数值分析模拟题4

合集下载

数值分析第四版习及答案

数值分析第四版习及答案

Yn
Yn1
1 100
783
( n=1,2,…)
计算到 Y100 .若取 783 ≈27.982(五位有效数字),试问计算Y100 将有多大误差?
7. 求方程 x2 56x 1 0 的两个根,使它至少具有四位有效数字( 783 ≈27.982).
8.
当 N 充分大时,怎样求
N
1
1 x2
dx
24.

f
(x)
sin
1 2
x 在 1,1 上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼
近多项式并画出误差图形,再计算均方误差.
25. 把 f (x) arccos x 在 1,1 上展成切比雪夫级数.
26. 用最小二乘法求一个形如 y a bx2 的经验公式,使它与下列数据拟合,并求均方误差.
第四版 数值分析习题
第一章 绪 论
1. 设 x>0,x 的相对误差为δ ,求ln x 的误差.
2. 设 x 的相对误差为 2%,求 xn 的相对误差.
3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字:
x1* 1.1021, x2* 0.031, x3* 385.6, x4* 56.430, x5* 71.0.
19
25
31
38
44
xi
19.0
32.3
49.0
73.3
97.8
yi
27. 观测物体的直线运动,得出以下数据:
x2 C 0,1 的最佳平方逼近,并比较其结果.
22. f (x) x 在 1,1 上,求在 1 span 1, x2, x4 上的最佳平方逼近.

数值分析习题与答案

数值分析习题与答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式()(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4xx给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为xx。

数值分析试题(卷)和答案解析

数值分析试题(卷)和答案解析

【试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生姓名: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

-2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解为什么说平方根法计算稳定2. 什么是不动点迭代法()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:。

i x 1 2 3i y2 4 12 <3i y '并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组: ,12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦(10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

数值分析模拟试题(XAUT)(15套)

数值分析模拟试题(XAUT)(15套)

模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。

2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。

3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。

4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使= .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。

四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+=试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。

(完整版)数值分析第四版习题和答案解析

(完整版)数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析4 多项式插值

数值分析4 多项式插值

根据插值余项定理可知:
(1 ) f ( x) Ln ( x) ( x x0 ) ( x xn ) (n 1)! f
( n 1)
f ~ f ( x) Ln ( x)

( 2 ) ( x x1 ) ( x xn 1 ) (n 1)!
( n 1)
温 度
31
32
31
29
27
25
24
22 20 18 17 16
找出这一天气温变化规律
插值问题的数学提法
已知函数 y f ( x) 在n+1个互异结点处的函数值
x
y f (x)
x0 y0
x1
y1

xn yn
求一个n次多项式 y P( x) 使其满足
P( xi ) yi
从而可以用P(x)近似f(x) 多项式P(x)称为插值多项式.
而不便于计算,希望用一个简单的函数来描述它。
最常用的简单函数是多项式函数,这是因为多项式函数便于 计算,同时理论上多项式函数有如下良好性质 Weierstrass逼近定理
if f C[a, b], then, 0, P( x), s.t. f ( x) P( x) (x [a, b])
x 225 x 169 15 56 56
所以 f (175 ) L1 (175 ) 13.214 285 71
三、Lagrange插值多项式的截断误差公式
设在插值区间[a,b]上,Pn(x)是满足插值条件的n次多项式
则,用Pn(x)近似f(x),产生的截断误差(插值余项)为
Chap4 多项式插值
Polynomial interpolation

数值分析模拟题

1. (10分)利用Gauss-Legendre 求积公式 ⎰-++-≈11)7746.0(5556.0)0(8889.0)7746.0(5556.0)(f f f dx x f 导出求积分3()f x dx-⎰的三点高斯型求积公式。

2. (15分)写出求解线性代数方程组 123121322531272x x x x x x x -+=⎧⎪-+=-⎨⎪+=⎩的Gauss-Seidel 迭代格式,并分析此格式的敛散性。

3. (15分)设矩阵21011000201010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎥⎥⎦, (1)试计算||||A ∞。

(2)用Householder 变换阵H 将A 相似约化为上Hessenberg 阵,即HAH 为上Hessenberg 阵。

4. (10分) 求关于点集{}1,2,3,4的正交多项式{}012(),(),()x x x ϕϕϕ。

5. (10分)用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据1.02.03.04.00.8 1.5 1.8 2.0i ix y ⎧⎨⎩6. (20分)给出数据点: 013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算 1.5x =的近似值2(1.5)L 。

(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算 1.5x =的近似值2(1.5)N 。

(3)用事后误差估计方法估计2(1.5)L 、2(1.5)N 的误差。

7.(10分) 设矩阵A 可逆,A δ为A 的误差矩阵,证明:当11A Aδ-<时,A A δ+也可逆。

8.(10分)设()f x 四阶连续可导,0,0,1,2.i x x ih i =+=试建立如下数值微分公式 ''01212()2()()()f x f x f x f x h -+≈,并推导该公式的截断误差。

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值分析(在线作业)

数值分析(在线作业)单选:1、设是经过四舍五入后得到的近似值,则分别有几位有效数字?(A )A、3,3B、2,4C、3,4D、4,32、计算球的体积时,为使其相对误差限为1%,测量半径R时,相对误差最大为(B )A、1%B、0.33%C、3%D、9.9%3、超定方程组的最小二乘解为(A)A、B、C、D、4、已知则为(D)A、2B、6C、-6D、85、已知A=则为(D)A、0.367B、0C、-34D、396016、设方程组Ax=b,其中则A能进行Cholesky分解(即A=LLT,其中L为下三角矩阵)时,取值范围为(A )A、B、C、D、7、设,则差商为(A )A、1B、-1C、0D、28、设,则差商为(C)A、1B、-1C、0D、29、已知函数表为分别用Newton向前、向后插值公式计算f(1.5),f(3.7)的近似值(B )A、B、C、D、10、设,则的Newton迭代公式为(A )A、B、C、D、11、设,则当的Newton迭代收敛时,的取值范围为(A)A、B、C、D、12、已知325413有6位有效数字,则绝对误差限为(B )A、0.05B、0.5C、0.005D、513、已知,则下列哪个多项式为的二次最佳平方逼近(B)A、B、C、D、14、计算积分,若用复合Simpson公式进行近似计算,并且想误差不超过则至少要进行多少等分?( C )A、3B、6C、12D、2415、给定线性方程组,其中,,使用迭代公式,若迭代收敛,则的取值范围为(D)A、B、C、D、16、已知,则的谱半径为(C )A、3B、1C、7D、817、已知,则的拉格朗日插值多项式为(A )A、B、C、D、18、已知,则用梯形公式计算积分与精确值相比(A)A、偏大B、偏小C、相等D、不确定19、对于线性方程组,则雅克比迭代与高斯-赛德尔迭代的敛散性分别为(A )A、收敛发散B、收敛收敛C、发散收敛D、发散发散20、已知函数值,则均差为(D )A、B、6 C、10 D、2。

(完整版)数值分析第四版习题和答案解析


h 应取多少 ?
9. 若 yn 2 n , 求 4 yn 及 4 yn .
10. 如 果 f ( x) 是 m 次 多 项 式 , 记 f (x) f (x h) f ( x) , 证 明 f (x) 的 k 阶 差 分
k f (x)(0 k m) 是 m k 次多项式 , 并且 m l f ( x) 0(l 为正整数 ).
.专业资料 . 整理分享 .
.WORD. 格式 .
11. 证明 ( f k g k ) fk g k gk 1 f k .
n1
fk gk
12. 证明 k 0
fngn
f0 g0
n1
gk 1 f k .
k0
n1
2 yj
13. 证明 j 0
14. 若 f (x) a0
yn y0. a1 x L an 1 xn 1
.
.专业资料 . 整理分享 .
.WORD. 格式 .
18. f ( x) 、 g( x) C1 a,b , 定义
b
b
( a)( f , g) f (x) g (x)dx;( b)( f , g ) f ( x) g ( x) dx f (a) g (a);
a
a
问它们是否构成内积 ?
6
1 x dx
19. 用许瓦兹不等式 (4.5) 估计 0 1 x 的上界 , 并用积分中值定理估计同一积分的上下界
5. 计算球体积要使相对误差限为 1% , 问度量半径 R时允许的相对误差限是多少 ?
6. 设 Y0 28, 按递推公式
1
Yn Yn 1
783
100
( n=1,2, … )
计算到 Y100 . 若取 783 ≈ 27.982( 五位有效数字 ), 试问计算 Y100 将有多大误差 ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟题4
一、填空题:(4×15分)
1.要使20的近似值的相对误差限小于0.1%,要取 位有效数字。

2.若x x ,0>的相对误差为δ,则x ln 的误差是 。

3.计算球体积要使相对误差限为2%,那么度量半径R 时允许的相对误差限是 。

4.一个算法如果 ,则称此算法是数值稳定的,否则称此算法为不稳定的。

5.设)5,4,3,2,1,0(=i x i 为互异节点,)(x l i 为对应的5次Lagrange 插值基函数,则
=+++∑=5
245)()1822(i i i i i x l x x x。

6.12)(3+=x x f ,则=]4,3,2,1[f 。

7.i x x x f i 2
1
,1)(3=
+=,其中i=0,1,2,3,…,则=∆04f ,=∆22f 。

8.当x=1,-1,2时,=)(x f 0,-3,4,)(x f 的二次插值多项式
=)(2x P 。

9.一元函数逼近是指“ ”。

10.x x f 2sin
)(π
=在[0,1]上的伯恩斯坦多项式=),(1x f B
11.已知7712.0)2
sin(arccos
,8807.02
arccos
==ππ
,⎥⎦⎤
⎢⎣⎡=2,0sin )(π在x x f 上的最佳一次逼近多项式=)(1x P 。

12.122)(23-++=x x x x f 在区间[-1,1]上的二次最佳一致逼近多项式
=)(2x P 。

(x x x T 34)(33-=) 13.根据积分中值定理,在积分区间[a ,b]内存在一点ξ,使得
)()()(ξf a b dx x f b
a
-=⎰
因此,机械求积方法是 其特点是 。

14.用梯形公式计算=⎰1
0dx e x ,其误差≤)(f R 。

15.求积公式[])(3)(2)1(3
1
)(11
1
x x f x f f x f ++-≈
⎰-具有 次代数精度,其中x 1= ,x 2= 。

二、设
)()(x f n 在[a ,b]上连续,)()1(x f n +在(a ,b)内存在,证明)(x f 关于节点
b x x x a n =<<<≤ 10的Lagrange 插值余项
)()!
1()(1)1(x n f R n n n +++=ωξ
其中),(b a ∈ξ且依赖于x ,∏=+-=n
i i n x x x 01)()(ω。

(10分)
三、给出x
=kh,k=0,1,…,6,h=0.1处的函数值,完成下面的差分(=在x
f cos
x
)
k
表,并用等距节点插值分别计算)
.0(f的近似值。

(10分)
566
.0(f及)
048
四、求函数
x
f
(∈
=x e
[-1,1]
x,
)
的二次最佳
平方逼近多
项式。

(10分)
五、已知一组实验数据如下,求它的按拟合曲线。

(10分)。

相关文档
最新文档