高三数学必做题--数列放缩法(典型试题)精选.

高三数学必做题--数列放缩法(典型试题)精选.
高三数学必做题--数列放缩法(典型试题)精选.

数列综合题

1、已知数列{}n a 的前n 项和n S 满足:()11n n a S a a =

--,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式;

(2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <.

2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =.

(1)求数列{}n a 的通项公式;

(2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由.

3、已知{}n a 是等差数列,32=a ,53=a .

⑴求数列{}n a 的通项公式;

⑵对一切正整数n ,设1

)1(+?-=n n n n a a n b ,求数列{}n b 的前n 项和n S .

4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3

n =. (1)求2a ;

(2)数列{}n a 的通项公式;

(3)设n n n n S S a b 11++=

,求证:2121<+++n b b b .

5、对于任意的n ∈N *,数列{a n }满足

1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式;

(Ⅱ) 求证:对于n≥2,231222112n n a a a ++++<-

6、已知各项均为正数的数列{}n a 的前n 项和为n S 满足242n n n S a a =+.

(1)求1a 的值;

(2)求{}n a 的通项公式;

(3)求证:

*222121111,2n n N a a a ++???+<∈。

7、已知数列{}n a 满足112a =

,11210n n n a a a ++-+=,*n N ∈. (1)求证:数列1{}1

n a -是等差数列; (2)求证:2

3

12234

1

1n n a a a a n n n a a a a +<+++<+.

8、已知首项大于0的等差数列{}n a 的公差1d =,且

12231123

a a a a +=. (1)求数列{}n a 的通项公式; (2)若数列{}n

b 满足:11b =-,2b λ=,1

11(1)n n n n n b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;

②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.

9、已知数列{}n a 的前n 项和为n S ,且11,2n n S n a n N *+=

?∈,其中11a =. (1)求数列{}n a 的通项公式;

(2)若1132n n a b +=

-,数列{}n b 的前n 项和为n T ,求证:14n T <

最新文件 仅供参考 已改成word 文本 。 方便更改

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

高三数学必做题--数列放缩法

(1) 求数列 4的通项公式; 1 a a 1 (2) 若a ,设b n n 丄,且数列b n 的前n 项和为「,求证:人 3 1 a n 1 a n i 3 n 1 a 2、已知数列 q 的前n 项和s n -,且a 1 1. 2 (1) 求数列耳的通项公式; (2) 令b n ln a n ,是否存在k (k 2,k N),使得b k 、b k 1、b k 2成等比数列.若存在, 值;若不存在,请说明理由. 3、已知a n 是等差数列,a 2 3, a 3 5. ⑴求数列a n 的通项公式; 4、设数列a n 的前n 项和为S n ,且满足a 1 2, a . 1⑵对一切正整数n ,设b n n (1) n a n a n 1 ,求数列 b n 的前n 项和S n . 求出所有符合条件的 k 2S n 2 n 1,2,3L

(1)求 a 2 ; (2)数列a n 的通项公式; 5、对于任意的n € N*,数列{a n }满足 (I )求数列{a n }的通项公式; (n )求证:对于 n 》2,—— a ? a a i 1 a 2 2 , a n n -1 .2 L n 1 2 1 2 1 2 1 L 2 1 J a n 1 2n 2 6、已知各项均为正数的数列 {a n }的前n 项和为S n 满足4S n a n 2a n ?(3)设 b n a n 1 S n i S n ,求证: b i b 2 b n

(1)求a i 的值; (2)求{a .}的通项公式; 1 (1)求证:数列{」}是等差数列; a n 1 2 (2)求证:丄色更鱼L n 1 a 2 a 3 a ° (3)求证: 1 ~2 a i 1 ~2 a 2 a n ^,n N 2 7、已知数列耳满足a 1 2,a n 1a n 细1 1 0," N 8已知首项大于0的等差数列 a n }的公差d 1,且二 a n a n 1

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高三数学必做题--数列放缩法(典型试题)

数列综合题 1、已知数列{}n a 的前n 项和n S 满足:()11n n a S a a = --,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式; (2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <. 2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =. (1)求数列{}n a 的通项公式; (2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由. 3、已知{}n a 是等差数列,32=a ,53=a . ⑴求数列{}n a 的通项公式; ⑵对一切正整数n ,设1 )1(+?-=n n n n a a n b ,求数列{}n b 的前n 项和n S .

4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3 n =. (1)求2a ; (2)数列{}n a 的通项公式; (3)设n n n n S S a b 11++= ,求证:2121<+++n b b b . 5、对于任意的n ∈N *,数列{a n }满足 1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式; (Ⅱ) 求证:对于n≥2,23 1222112n n a a a ++++<-

6、已知各项均为正数的数列{}n a 的前n 项和为n S 满足242n n n S a a =+. (1)求1a 的值; (2)求{}n a 的通项公式; (3)求证: *222121111,2n n N a a a ++???+<∈。 7、已知数列{}n a 满足112a = ,11210n n n a a a ++-+=,*n N ∈. (1)求证:数列1{}1 n a -是等差数列; (2)求证:2 3 12234 1 1n n a a a a n n n a a a a +<+++<+.

高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设 ,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴. 3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数 .j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)

例析放缩法在数列不等式中的应用 孙卫 (安徽省芜湖市第一中学 241000) 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意* n N ∈成立的充分必要条件是[0,1]c ∈;

高三数学必做题数列放缩法典型试题

高三数学必做题数列放缩 法典型试题 Prepared on 22 November 2020

数列综合 题 1、已知数列{}n a 的前n 项和n S 满足:()11n n a S a a =--,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式; (2)若1 3a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:1 3 n T <. 2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =. (1)求数列{}n a 的通项公式; (2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由. 3、已知{}n a 是等差数列,32=a ,53=a . ⑴求数列{}n a 的通项公式; ⑵对一切正整数n ,设1 )1(+?-=n n n n a a n b ,求数列{}n b 的前n 项和n S .

4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3 n =. (1)求2a ; (2)数列{}n a 的通项公式; (3)设n n n n S S a b 11++= ,求证:2121<+++n b b b . 5、对于任意的n ∈N *,数列{a n }满足1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式; (Ⅱ) 求证:对于n≥2,231222112 n n a a a ++++<-

高三数列列项求和和放缩法专题

(一)数列通项公式的求法 8.(1)和型: )(1n f a a n n =++ 基本思路是,由)(1n f a a n n =++得)1(21+=+++n f a a n n ,相减,得奇数项成等差,偶数项成等 差,分别求奇数项通项,偶数项通项。 例如:数列{}n a 中相邻两项n a ,1+n a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b =____. (2)积型:)(1n f a a n n =?+ 基本思路是,由)(1n f a a n n =?+,得)1(21+=?++n f a a n n ,两式相除,得奇数项成等比,偶数项成等比,分别求奇数项通项,偶数项通项,做法与“商型”相乘的思路相反. 例如:已知数列}{n a 中,11=a ,n n n a a )2 1(1=?+,则数列}{n a 的通项公式为________. 特别地: (1)如果数列}{n a 从第2项起的每一项与前一项的和为定值,则此数列}{n a 为等和数列。 递推公式为:?? ?=+=+c a a a a n n 11 (c 为常数),则n n a a =+2.即该数列的所有的奇数项均相等,所有的偶 数项也相等. (2)如果数列}{n b 从第2项起的每一项与前一项的积为定值,则此数列}{n b 为等积数列。 递推公式为:?? ?=?=+p b b b b n n 11 (p 为常数),则n n a a =+2,即该数列的所有的奇数项均相等,所有的偶 数项也相等. 9.周期型 解法:由递推式计算出前几项,寻找周期。 例如:已知数列}{n a 满足)(1 33,0*11N n a a a a n n n ∈+-==+,则56a =______. 10.取对数法 形如r n n pa a =+1,一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 例如.设正项数列{}n a 满足11=a ,2 12-=n n a a (n ≥2).求数列{}n a 的通项公式. 11.换元法:适用于含有根式递推关系式 类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。 例如.已知数列}{n a 中,111 (14116 n n a a a +=+=,,求数列}{n a 的通项公式.

数列放缩法

数列放缩法 1. 已知正项数列{}n a 的前n 项和为s n ,且1a =2,*1,4N n a a s n n n ∈?=+,(1)求数列{}n a 的 通项公式;(2)设数列? ?????21n a 的前n 项和为n T ,求证:21<<T 44n +n n 。 2. 已知数列{}n a 和{}n b 满足()()* 3212N n a a a a n b n ∈= 。若{}n a 为等比数列,且21 =a ,236b b +=。 (1)求数列n a 和n b 。

(2)设数列() *11N n b a c n n n ∈-=。记数列{}n c 的前n 项和n s 。 (1)求n s ;(2)求正整数k ,使得对任意实数*N n ∈均有n k s s ≥。 3. 已知正项数列{}n a 的前n 项和为s n ,满足:() *22N n n a s n n ∈-=。 (1)求数列{}n a 的通项公式; (2)若数列{}()n n n T a b ,2log 2+=为数列??????+2n n a b 的前n 项和,求证21≥n T 。

4.设各项均为正数的数列{}n a 的前n 项和为s n ,且n s 满足()() *222,033N n n n s n n s n n ∈=+--+-。(1)求1a 的值; (2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有 ()()()3 1<1111112211++++++n n a a a a a a 。

练习:1.设数列{}() ,3,2,1=n a n 的前n 项和满足,21a a s n n -=且321,1,a a a +成等差数列。 (1)求数列{}n a 的通项公式; (2)记数列? ?????n a 1的前n 项和为n T ,求使得10001<1-n T 成立的n 的最小值。

数列放缩法应用

1.已知数列}{n a 中,n a = 21 n ,前n 项和为n S ,证明:n S <2 2.已知数列}{n a 中,n a =21n ,前n 项和为n S ,证明:n S <47 3.已知数列}{n a 中,n a =21n ,前n 项和为n S ,证明:n S <35 4.已知数列}{n a 中,n a =1 21+n ,前n 项和为n S ,证明:n S <4437 5.已知数列}{n a 中,n a =n n n +2,前n 项和为n S ,证明:n S <2 6.已知数列}{n a 中,n a =n n 2 31-,前n 项和为n S ,证明:n S <23 7.已知数列}{n a 中,n a =122-n n ,求证:()311 <-∑=n i i i a a 8..求证: ()2 ) 2(14332212)1(+<+++?+?+?<+n n n n n n *∈N n 9..已知数列}{n a 中,n a = n 1,n S 是数列}{n a 的前n 项和,证明: () n S n n 2112<<-+ 10.已知数列}{n a 满足1a =1,1+n a =2n a +1, (1)求}{n a 的通项公式;(2)证明:2 3 1213221n a a a a a a n n n <+++< -+ 11.已知数列}{n a 前n 项和=n S 3 223 13 4 1+?-+n n a (1)求首项1a 与通项n a ;(2)设n n n S T 2=,证明:231 <∑=n i i T 练习 1.证明:() 45 121513112 22<-++++ n 2.已知数列}{n a 中,n a =2 31-n ,前n 项和为n S ,证明:n S <1417 3.求证:1 21 21265 4321+< -????n n n 4. 求100 1 3 1211+ +++ = S 的整数部分

2021届高考数学专题汇编:数列放缩方法

数列放缩法 常见的数列不等式大多与数列求和或求积有关,基本结构有4种: 1.形如∑a i n i=1

变式3求证:1 2+1+2 22+2 +?+n 2n+n <2(n∈N?) 例2.求证:1 1×3+1 3×5 +?+1 (2n?1)(2n+1) <1 2 (n∈N?) 变式1求证:1 1×3+1 3×5 +?+1 (2n?1)(2n+1) ≤1 3 (n∈N?) 变式2求证:1 2×3+1 3×5 +?+1 (n+1)(2n+1) <5 12 (n∈N?)

例3.求证:1+1 22 +1 32 +??1 +n2 <2(n∈N?) 变式1求证:1+1 22 +1 32 +??1 +n2 <7 4 (n∈N?) 变式2求证:1+1 2 +1 3 +??1 +n <5 3 (n∈N?) 变式3求证:1+1 3 +1 5 +??1 (2n?1) 2 <5 4 (n∈N?)

例4.已知数列{a n},a n=2n 2?1(n∈N?)求证:∑a i(a i?1) n i=1 <3 变式.已知数列{a n},a n=2n 2?1(n∈N?)求证:∑a i(a i?1) n i=1 < 25 9 例5. 求证:1 3?2+1 3?2 +?+1 3?2 <3 2 (n∈N?)

高考数学数列不等式证明题放缩法十种方法技巧汇总

高考数学数列不等式证明题放缩法十种方法技巧汇总

————————————————————————————————作者:————————————————————————————————日期:

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例 4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证: n n x a x a x a +++Λ2211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

相关文档
最新文档