基于高斯牛顿迭代算法的三轴磁强计校正_庞鸿锋

基于高斯牛顿迭代算法的三轴磁强计校正_庞鸿锋
基于高斯牛顿迭代算法的三轴磁强计校正_庞鸿锋

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

ICA使用牛顿迭代法对FastICA算法经行改进

ICA用牛顿迭代法改进的FastICA算法 ICA算法原理: 独立分量分析(ICA)的过程如下图所示:在信源()st中各分量相互独立的假设下,由观察xt通过结婚系统B把他们分离开来,使输出yt逼近st。 图1-ICA的一般过程 ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本实验主要讨论FastICA算法。 1. 数据的预处理 一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。 若一零均值的随机向量 满足 , 其中:I为单位矩阵,我们称这个向量为白化向量。白化的本质在于去相关,这同主分量分析的目标是一样的。在ICA中,对于为零均值的独立源信号 , 有: , 且协方差矩阵是单位阵cov( S ) = I,因此,源信号 S( t )是白色的。对观测信号X( t ),我们应该寻找一个线性变换,使X( t )投影到新的子空间后变成白化向量,即:

其中,W0为白化矩阵,Z为白化向量。 利用主分量分析,我们通过计算样本向量得到一个变换 其中U和 分别代表协方差矩阵XC的特征向量矩阵和特征值矩阵。可以证明,线性变换W0满足白化变换的要求。通过正交变换,可以保证 因此,协方差矩阵: 再将 代入 且令 有 由于线性变换A~连接的是两个白色随机矢量Z( t )和S( t ),可以得出A~ 一定是一个正交变换。如果把上式中的Z( t )看作新的观测信号,那么可以说,白化使原来的混合矩阵A简化成一个新的正交矩阵A~。证明也是简单的: 其实正交变换相当于对多维矢量所在的坐标系进行一个旋转。 在多维情况下,混合矩阵A是N*N 的,白化后新的混合矩阵A~ 由于是正交矩阵,其自由度降为N*(N-1)/2,所以说白化使得ICA问题的工作量几乎减少了一半。 白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度,而且算法简单,用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使得原来所求的解混合矩阵退化成一个正交阵,减少了ICA的工作量。此外,PCA本身具有降维功能,当观测信号的个数大于源信号个数时,经过白化可以自动将观测信号数目降到与源信号维数相同。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

最优化课程设计

《最优化》课程设计 题目:牛顿法与阻尼牛顿法算法分析 学院: 数学与计算科学学院 专业:数学与应用数学 姓名学号:廖丽红 1000730105 欧艳 1000730107 骆宗元 1000730122 沈琼赞 1000730127 指导教师:李向利 日期:2012年11月08日

摘要 本文基于阻尼牛顿法在解决无约束最优化问题中的重要性,对其原理与算法予以讨论。论文主要是参阅大量数学分析和最优化理论方法,还有最优化方法课程以及一些学术资料,结合自己在平时学习中掌握的知识,并在指导老师的建议下,拓展叙述牛顿法和其改进方法——阻尼牛顿法的优缺点,同时针对阻尼牛顿法的基本思路和原理进行研究,其搜索方向为负梯度方向,改善了牛顿法的缺点,保证了下降方向。 关键词:无约束牛顿法下降方向阻尼牛顿法最优解

Abstract This thesis is based on the importance of the damping Newton's method to solve unconstrained optimization problems, we give the discussion about its principles and algorithms. We search a large number of mathematical analysis and optimization theory methods, optimization methods courses, as well as some academic information ,and at the same time combined with knowledge we have learning in peacetime and thanks to the instructor's advice, we also give an expanding narrative for the Newton's method and the improved method -- damping Newton method's advantages and disadvantages, and make a study of the basic ideas and principles for damping Newton method at the same time , we find that a negative gradient direction is for the search direction of the damping Newton method, this method improves the shortcomings of the Newton method which can ensure the descent direction. Keywords: unconstrained , Newton's method , descent direction , damping Newton's method ,optimal solution

§2.3牛顿Newton法及其变形.doc

2.3 牛顿(Newton )法及其变形 一、Newton 迭代方法 牛顿迭代法计算公式的推导过程 设*x 是()0f x =的根,()f x 在*x 的邻域内具有二阶连续导数,在*x 的邻域内取一点0x ,使0()0f x '≠,则()f x 在*x 的邻域内连续,将它在0x 点二阶Taylor 展开得 2 0000000()()()()()()2! ()()() f f x f x f x x x x x f x f x x x ξ'''=+-+-'≈+- 又()0f x =,则有 000()()()0f x f x x x '+-≈ 故()0f x =的近似解000()()f x x x f x ≈-',记0100()() f x x x f x =-' 类似,在点1x 处Taylor 展开,可得: 111()() f x x x f x ≈-',记1211()()f x x x f x =-' 依次往下做,可得一般的迭代格式:

上述迭代格式称为求()0 f x=的解的牛顿迭代法。 几何意义 在点 00 (,()) x f x处作() f x的切线,交x轴于一点,求该点的横坐标。此切线方程为 000 ()()() y f x f x x x ' -=-, 当0 y=时,得0 () () f x x x f x =- ' ,正是 1 x的值。 类似地,在点(,()) k k x f x作函数() f x的切线,交x轴于一点,切线方程为 ()()() k k k y f x f x x x ' -=-, 当0 y=时,得 () () k k k f x x x f x =- ' ,正是 1 k x + 的值。 所以,牛顿迭代法又称为切线求根法。 例6用牛顿迭代法求方程x x e- =在0.5 x=附近的根。解.将原方程化为()0 x f x x e- =-=,则牛顿迭代格式为

最优化 马昌凤 第三章作业

最优化方法及其Matlab程序设计习题作业暨实验报告 学院:数学与信息科学学院 班级:12级信计一班 姓名:李明 学号:1201214049

第三章 最速下降法和牛顿法 一、上机问题与求解过程 1、用最速下降法求212 221216423),(x x x x x x f --+=的极小值。 解: 仿照书上编写最速下降法程序如下: function [x,val,k]=grad(fun,gfun,x0) %功能:用最速下降法求解无约束化问题:min f(x) %输入:x0是初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val 分别是近似嘴有点和最优值,k 是迭代次数 maxk=5000; rho=0.5;sigma=0.4; %一开始选择时选择的rho 和sibma 选择的数据不够合理,此处我参照书上的数据编写数据 k=0;epsilon=1e-5; while (k

各种迭代法编程

雅可比迭代法: function x=jacobi(a,b,p,delta,n) %a为n维非奇异矩阵;b为n维值向量 %p为初值;delta为误差界;n为给定的迭代最高次数 N=length(b); for k=1:n for j=1:N x(j)=(b(j)-a(j,[1:j-1,j+1:N])*p([1:j-1,j+1:N]))/a(j,j); end err=abs(norm(x’-p)); p=x’; if(err

function [x,k,err,p]=ddf(f,x0,tol,n) %ddl.m为用迭代法求非线性方程的解 %f为给定的迭代函数;x0为给定的初始值 %tol为给定的误差界;n为所允许的最大迭代次数 %k为迭代次数;x为不动点的近似值;err为误差 p(1)=x0; for k=2:n p(k)=feval(f,p(k-1)); k, err=abs(p(k)-p(k-1)) x=p(k); if(err

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

非线性回归预测法——高斯牛顿法(詹学朋)

非线性回归预测法 前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。 一、非线性回归模型的概念及其分类 非线性回归模型,是指用于经济预测的模型是曲线型的。常见的非线性回归模型有下列几种: (1)双曲线模型: i i i x y εββ++=1 2 1 (3-59) (2)二次曲线模型: i i i i x x y εβββ+++=2321 (3-60) (3)对数模型: i i i x y εββ++=ln 21 (3-61) (4)三角函数模型: i i i x y εββ++=sin 21 (3-62) (5)指数模型: i x i i ab y ε+= (3-63) i i i x x i e y εβββ+++=221110 (3-64) (6)幂函数模型: i b i i ax y ε+= (3-65) (7)罗吉斯曲线: i x x i i i e e y εββββ++=++1101101 (3-66) (8)修正指数增长曲线: i x i i br a y ε++= (3-67) 根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。 第一类:直接换元型。 这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。 第二类:间接代换型。 这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。 第三类:非线性型。

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间[-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。 f为迭代函数

2.3 Newton迭代法 思想:设r 是的根,选取作为r的初始近似值,过点 做曲线 的切线L,L 的方程为,求出L与x轴交点的 横坐标,称x 1 为r的一次近似值。过点做曲线 的切线,并求该切线与x 轴交点的横坐标,称为r的二次近似值。重复以上过程,得r 的近似值序列,其中,称为r 的 次近似值 步骤:1.计算原函数的导数f’(x);构造牛顿迭代公式 2.计算 ,若f’(x0)=0,退出计算,否则继续向下迭代。 3.若|x1-x0|满足精度要求,x1即为方程的近似解。

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=? ∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为 最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(* x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称* x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈* . 则对D x ∈?,有 ).()()()(* **-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

改进的牛顿迭代法

改进的牛顿迭代法求解非线性方程 摘要:牛顿法思想是将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,但是其对初值、波动和可能出现的不收敛等缺点,而牛顿下山法克服了可能出现的发散的缺点。 关键词:牛顿法、牛顿下山法、非线性方程 一、牛顿法的迭代公式 设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当*0x x →时,由Taylor 公式有: ))(()()(000x x x f x f x f -'+≈ 以方程 0))(()(000=-'+x x x f x f 近似方程0)(=x f ,其解 ) ()(0001x f x f x x '-= 可作为方程的近似解,重复上述过程,得迭代公式 ),1,0(,) ()(1 ='-=+n x f x f x x n n n n 该方法称为牛顿迭代法。 二、牛顿法的改进 由于牛顿法缺点对牛顿法进行改进,使其计算简单,无需每次迭代都去计算)(x f ',且能够更好的收敛。 2.1简化的牛顿法 牛顿法的缺点之一是每次迭代都得去计算)(k x f '。为回避该问题,常用一个固定 )(k x f '迭代若干步后再求)(k x f '。这就是简化牛顿法的基本思想。 简化牛顿法的公式为: )(1k k k x cf x x -=+

迭代函数 )()(x cf x x -=? 若 2)(0,1)(1)(<'<<'-='x f c x f c x 即?,在根*x 附近成立,则迭代法局部收敛。 显然此法简化了计算量,却降低了收敛速度。 2.2牛顿下山法 牛顿法的缺点二是其收敛依赖与初值0x 的选取,若0x 偏离所求根*x 较远,则牛顿法可能发散。为防止迭代发散,我们对迭代过程再附加一项条件,即具有单调性: )()(1k k x f x f <+ 保证函数值稳定下降,然后结合牛顿法加快收敛速度,即可达目的。将牛顿法的计算结果 ) ()(1k k k k x f x f x x '-=+ 与前一步的近似值k x 适当加权平均作为新的改进值 k k k x x x )1(11λλ-+=++ 其中,称 )10(≤<λλ为下山因子,即为: ) ()(1k k k k x f x f x x '-=+λ 称为牛顿下山法。选择下山因子λ时,从 1=λ开始逐次将λ减半进行试算,直到条件成立为止。 三 举例说明 例1 求方程013=--x x 的根 (1)取5.10=x ,用牛顿法公式: 1 32131---=-+k k k k x x x x x 计算得:32472.1,32520.1,34783.1321===x x x

数值分析练习第五套

1.填空 1) 计算 f=(2-1)6 , 取2=1.4 , 利用下列算式,那个得到的结果最好?答:C (A) 6121 )(-, (B) (3-22)2, (C) 32231)(+, (D) 99-702 2) 称序列{x n }是p 阶收敛的条件为c x x x x p n n n =--+∞→** lim 1 3) 在等式∑==n k k k n x f a x x x f 010)(],,,[ 中, 系数a k 与函数f (x ) 无 关。 (限填“有”或“无”) 4) 设P k (x k ,y k ) , k =1,2,…,5 为函数y =x 2-3x +1上的5个互异的点,过P 1,…,P 5且次数不超过4次的插值多项式是 x 2-3x +1 。 5) 设f (x )∈C [a ,b ], f (x )的最佳一致逼近多项式是__一定___存在的。 6) 求解微分方程数值解的E ul e r 法的绝对稳定区间是(-2,0) 。 7) n 个节点的插值型求积公式的代数精度不会超过2n -1次。 8) 高次插值容易产生________龙格(R u n g e )现象。 9) R n 上的两个范数||x||p , ||x||q 等价指的是_?C,D ∈R,_C_||x||q _≤||x||p ≤D ||x||q _; R n 上的两个范数_一定__是等价的。(选 填“一定”或“不一定”)。 2.曲线151.03+-=x x y 与89.14.22-=x y 在点(1.6,1)附近相切,试用牛顿迭代法求切点横坐标的近似值1+k x ,使5110-+≤-k k x x 。 解 两曲线的导数分别为51.032-='x y 和x y 8.4=',两曲线相切,导数相等,故有 051.08.432=--x x 令51.08.43)(2--=x x x f ,则f(1)<0,f(2)>0,故区间[1,2]是f(x)=0的有根区间,又当]2,1[∈x 时,08.46)(>-='x x f ,因此f(x)=0在[1,2]上有惟一实根x*,对f(x)应用牛顿迭代法,得计算公式 ,2,1,0,8 .4651.08.4321=----=+k x x x x x k k k k k 由于06)(>=''x f ,故取20=x 迭代计算一定收敛,计算结果如表7-6所示。 表7-6 k k x k k x 0 2.0 3 1.706815287 1 2.293055556 4 1.700025611 2 1.817783592 5 1.7 继续计算仍得7.16=x ,故7.1*=x 。 注 本题也可令89.14.2151.02 3-=+-x x x ,解得切点横坐标满足方程089.2514.2)(23=+--=x x x x f ,用有重根时的牛顿迭代法(7.15)式计算,此时m=2,仍取x0=2,经四步可得x*=1.7。

高斯—牛顿迭代法

高斯牛顿法 高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。高斯—牛顿法的一般步骤为: (1)初始值的选择。其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。 (2)泰勒级数展开式。设非线性回归模型为: i=1,2,…,n (3-68) 其中r为待估回归系数,误差项~N(0, ),设: ,为待估回归系数的初始值,将(3-68)式在g点附近作泰勒展开,并略去非线性回归模型的二阶及二阶以上的偏导数项,得 (3-69) 将(3-69)式代入(3-68)式,则 移项: 令: 则:i=1,2,…,n 用矩阵形式表示,上式则为:(3-70) 其中: (3)估计修正因子。用最小平方法对(3-70)式估计修正因子B, 则:(3-71) 设g为第一次迭代值,则: (4)精确度的检验。设残差平方和为: ,S为重复迭代次数,对于给定的允许误差率K,当时,则停止迭代;否则,对(3-71)式作下一次迭代。

(5)重复迭代。重复(3-71)式,当重复迭代S次时,则有:修正因子: 第(S+1)次迭代值: 四、应用举例 设12个同类企业的月产量与单位成本的资料如下表: 表3-9 间接代换法计算表 企业编号单位产品成 本(元) 月产量 1 2 3 4 5 6 7 8 9 10 11 12 160 151 114 128 85 91 75 76 66 60 61 60 10 16 20 25 31 36 40 45 51 56 60 65 (注:资料来源《社会经济统计学原理教科书》第435页) 试配合适当的回归模型分析月产量与单位产品成本之间的关系。 解:(1)回归模型与初始值的选择。根据资料散点图的识别,本数据应配合指数模型:对指数模型两边取对数,化指数模型为线性回归模型,然后施行最小平方法求出初始 值。即: 则上述指数模型变为: 对分别求反对数,得,带入原模型, 得回归模型: 高斯—牛顿迭代法 初始回归模型:

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

数值分析编程及运行结果(高斯顺序消元法)

高斯消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解') x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x

2.运行结果:

高斯选列主元消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次选列主元后的增广矩阵']) temp=max(abs(A(i:m,i))); [a,b]=find(abs(A(i:m,i))==temp); tempo=A(a(1)+i-1,:); A(a(1)+i-1,:)=A(i,:); A(i,:)=tempo disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解')

x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x 2.运行结果:

jacobi,高斯,牛顿迭代

实验二:迭代法求解方程组 姓名:徐烨 学号:08072105 时间:2010-11-17 一、实验目的 利用jacobi 迭代法和gauss-seidei 迭代法求解线性方程组,利用newton 迭代法求解非线性方程组。在求解过程中,利用这三种方法的迭代原理,根据迭代法的求解流程,写出三种迭代法的迭代格式,学习三种迭代法的原理和解题步骤,并使用matlab 软件求解方程。在实验过程中,分别取不同的初值进行求解,并做结果分析,解怒同德方程来比较这三种迭代方法的利弊。 二、实验步骤 newton 迭代法 ⒈newton 迭代原理 考虑非线性方程f(x)=0,求解她的困难在于f 是非线性函数。为克服这一困难,考虑它的线性展开。设当前点为Xk, 在Xk 处的Taylor 展开式为 f ()x ≈f ()()()k k k x x x f x -'+ 令上式右端为0.解其方程得到 ()() k k k k x f x f x x '-=+1 ???=1,0k 此式就称为Newton 公式。 2. newton 迭代法的matlab 实现 function x=newton(fname,dfname,x0,e,N) %用途:牛顿迭代法解非线性方程组分f(x)=0 %fname 和dfname 分别表示f(x)及其到函数的M 函数句柄或内嵌函数的表达式%x0为迭代初值,e 为精度 %x 为返回数值解,并显示计算过程,设置迭代次数上线N 以防发散 if nargin<5,N=500;end if nargin<4,e=le-4;end x=x0;x0=x+2*e;k=0; fprintf('It.no=%2d x%[2d]=%12.9f\n',k,k,x) while abs(x0-x)>e&k

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

数值分析版试题及答案

例1、已知函数表 求() f x的Lagrange二次插值多项式和Newton二次插值多项式。 解: (1)由题可知 插值基函数分别为 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 均差表为

故所求Newton 二次插值多项式为 例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的 最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111 ()46 S x x = +

例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n =的复合梯形和复合辛普森公式计算积分1?。 解: (1)用4n =的复合梯形公式 由于 2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,()f x =,()121,2,3k x k k =+=,()1 2 220,1,2,3k x k k +=+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x =

相关文档
最新文档