人家去请教,要“虚心”,不要跑到人家的头上去,要甘拜下风.
通过以上“五心”法的归纳,学生学习的积极性得到了充分调动,课堂气氛非常活跃,课堂教案效果非常明显,在解一元一次方程的过程中出错的情况得到了较大的改善.。