数学建模案例分析---模糊数学方法建模1模糊综合评判及其应用

合集下载

数学建模-模糊综合评判

数学建模-模糊综合评判

在综合评判中起主导作用时,建议采用模型1; 当模型1失效时可采用模型2,模型3.
模型4 M(●,+)----加权平均模型
n
bj ai • rij
j 1,2,, m
i 1
模型4对所有因素依权重大小均衡兼顾,
适用于考虑各因素起作用的情况
注:有关合成算子以及权值确定可以查阅相关 资料,根据实际情况选择。
值就是 x0对A 的隶属度值。这种方法较直观地反映了 模糊概念中的隶属程度,但其计算量相当大。
(2)专家经验法: 专家经验法是根据专家的实际经验给出模
糊信息的处理算式或相应权系数值来确定隶属 函数的一种方法。在许多情况下,经常是初步 确定粗略的隶属函数,然后再通过“学习”和 实践检验逐步修改和完善,而实际效果正是检 验和调整隶属函数的依据。

设论域X=[0,100],模糊子集A表示“年老”,B 表示“年轻”。Zadeh给出的A、B的隶属度函数 分别为:
0
Ax
1
x
50 5
2
1
1
Bx
1
x
25 5
2
1
0 x 50; 50 x 100.
0 x 25; 25 x 100.
μ(x) 1
年轻
0
25
50
根据定义,我们不难算出 B(30)=0.5,
R=(rij)n×m∈F(X×Y)。
n
(4)确定各因素权重 A=(a1,a2,…,an), ai 1, ai 0 i 1
(5)做综合评判 B A R
注:
(1) 为了更好地理解、解释评判结果,可 以将评判结果归一化。令
B' (b1',b2 ',, bm ')

数学建模案例分析---模糊数学方法建模1模糊综合评判及其应用

数学建模案例分析---模糊数学方法建模1模糊综合评判及其应用

第八章 模糊数学方法建模1965年,美国自动控制学家首先提出了用“模糊集合”描述模糊事物的数学模型。

它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。

模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。

而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。

§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。

如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。

但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。

所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。

综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。

例如体育比赛中五项全能的评判,就是采用这种方法。

另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。

以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。

由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。

模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。

应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。

模糊综合评价法及例题

模糊综合评价法及例题

指标
很好

一般

疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )

模糊数学方法在数学建模中的应用

模糊数学方法在数学建模中的应用
鲁棒控制
鲁棒控制是控制理论的一个重要分支,它主要研究如程中具有广泛的应用价值。
03
模糊数学方法在数学建模中的具体应用案例
基于模糊逻辑的决策支持系统设计
总结词
模糊逻辑是一种处理不确定性、不完全性信息的数学工具,通过引入模糊集合 和模糊逻辑运算,能够更好地描述现实世界中的复杂现象和决策问题。
模糊逻辑在决策分析中的应用
01
模糊逻辑用于处理不确定性
模糊逻辑通过引入模糊集合的概念,能够处理不确定性和不精确性,使
得决策分析更加合理和可靠。
02
模糊推理系统
模糊推理系统是模糊逻辑的重要应用之一,它基于模糊逻辑的原理,通
过模糊集合和模糊规则进行推理,适用于复杂的决策问题。
03
模糊决策分析
模糊决策分析方法能够综合考虑多种因素,包括模糊因素,从而做出更
模糊数学方法的优势
处理不确定性和模糊性
模糊数学方法能够处理不确定性和模糊性,这在许多实际问题中是常见且必要的。
提高建模精度
通过引入模糊集合和隶属函数,模糊数学方法能够更准确地描述事物的模糊性和不确定性 ,从而提高建模精度。
增强模型适应性
模糊数学方法允许模型参数具有一定的模糊范围,增强了模型的适应性和鲁棒性,能够更 好地应对实际问题的复杂性和不确定性。
模糊数学方法在数学建模中的 应用

CONTENCT

• 模糊数学方法简介 • 模糊数学方法在数学建模中的应用
领域 • 模糊数学方法在数学建模中的具体
应用案例 • 模糊数学方法在数学建模中的优势
和局限性 • 结论
01
模糊数学方法简介
模糊数学方法的起源和发展
起源
模糊数学方法起源于20世纪60年代,由L.A.Zadeh教授提出,旨 在解决传统数学方法无法处理的模糊性问题。

模糊数学在数学建模中的应用

模糊数学在数学建模中的应用

则称R为U上的等价关系 。
特殊的等价关系
例10: 设U={u1,u2,u3}, 则 U×U={(u1, u1),(u1, u2),(u1, u3),(u2, u1),(u2, u2),(u2, u3) ,(u3, u1),(u3, u2),(u3, u3)}全称关系; I ={(u1, u1),(u2, u2), (u3, u3)}恒等关系。 用方阵表示如下:
模糊集合的表示方法
Zadeh 表示法
(1)
若论域U 为有限集,即U ={u1 , u2 , … , un},
则 A F ( U ) 可表示为
Au1 u1 Au2 u2 Aun un
A



例4:设U ={u1 , u2 , u3 , u4 , u5 },
A 0.87 u1 0.75 u2 0.96 u3 0.78 u4 0.56 u5
(2)如果RT= R;则称R为对称的;
(3) 如果R ◦ R R ,则称 R 为传递的。 自反的,对称的,传递的模糊关系称为模糊等价关系。
模糊等价关系
例17: 设U={u1,u2,u3,u4,u5}, 如下R为模糊等价关系
1 0.80 R 0.80 0.20 0.85
1、模糊聚类分析
(1)、模糊数学的基本思想; (2)、普通关系与布尔矩阵;
(3)、模糊关系与模糊矩阵;
(4)、模糊聚类分析原理。
模糊数学的基本思想
经典 集合:是指具有某种特定属性的对象集体。
例1:“延大09级的学生”; 模糊集合: 例2:“延大09级个子高的学生”。 区别: 是否满足排中率。
经典集合与特征函数
若记 P ( U )和 F ( U )分别为 U 上的所有经典集合和所有模糊集合

数学建模模糊综合评判

数学建模模糊综合评判
下面以电脑评判为例来说明如何评价。
某同学想购买一台电脑,他关心电脑的以下几个指标: “运算功能(数值、图形等)”;“存储容量(内、外 存)”;“运行速度(CPU、主板等)”;“外设配置(网 卡、多媒体部件等)”;”价格”。
于是请同宿舍几个同学一起去买电脑。
为了数学处理简单,先令
u1 =“运算功能(数值、图形等)”;
0.1 0.3 0.5 0.1
(0.1
0.1
0.3
0.15
0.35)
0.0
0.4
0.5
0.1
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
((0.1 0.2) (0.1 0.1) (0.3 0.0) (0.15 0.0) (0.35 0.5),
(0.1 0.5) (0.1 0.3) (0.3 0.4) (0.15 0.1) (0.35 0.3),
u2 =“存储容量(内、外存)”; u3 =“运行速度(CPU、主板等)”; u4 =“外设配置(网卡、调制调解器、多媒体部件等)”; u5 =“价格”。
称 U {u1, u2 , u3, u4 , u5} 因素集。
评语集 V {v1, v2 , v3, v4} 其中
v1 =“很受欢迎”; v2 =“较受欢迎”;v3 =“不太受欢迎”; v4 =“不受欢迎”;
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
运算功能 存储容量 运行速度 外设配置 价格
对微机的要求是:工作速度快,外设配置较齐全,价格便 宜,而பைடு நூலகம்运算和存储量则要求不高。于是得各因素的权重 分配向量:A (0.1,0.1,0.3,0.15,0.35)

模糊综合评判的数学模型(学生)

模糊综合评判的数学模型(学生)

模糊综合评判的数学模型例1服装评判问题1考虑因素. 花色样式、耐穿程度和价格费用这3种因素. 用数学符号表示为1u =花色样式, 2u =耐穿程度, 3u =价格费用将所有考虑的因素放在一起称为因素集, 记作U . 这样该问题的因素集就是123{,,}U u u u =2 引入评价集假设对本问题的评价分为四等: 很欢迎、比较欢迎、不太欢迎和不欢迎. 用符号表示为1v =很欢迎, 比较欢迎, 2v =3v =不太欢迎, 4v =不欢迎将这些评价(或决断)放在一起称为决断集或评判集, 记作V . 这时的决断集为1234{,,,}V v v v v =3 进行单因素评价.1(0.70.20.10)u 6, ,2(0.20.40.30.1)u 63(0.10.30.40.2)u 64 作出单因素评判矩阵0.70.20.100.20.40.30.10.10.30.40.2⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠R三元组构成一个综合评判模型(综合决策模型). (,,)U V R 假设某位顾客对该服装诸因素考虑的权重为()0.50.30.2A =问应作出何种综合性决断?5 运算()(0.70.20.100.50.30.20.20.40.30.10.50.30.30.20.10.30.40.2B A ⎛⎞⎜⎟===⎜⎟⎜⎟⎝⎠R D D )6 决策(或判断)练习1 教师教学质量评价 假设影响教师教学质量的因素为:1u =清楚易懂, 教材熟练, 2u =3u =生动有趣, 4u =板书清楚即因素集取为.1234{,,,}U u u u u =评价集取为, 其中1234{,,,}V v v v v =1v =很好, 2v =较好, 3v =一般, 不好. 4v =对某教师, 进行调查问卷, 得到如下的单因素评判矩阵:123412340.40.50.100.60.30.100.10.20.60.10.10.20.50.2v v v v u u u u ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠R (1) 解释评价矩阵各行的含义?(2) 假设对诸因素的权重分配为()0.50.20.20.1A =, 按最大隶属原则给出该教师的质量认定.进一步的思考:1 综合决策与综合评判是一回事吗?2 影响结果的环节有哪些?(1) 首先要确定(,, 这是前提. ,)U V R (2) 要明确合成运算“”的含义. D (a) “”取为“∨−”(主因素决定型)D ∧(b) “D ”取为“”或“”(主因素突出型) ∨−⋅⊕−∧(c) “”取为 “⊕−”(加权平均型)D ⋅练习2 利用(b)和(c)取作的合成运算, 给出上述练习1的解答. (3) 决策依据的原则3 如果评价对象的因素很多, 而且因素之间有层次之分, 怎么办?例2 评价一批产品质量, 因素集分为九项指标, 即129{,,,}U u u u =". 评价分为四等:1v =一等品, 2v =二等品, 3v =次品, 4v =废品即. 评价小组由专家、检验人员和用户三类组成, 他们分别从不同着眼点进行评价, 分别得出单因素评判矩阵, 具体如下:1234{,,,}V v v v v =123411230.360.240.130.270.200.320.250.230.400.220.260.12v v v v u u u ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠R 123442560.300.280.240.180.260.360.120.200.220.420.160.10v v v v u u u ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠R123473890.380.240.080.200.340.250.300.110.240.280.300.18v v v v u u u ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠R 假定确定的权数分配为()0.100.120.070.070.160.100.100.100.18A =则计算出的决策向量为()0.180.180.180.18B A ==R D这时无法决策!建立二级综合评判模型来解决上述问题.假定按某种属性, 将U 分为, 1123{,,}U u u u =2456{,,}U u u u =, 3789{,,}U u u u =, 它们所对应的单因素评价矩阵分别为, 和. 设, 和各自对应的权重分配为1R 2R 3R 1U 2U 3U ()10.300.420.28A =, ()20.200.500.30A =, ()30.300.300.40A =于是便有()1110.300.320.260.27B A ==R D ()2220.260.360.200.20B A ==R D ()3330.300.280.300.20B A ==R D令1230.300.320.260.270.260.360.200.200.300.280.300.20B B B ⎛⎞⎛⎜⎟⎜==⎜⎟⎜⎜⎟⎜⎝⎠⎝R ⎞⎟⎟⎟⎠若123{,,}U U U =U 的权重分配为()0.200.350.45A =, 则()0.300.350.300.20B A ==R D根据最大隶属原则将这批产品评定为二等品.4 在综合评判中需要知道权重, 如何确定权重?综合决策的正问题 对给定权重A , 应如何作出综合性的决断? 答案是: 综合决断为B A =R D .求权重, 可以看作是综合决策的逆问题, 即已知综合决断B , 问决断B 所赖以产生的因素权重A 是什么?5 综合评价的理论基础。

模糊数学方法在数学建模中的应用

模糊数学方法在数学建模中的应用
所谓模糊模型识别,是指在模型识别中,模型 是模糊的.也就是说,标准模型库中提供的模型是 模糊的.
模糊模型识别的类型 (1)具体元素对模糊模型的识别问题。给定 了标准模型库A1, A2,…, Am? 问对象x属于上述模型库的哪一类? (2)模糊元素对模糊模型的识别问题。给定 了标准模型库A1, A2,…, Am中的哪一类? 问对象x属于上述模型库的哪一类?其中对象 X本身就是模糊的。
0 0.2 0.4 0.6 0.8 1 A x1 x2 x3 x4 x5 x6 0.15 0.2 0.42 0.6 0.8 0.9 A x1 x2 x3 x4 x5 x6
例2 古代史的分期(指划分奴隶社会和封建 社会的界限)是模糊的,可表示为模糊集
1 1 0.9 0.7 0.5 0.4 0.3 0.1 A 夏 商 西周 春秋 战国 秦 西汉 东汉
x11 x21 ... x n1
x12 x22 ... xn 2
... x1m ... x2 m ... ... ... xnm
平移 • 标准差变换
xij
xij x j sj
(i 1,2,..., n, j 1,2,..., m)
§1.4 模糊等价关系与经典等价关系
模糊等价关系
若模糊关系R是X上各元素之间的模糊关系, 且满足: (1)自反性:R(x, x) =1; I ≤R ( rii =1 ) (2)对称性:R(x, y) =R(y, x); T=R( rij= rji) R (3)传递性:R2R, R2≤R. 则称模糊关系R是X上的一个模糊等价关系.
(2) 确定最佳分类 将20个已知DNA序列分成如下3类为最佳: A1 ={1,2,3,5,6,7,8 9,10}, A2 ={4,17}, A3 ={11,12,13,14,15,16,18,19,20}. 建立标准模型库:A1, A2, A3. (3) 未知DNA序列的模糊识别 采用格贴近度公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 模糊数学方法建模1965年,美国自动控制学家首先提出了用“模糊集合”描述模糊事物的数学模型。

它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。

模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。

而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。

§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。

如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。

但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。

所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。

综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。

例如体育比赛中五项全能的评判,就是采用这种方法。

另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。

以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。

由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。

模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。

应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。

因素就是对象的各种属性或性能,在不同场合,也称为参数指标或质量指标,它们综合地反映出对象的质量,人们就是根据这些因素给对象评价。

(2)建立评判集},,,{21m V V V V =。

例如对工业产品,评判集就是等级的集合。

(3)建立单因素评判。

即建立一个从U 到)(V F 的模糊映射U u V F U f i ∈∀→),(:~mim i i i i V rV r V r u f u +++=→ 2211~~)( )1,1,10(m j n i r ij ≤≤≤≤≤≤ 由~f 可诱导出模糊关系~R ,得到单因素评判矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n n m m r r r r r r r r r R 212222111211~ (4)确定权重。

由于对U 中各因素有不同的侧重,需要对每个因素赋予不同的权重,它可表示为U 上的一个模糊子集},,,{21~n a a a A =,并且规定∑==ni ia11。

(5)综合评判。

在~R 与~A 求出之后,则综合评判为~~~R A B =,记},,,{21~m b b b B =,它是V上的模糊子集。

其中),,2,1()(1m j r a b ij i ni j =∧∨==如果评判结果∑=≠mj jb11,应将它归一化。

在模糊综合评判的上述步骤中,建立单因素评判矩阵~R 和确定权重分配~A ,是两项关键性的工作,没有统一的格式可以遵循,一般采用统计实验或专家评分等方法求出。

二、应用实例例1 对教师教学质量的综合评判。

设因素集 },,,,{54321u u u u u U =这里1u 为教材熟练,2u 为逻辑性强,3u 为启发性强,4u 为语言生动,5u 为板书整齐。

设评价集 },,,{4321V V V V V =这里1V 为很好,2V 为较好,3V 为一般,4V 为不好。

通过调查统计得出对某教师讲课各因素的评语比例如下:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1.01.05.03.01.01.04.04.01.02.04.03.001.04.05.01.02.025.045.0~R假定确定权重分配为 )1.0,2.0,2.0,2.0,3.0(~=A 得出综合评判如下 )1.0,2.0,25.0,3.0(~~~==R A B对结果进行归一化 )12.0,24.0,29.0,35.0(85.01.0,85.02.0,85.025.0,85.03.0~=⎪⎭⎫⎝⎛=B 评判结果表明,对该教师的课堂教学认为“很好”的占35%,“较好”的占29%,“一般”的占24%,“不好”的占12%,根据最大隶属原则,结论是“很好”。

例2 评判某地区是否适宜种植橡胶。

给定三个对橡胶生长影响较大的气候因素作为因素集,即},,{321u u u U =。

这里1u 为年平均气温,2u 为年极端最低气温,3u 为年平均风速。

再给定评价集},,,{4321V V V V V =,这里1V 为很适宜,2V 为较适宜,3V 为适宜,4V 为不适宜。

根据历年的资料和经验,选定类似戒上型的隶属函数,即对于年平均气温1u⎪⎩⎪⎨⎧<≤-+≥=230,)23(1123,1)(1211111u u a u u μ其中1a 为参数,一般取0625.01=a 。

对于年极端最低温度2u⎪⎩⎪⎨⎧<≤--+≥=84,)8(118,1)(2222222u u a u u μ其中2a 为参数,一般取0833.02=a 。

对于年平均风速3u⎪⎩⎪⎨⎧>-+≤=1,)1(111,1)(3233333u u a u u μ其中2a 为参数,一般取82/8.03=a 。

将某地区自1960年至1978年间每年对三个气候因素实测的数据,分别代入上面三个隶属函对隶属度的大小给予分类,即规定(1)当9.0≥μ时,为“很适宜”; (2)当8.09.0≥>μ时,为“较适宜”; (3)当7.08.0≥>μ时,为“适宜”;(4)当7.0<μ时,为“不适宜”。

以单因素1u 为例,该地区在19年中“很适宜”的年份有8年,占总数的42%,“较适宜”的年份有11年,占58%,其他两种均无,占0%,于是得到对1u 而言V 上的模糊集 )0,0,58.0,42.0(0058.042.04321~1=+++=V V V V u 同理可得相对其它两个因素的模糊集)74.0,26.0,0,0(~2=u ,)63.0,26.0,11.0,0(~3=u 。

从而建立了单因素评判矩阵⎪⎪⎪⎭⎫ ⎝⎛=63.026.011.0074.026.0000058.042.0~R 根据三个气候因素的作用,给定权重分配为)01.0,80.0,19.0(~=A得出综合评判如下 )74.0,26.0,19.0,19.0(~~~==R A B对结果进行归一化 )53.0,19.0,14.0,14.0(~=B根据最大隶属原则,结论是判定该地区种植橡胶为“不适宜”。

例3 污水处理厂运行管理效果的综合评判。

为了评价污水处理厂经营管理的优劣,给定5个评判因素},,,,{54321u u u u u U =。

这里1u 为每天处理污水量(千吨/日),2u 为五日生化需氧量BOD5去除率(百分比),3u 为浮物SS 去除率(百分比),4u 为气水比(处理一吨污水消耗的空气量)(立方米/吨),5u 为单耗(用去一公斤BOD5所耗电的度数)。

给出评价集},,,,{54321V V V V V V =。

这里1V 为很好,2V 为好,3V 为中等,4V 为差,5V 为很差。

根据实际情况进行定级,以1u 为例,当181>u 时,定为“很好”;17181>≥u 时定为“好”对某污水处理厂多年运行的大量实测数据经技术处理后,按每一旬得出各因素的平均值,见下表。

根据上表建立单因素评判矩阵~R ,例如对因素4u 而言,总共36次统计中它属于1V 的次数为10,占总数的28%,因而28.041=r ,其余类似可求,于是得到⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10.006.014.020.050.0006.017.050.028.003.014.011.028.044.0008.008.020.064.036.019.025.014.006.0~R这是根据以往数据建立的评判矩阵,对今后每旬的运行效果的评价,还须求出权重分配~A ,各个因素对~A 的隶属度,用如下隶属函数公式计算:(1)1u 对~A 的隶属函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<-≤<-->=15,05.1615,)15(92185.16,)18(92118,1)(1121121111u u u u u u u μ(2)2u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫⎝⎛-->=80,05.8680,13802935.86,13932193,1)(2222222222u u u u u u u μ (3)3u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫ ⎝⎛-->=80,05.8680,13802935.86,13932193,1)(3323323333u u u u u u u μ (4)4u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫⎝⎛--≤=10,0105.8,31025.87,37217,1)(4424424444u u u u u u u μ (5)5u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫ ⎝⎛--≤=2.1,02.105.1,3.02.1205.19.0,3.09.0219.0,1)(5525525555u u u u u u u μ 于是权重分配确定为))(,)(,)(,)(,)((5544332211~u u u u u A μμμμμ=。

根据~~~R A B =,即可得出当前运行效果的综合评判。

例如该厂某月上旬的各项因素平均数据为:1u =,2u =%,3u =%,4u =,5u =,将它们分别带入上面五个隶属函数公式,即可求出)0,68.0,1,1,0(~=A 。

从而求出)03.0,14.0,17.0,50.0,64.0(~~~==R A B ,归一化后得)02.0,09.0,11.0,34.0,43.0(~=B 。

根据最大隶属原则,结论是运行管理效果“很好”。

若该月中旬得到的综合评判为)12.0,09.0,13.0,26.0,33.0(~=B ,虽然也评为“很好”,但与上旬相比,隶属于“很好”的程度低于上旬,因而可以认为上旬的经营管理比中旬好。

相关文档
最新文档