平面几何中的向量方法教学设计

合集下载

高中数学教案《平面向量及其应用》

高中数学教案《平面向量及其应用》

教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。

2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。

二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。

●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。

三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。

o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。

o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。

2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。

o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。

●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。

●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。

3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。

o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。

4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。

平面向量及其应用单元教学设计

平面向量及其应用单元教学设计

平面向量及其应用单元教学设计一、教学目标1.了解平面向量的概念和基本性质;2.掌握平面向量的运算法则和性质;3.能够应用平面向量解决实际问题,如平面几何、力的合成等。

二、教学重点1.平面向量的概念和基本性质;2.平面向量的运算法则和性质。

三、教学难点1.平面向量的运算法则和性质的灵活应用;2.高级问题的解题思路。

四、教学过程第一课时:平面向量的概念和基本性质1.引入(5分钟)通过引入平面几何中的问题,如平面上两点的连线,引导学生了解平面向量的概念,激发学生的兴趣。

2.概念解释(10分钟)给出平面向量的定义,并通过一些实际例子进行解释,让学生理解平面向量的基本概念和含义。

强调向量有大小和方向之分。

3.向量的表示(10分钟)介绍向量的表示方法,如用有序数对表示、用字母表示等,并通过图示向学生做具体演示,帮助学生理解。

4.向量的相等和相反(10分钟)让学生通过比较向量的对应坐标来判断向量的相等和相反的概念,引导学生思考向量的性质。

5.向量的性质(10分钟)讲解向量的性质,如平行四边形法则、三角形法则、平行性、垂直性等,并给予一些实例进行解释和演示。

第二课时:平面向量的运算法则和性质1.平行向量与共线向量(10分钟)通过对两个向量的坐标做比较,让学生通过观察判断向量的平行和共线性质,并解释其原理。

2.向量的加法(15分钟)介绍向量的加法法则,通过向量的对应坐标相加得到结果向量的坐标,然后通过图示向学生做具体演示,并做练习题帮助巩固。

3.向量的减法(15分钟)介绍向量的减法法则,通过向量的对应坐标相减得到结果向量的坐标,然后通过图示向学生做具体演示,并做练习题帮助巩固。

4.向量的数量积(10分钟)介绍向量的数量积运算法则,通过两个向量对应坐标相乘并相加得到结果标量,让学生理解向量的数量积运算。

第三课时:平面向量的应用1.平面几何问题(10分钟)通过一些实际问题,如平面上的三角形面积、距离问题等,让学生应用平面向量解决几何问题。

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用高中数学备课教案:向量的平面向量几何应用一、引言在高中数学中,向量是一个重要的概念,它具有广泛的应用。

其中,平面向量几何应用是向量的一个重要应用领域。

本篇教案将重点介绍向量的平面向量几何应用,并针对备课内容进行详细讲解。

二、向量的概念回顾在开始讲解向量的平面向量几何应用之前,我们首先回顾一下向量的概念。

向量是由大小和方向共同决定的有向线段,通常用有向线段的起点和终点表示。

向量的大小可以通过向量的模、长度或大小来表示,向量的方向可以用角度、单位向量或方向角来表示。

三、平面向量几何应用1. 向量的共线与共面判定向量的平面向量几何应用中,一个重要的问题是如何判断向量的共线与共面关系。

对于两个向量,如果它们的方向相同或相反,则称这两个向量共线;如果三个向量在同一个平面内,则称这三个向量共面。

2. 向量的数量积向量的数量积是向量的一种重要运算。

通过计算两个向量的数量积,我们可以求得它们的夹角、判定两个向量是否垂直、求解平面向量的几何问题等。

通过具体的例题,我们将详细介绍向量的数量积的计算方法及其应用。

3. 平面向量的线性组合平面向量的线性组合是指将若干个向量按照一定的比例相加得到的向量。

线性组合在平面向量几何中具有重要的意义,可以用来表示平面上的任意向量。

4. 平面向量与几何图形的关系在平面向量几何中,向量和几何图形之间有着密切的联系。

例如,可以通过向量的平移、旋转、反射等操作来描述几何图形的变换关系。

通过分析几何图形的性质,我们可以通过向量解决一些与几何图形相关的问题。

5. 平面向量的共面条件在平面向量几何应用中,我们常常需要判断若干个向量是否共面。

通过理论推导和实例演示,我们将介绍平面向量的共面条件以及解决问题的方法。

四、结语通过本教案的学习和讲解,我们详细介绍了向量的平面向量几何应用。

平面向量几何应用是高中数学中一个重要的应用领域,它为我们解决几何问题提供了强有力的工具和方法。

《平面向量的概念》教学设计

《平面向量的概念》教学设计

《平面向量的概念》一、教学内容分析:1、课程要求要求了解向量的实际背景,通过位移等物理背景引入向量的概念;理解向量的概念,掌握向量的表示方法,掌握生活中的向量。

通过对平面向量的有关概念、表示的学习,培养数学抽象、直观想象,逻辑推理的核心素养。

2、教材的地位和作用向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.3、教学重点:向量的相关概念,向量的几何表示和符号表示二、教学目标设计1、知识与技能目标1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;2)识记向量模的定义,会用字母和线段表示向量的模.2、过程与方法目标学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.3、情感态度与价值观目标通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生数学抽象,直观想象,逻辑推理的核素素养.教学难点:向量的几何表示的理解三、学情分析(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学学法:在学法上,采用的是发现,归纳,练习。

从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.五、教学过程课上教学过程:1、创设问题情境,引出向量的实际背景问题1:左图是我某天晨跑的路线图,一共4公里,从水晶城到达维也纳,用时25分钟;请问在这个事件中出现了哪些物理量?问题2:你还能举出哪些与位移,时间,路程类似的物理量?问题3:物理上有标量和矢量之分,请问速度,加速度,路程,位移,力,时间,功等这些“量”哪些是矢量,哪些是标量,他们有什么不同?【设计意图】数学的学习应该是与学生的生活融合起来,由生活的实例引入,在数学教育中渗透德育,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量形成对概念的初步认识,为进一步抽象概括做准备。

(教学设计)平面几何中的向量方法(第一稿)

(教学设计)平面几何中的向量方法(第一稿)

《平面几何中的向量方法》教学设计广州市花都区圆玄中学陈苑莉【教学目标】1、知识与技能通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”。

2、过程与方法:学生通过自主探究,明白平面几何图形中的有关性质,如平行、垂直、长度、夹角等可以由向量的线性运算及数量积表示。

3、情感态度与价值观:通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.【教学重点】用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”【教学难点】如何将几何等实际问题化归为向量问题.【教学设计说明】1、教材分析:(1)本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.(2)研究几何可以采取不同的方法,有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.2、学情分析在此之前,学生已经掌握向量的线性运算、基本定理、坐标表示、数量积等内容,但是在动手操作与实际运用等方面,发展不均衡,有待加强。

3、教学策略与手段1)突出重点:通过将例1条件具体化、问题细化的一个探究题目;让学生发现向量与几何有密切联系,向量方法可以解决几何问题。

高中数学必修四《平面几何中的向量方法》优秀教学设计

高中数学必修四《平面几何中的向量方法》优秀教学设计

2.5.1平面几何中的向量方法一、教学目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”;2.了解平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;3.通过对新方法的探求,渗透教学内容中普遍存在的相互联系、相互转化的观点学情分析高一学生的应用意识和应用能力比较弱,而运用向量知识解决几何问题,需要有一定的知识迁移、语言转换能力,这些要求对学生的学习造成了一定的困难。

在思维层面上,学生往往难以想到平面几何与向量之间的密切联系,或是不善于将几何实际问题转化为向量问题来解决。

因此,在本节应用实例课的教学过程中,重点将放在向量的几何背景知识上,着重引导学生怎样将几何实际问题转化为向量问题。

二、教学重、难点重点:用向量方法解决几何问题的基本方法和基本步骤 难点:如何构建向量模型将平面几何问题化归为向量问题 三、教学过程: (一)直接引入向量概念和运算,都有明确的物理背景和几何背景。

当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。

(二)探究新知 【情境引入】长方形对角线的长度与两条邻边长度之间有何关系?答:222222AB BC CD DA AC BD +++=+【师生活动】教师设问,学生画图,【设计意图】长方形是特殊的平行四边形,公式结论是学生已知的,为研究平行四边形这个一般问题奠定了基础,体现了由特殊到一般的数学思想.例1.平行四边形是表示向量加法与减法的几何模型.如图,AC AB AD DB AB AD =+=-, 类比长方形对角线的长度与两条邻边长度之间的上述关系,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?思考1:题中的几何问题可转化为向量问题吗? 【师生活动】分析:不妨设,AB a AD b ==, (选择这组基底,其它线段对应向量用它们表示.) 则,AC a b DB a b =+=-,2222,AB a AD b ==.涉及长度问题常常考虑向量的数量积,为此,我们计算22,AC DB . 解:222()()2AC AC AC a b a b a a a b b a b b a a b b==++=+++=++(1)同理2DB =222.a a b b -+(2)观察(1),(2)两式的特点,我们发现,(1)(2)+得2222222()2()AC DB a b AB AD +=+=+即平行四边形对角线的平方和等于两条邻边平方和的两倍.【设计说明】教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系,利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和,并运用向量方法进行证明.【设计意图】借助平行四边形这个向量加法与减法的几何模型,引导学生用向量的数量积证明与长度有关的几何问题,加强向量方法的“三步曲”的应用.思考2:向量也可以坐标运算,那么本题可以如何建立直角坐标系,设点的坐标转化为向量的坐标进行运算呢?解:如图建立平面直角坐标系,设(,0),(,)B a D b c ,则(,)C a b c +(,0),(,),AB a AD b c ==(,),(,)AC a b c DB a b c =+=--22||,||,AB a AD b c ==+22||(),||()AC a b c DB a b c =++=-+2222AB BC CD DA +++=222222(||||)2(),AB AD a b c +=++22AC BD +=22222||||2()AC DB a b c +=++222AB BD +=|222AD AB += 2222||||||||AD DC BC AB +++【师生活动】教师可引导学生思考探究,利用向量的几何法简捷地解决了平面几何问题,可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标,如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢? 教师引导学生建系、找点的坐标,然后让学生独立完成.【设计意图】进一步调动学生的思维,引导学生应用不同的向量方法解决典型问题,有利于培养学生的发散思维能力.思考3:如果不用向量方法,你能用其他方法证明上述结论吗? 证明:作CF AB ⊥于F ,DE AB ⊥于E ,则RT ADE RT BCF ∆≅∆,,AD BC AE BF ∴==, 由于22222()AC AF CF AB BF CF =+=++2222222AB BF AB BF CF AB BC AB BF=+++=++22222222()2BD BE DE AB AE DE AB AB AE AE DE =+=-+=-++222AB AB AE AD =-+222AB AB AE BC =-+22222()AC BD AB AD ∴+=+.【师生活动】教师可引导学生思考探究,学生作辅助线,利用平面几何勾股定理解决问题.【设计意图】教师充分让学生对以上各种方法进行分析比较,在培养学生发散思维的同时,让学生体会向量法解决几何问题的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.方法四:证明:由余弦定理得2222cos AC DA DC DA DC CDA =+-⋅⋅∠ ① 2222cos BD AD AB AD AB DAB =+-⋅⋅∠ ②DC AB =且CDA DAB π∠=-∠cos cos()cos CDA DAB DAB π∴∠=-∠=-∠ ∴①+②得222222AC BD AB AD +=+(三)理解新知【师生活动】师:通过以上问题的解决,我们总结一下运用向量方法解决平面几何问题可以分哪几个步骤?生:运用向量方法解决平面几何问题“三步曲”: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系.师生共同简述:形到向量 ⇒ 向量的运算⇒向量和数到形.【设计意图】总结解题方法,加深对用向量方法处理平面几何问题的一般步骤的理解,突破重难点.(四)运用新知例2.如图,平行四边形ABCD 中,点,E F 分别是,AD DC 边的中点,,BE BF 分别与AC 交于,R T 两点,你能发现,,AR RT TC 之间的关系吗?猜想:AR RT TC ==【师生活动】分析:由于,R T 是对角线AC 上的两点,要判断,,AR RT TC 之间的关系,只需分别判断,,AR RT TC 与AC 的关系即可解:第一步, 建立平面几何与向量的关系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题:设,,,AB a AD b AR r AC a b ====+则. 第二步, 通过向量运算,研究几何元素之间的关系: 由于AR 与AC 共线,所以我们设又因为12EB AB AE a b =-=-ER 与EB 共线,所以我们设1()2ER mEB m a b ==-因为(),AR r nAC n a b n R ===+∈A R A E E R=+所以11()22r b m a b =+- 因此11()()22n a b b m a b +=+-, 即1()()02m n m a n b --++=. 由于向量,a b 不共线,要使上式为0,必须0102n m m n -=⎧⎪⎨-+=⎪⎩. 解得13n m ==. 所以13AR AC =. 同理13TC AC =. 于是13RT AC =. 第三步,把运算结果“翻译”成几何关系AR RT TC ==.【设计说明】此题对学生而言有一定难度,先用几何画板动态演示并展示测量的数据,让学生观察猜想出结论,师生共同分析,指导学生如何将几何问题化归为向量问题,突破本题难点,引导学生用待定系数法表示两平行向量,进而解答出此题. 通过“举一反三”,让学生熟练应用此题中的数学思想和方法.【设计意图】通过此题进一步熟悉向量法的“三步曲”的应用,同样重要的是此题应用到了平行向量基本定理和平面向量基本定理,用向量的数乘表示其平行向量的重要数学思想,和待定系数法这个重要的数学方法.通过此题启发学生灵活运用向量工具解几何问题.变式练习1. 已知AC 为圆O 的一条直径,ABC ∠为圆周角.求证:90ABC ∠=. 证明:设,,AO a OC OB b a b ====,AB AO OB a b =+=+BC a b =-,22()()0AB BC a b a b a b =+-=-=AB BC ∴⊥,90ABC ∴∠=.【设计意图】让学生学会灵活的利用圆的特性、线段垂直的关系等知识巧妙地将几何问题化归为向量问题.变式练习2. 已知在等腰ABC ∆中,,BB CC ''是两腰上的中线,且BB CC ''⊥,求顶角A 的余弦值.解:建立如图所示的平面直角坐标系,取(0,),(,0)A a C c 则(,0)B c -,(0,),(,),(,0),(2,0)OA a BA c a OC c BC c ====.因为,BB CC ''′都是中线,所以'BB =21()BC BA += 3(,)22c a, 同理CC =3(,)22c a-.因为BB CC ''⊥,所以229044ac -+=,229a c =. 所以cos A =542992222222=+-=+-=c c c c ca c a . 【设计说明】教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.【设计意图】本例利用的方法与探究2有所不同,但其本质是一致的,比较两种解法的异同,找出其内在的联系,以达融会贯通,灵活运用. 课堂练习:1.向量,,b OB a OA ==且不共线, 则AOB ∠的平分线OM 可表示为( D ).,.,a b a b A B aba b+++..()b a a b a b C D a babλ+++2.如图,已知,,AD BE CF 是ABC ∆三条高.求证:,,AD BE CF 交于一点. 分析:设AD 与BE 交于H ,只须证⊥由此可设=,=,=如何证⊥?如何证0=⋅?利用AH ⊥CB ,BH ⊥CA .(解答过程由学生完成) (五)课堂小结1.用向量法解平面几何问题的基本思路 用向量方法解决平面几何的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系.简述:形到向量 ⇒向量的运算⇒向量和数到形. 2.本节课用到了哪些思想方法? 平面向量的基本定理ABC D EFH如果12,e e 是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.说明:(1)作为基底的两个向量必须不共线(2)用基底可以表示平面内任意一个向量 (3)基底给定时,分解形式唯一.当要表示同一平面内的多个向量时,要想到“向量基底化”思想.【设计意图】使学生把解题过程中的思想方法总结出来,达到思维能力的提升,从而更广泛的应用于以后的学习中. (六)布置作业 1.必做题:课本P113 A 组1、2 2.选做题: 设过AOB ∆的重心G 的直线与边,OA OB 分别交于点,P Q ,设,OP xOA OQ yOB ==,AOB ∆ 与OPQ ∆的面积分别是,S T ,证明:(1)311=+y x ; (2)S T S 2191≤≤. 【设计意图】巩固基础知识,设置分层作业,满足每一位学生,增强学生学习数学的愿望和信心.3. 课后练习 自主学习丛书2.5ABO PQG。

平面几何中的向量方法 (解析版)

《平面几何中的向量方法》教案数学学科素养1.逻辑推理:从直观入手,从具体开始,逐步抽象,得出结论;2.数学运算:坐标运算证明几何问题;3.数据分析:根据已知信息选取合适方法证明或求解;4.数学建模:数形结合,将几何问题转化为代数问题解决,体现了事物之间是可以相互转化的. 重点:体会向量在解决平面几何问题中的作用; 难点:如何将几何问题化归为向量问题.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学过程一、 情景导入1. 平面向量的运算在几何中的运用(1)证明线线平行和点共线问题此类问题常用向量共线基本定理:若()()1122,,,a x y b x y ==,其中0b ≠,则1221//a b a b x y x y λ⇔=⇔=.(2)证明垂直问题 此类问题常用向量数量积的运算性质:112200a b a b x y x y ⊥⇔⋅=⇔+=,其中非零向量()()1122,,,a x y b x y ==.(3)求夹角问题 此类问题可利用夹角公式:21cos a ba b x θ⋅==+,其中非零向量()()1122,,,a x y b x y ==. (4)求线段的长度此类问题可以用向量的模的计算公式:若(),a x y =,则22||a a x ==+2.中点坐标公式和三角形重心坐标公式:(1)中点坐标公式:若111222( ) ( ) ( )P x y P x y P x y ,,,,,,且P 为12P P 的中点:则121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ ; (2)三角形重心坐标公式:若ABC ∆的三个顶点坐标为:111222( ) () ( )P x y P x y P x y ,,,,,,( )P x y ,为ABC ∆的重心,则12312333x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩;注意:重心分ABC ∆的中线为2:1的性质. 拓展:定比分点的坐标公式设111222( ) ( ) ( )P x y P x y P x y ,,,,,,因为12P P PP λ=,所以:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩注意:根据这个公式可以在111222( ) () ( )P x y P x y P x y ,,,,,三个量中,知道两个求第三个;3.平移和平移公式:点的平移公式:设( )P x y ,是旧点,它按() a h k =,平移后的新点是'(' ')P x y ,,则它们的坐标有如下关系: ''x x hy y k =+⎧⎨=+⎩;注:应用这个公式可以对新旧点和平移向量三个量中,解决知二求一的问题.四、典例分析题型一 向量在平面几何证明问题中的应用例1 在直角梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB ,求证:AC ⊥BC .[证明] 证法一:∵∠CDA =∠DAB =90°,AB ∥CD ,CD =DA =12AB ,故可设AD →=e 1,DC →=e 2,|e 1|=|e 2|,则AB →=2e 2. ∴AC →=AD →+DC →=e 1+e 2,BC →=AC →-AB →=(e 1+e 2)-2e 2=e 1-e 2.而AC →·BC →=(e 1+e 2)·(e 1-e 2)=e 21-e 22=|e 1|2-|e 2|2=0,∴AC →⊥BC →,即AC ⊥BC .证法二:如图,建立平面直角坐标系,设CD =1,则A (0,0),B (2,0),C (1,1),D (0,1). ∴BC →=(-1,1),AC →=(1,1).∴BC →·AC →=(-1,1)·(1,1)=-1+1=0. ∴AC ⊥BC .变式训练1: 如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .【答案】见解析.【解析】证明 法一:设AD ―→=a ,AB ―→=b ,则|a |=|b |,a·b =0,又DE ―→=DA ―→+AE ―→=-a +12b ,AF ―→=AB ―→+BF ―→=b +12a ,所以AF ―→·DE ―→=⎝⎛⎭⎫b +12a ·⎝⎛⎭⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF ―→⊥DE ―→,即AF ⊥DE .法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF ―→=(2,1),DE ―→=(1,-2).因为AF ―→·DE ―→=(2,1)·(1,-2)=2-2=0,所以AF ―→⊥DE ―→,即AF ⊥DE .用向量证明平面几何问题的两种基本思路 (1)向量的线性运算法的四个步骤①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;④把几何问题向量化.(2)向量的坐标运算法的四个步骤①建立适当的平面直角坐标系;②把相关向量坐标化;③用向量的坐标运算找相应关系;④把几何问题向量化.变式训练2: 如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB=12.求证:点E ,O ,F 在同一直线上.证明 设AB →=m ,AD →=n , 由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=FA →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上.题型二 向量在平面几何计算问题中的应用例2 已知在Rt △ABC 中,∠C =90°,设AC =m ,BC =n . (1)若D 为斜边AB 的中点,求证:CD =12AB ;(2)若E 为CD 的中点,连接AE 并延长交BC 于点F ,求AF 的长度(用m ,n 表示). [解] (1)证明:以C 为坐标原点,以边CB ,CA 所在的直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,则A (0,m ),B (n,0). ∵D 为AB 的中点,∴D ⎝ ⎛⎭⎪⎫n 2,m 2.∴|CD →|=12n 2+m 2,|AB →|=m 2+n 2,∴|CD →|=12|AB →|,即CD =12AB .(2)∵E 为CD 的中点, ∴E ⎝ ⎛⎭⎪⎫n 4,m 4,AE →=⎝ ⎛⎭⎪⎫n4,-34m ,设F (x,0),则AF →=(x ,-m ). ∵A ,E ,F 三点共线,设AF →=λAE →, 即(x ,-m )=λ⎝ ⎛⎭⎪⎫n4,-34m .则⎩⎪⎨⎪⎧x =n4λ,-m =-34mλ,故λ=43,x =n 3,∴F ⎝ ⎛⎭⎪⎫n 3,0,∴|AF →|=13n 2+9m 2,即AF =13n 2+9m 2.用向量法求平面几何中的长度问题,即向量的模的求解,一是利用图形特点选择基底,向向量的数量积转化,利用公式|a |2=a 2求解;二是建立平面直角坐标系,确定相应向量的坐标,代入公式求解,即若a =(x ,y ),则|a |=x 2+y 2.变式训练3:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解 设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b , 而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,∴5-2a ·b =4,∴a ·b =12.∴|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6, ∴|AC →|=6,即AC = 6.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业1、在直角梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB ,求证:AC ⊥BC .2 在正ABC ∆中,D 是边BC 上的点,且1,3==BD AB ,则AD AB ⋅的值为 .BCC 1解:如图,过D 作AB D D ⊥'于D ',则2160cos =='BD D B , ∴25213=-='D A , 由数量积的几何意义得D A AB AD AB '⋅=⋅215=. 3 在ABC ∆中,90=∠BAC ,6=AB ,D 在斜边BC 上, 且DB CD 2=,则AD AB ⋅的值为 .4 在ABC ∆中,AB AD⊥,BC =1=,则=⋅AD AC .这是一道有相当难度的高考题,但若从向量的几何意义出发展开思考, 不仅思路自然,而且过程简单.B C D。

优秀高中数学向量教案

优秀高中数学向量教案
课时安排:2个课时
课堂内容:
第一课时:
1.引入向量的概念,介绍向量的定义和表示方法。

让学生了解向量的性质和运算规则。

2.教授向量的加法和减法。

通过示范和练习,让学生掌握向量加减法的方法。

3.讨论向量的数量积和向量的夹角。

引导学生理解向量的数量积和夹角的概念,并通过实例演练加深理解。

第二课时:
1.复习向量的加减法,数量积和夹角概念。

2.讲解向量的应用,如解决平面几何问题,力的合成与分解等。

3.进行一些综合练习,让学生熟练运用向量知识解题。

作业布置:完成课堂练习,巩固所学内容。

课堂评价:通过课堂练习和课后作业,检查学生对向量的理解和掌握情况。

补充材料:提供相关的练习题和习题解析,帮助学生巩固向量知识。

教学目标:使学生掌握向量的概念、运算方法和相关的应用,提高学生的数学解题能力和思维能力。

平面几何中的向量方法学案

必修42.5.1平面几何中的向量方法【学习目标】1.通过平行四边形这个几何模型,能归纳总结出用向量方法解决平面几何问题的”三步曲”.2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.3.通过实例体会向量在处理平面几何问题中的优越性.【学习重点】用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲” 【难点提示】向量法解决几何问题“三步曲”的灵活运用【学法提示】1.请同学们课前将学案与教材109111P 结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题:1.在前面的学习中,我们遇到过哪些问题,运用了哪些思想方法求解?(链接1)2. 在前面的学习中,求解有关向量问题的易错点有哪些?(连接2) 请同学们先独立回顾与归纳总结后,在阅读学习链接.二、学习探究 探究向量在平面几何中的运用在前面我们谈到向量的地位作用,向量是一个具有综合性与工具性的知识,在数学领域有及其重要的地位与作用,特别在平面几何与物理学中有极为重要的运用,如:问题1: 求证:平行四边形对角线的平方和等于两条邻边平方和的2倍.已知:如图2.5.1-1,ABCD 为平行四边形,求证:22222()AC BD AB BC +=+模型.从理论上讲,如果a 与b那么其对角线的长度就确定了,即可以用a 与b 得出对角线长 度的计算公式.证明:解后反思 该题是平面几何中的重要结论吗?求解的方法与步骤怎样?能从该题的求解归纳出运用向量法解决几何问题的三步曲吗?(链接3)变式问题已知如图2.5.1-2,AC 为⊙O 的一条直径,∠ABC 为圆 周角.求证:∠ABC =90o. 证明:问题2.如图2.5.1-3,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、 BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗? 探究:变式问题 如图2.5.1-4已知AC 、BD 是梯形ABCD 的对角线,E 、F 分别为BD 、AC 的中点,求证:EFBC .证明:问题3.如图,AD ,BE ,CF 是△ABC 的三条高. 求证: AD ,BE ,CF 相交于一点. 证明:图2.5.1-5A图2.5.1-1图2.5.1-2BC图变式问题 如图2.5.1-6,用平面向量的方法证明:三角形的三条中线交于一点 证明:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样? 你提问了吗?我们的学习目标达到了吗?如:你能根据你的体会来归纳总结向量在几何、物理、三角等方面得运用的方法与步骤呢?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?(链接4)五、学习评价1.平面上有四个互异的点,,,A B C D ,(2)()0DB DC DA AB AC +-∙-=,ABC ∆的形状( )A 直角三角形B 等腰三角形C 等腰直角三角形D 等边三角形 2.点O 是平面上一定点,,,A B C 是平面上不共线的三点,动点P 满足(),[0,)AB AC OP OA ABACλλ=++∈+∞,则动点P 的轨迹一定通过△ABC 的( )A 外心B 内心C 重心D 垂心3.在以下关于向量的命题中,不正确的命题是( ) (A )若向量= ( x ,y ),向量= ( – y ,x ),则⊥(B )四边形ABCD 是菱形的充要条件是AB =DC 且|AB | = |AD | (C )若点G 是△ABC 的重心,则GA +GB +CG = (D )△ABC 中,AB 和CA 的夹角等于180°– A4.已知△ABC 中,b AC a AB ==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC =____________________.5.设P 为△ABC 内一点,且2155AP AB AC =+,.则△ABP 的面积与△ABC 的面积之比为6.已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值; (2)若∠A 是钝角,求c 的取值范围. 解:DA7.已知ABC ∆中,45,B AC C ∠===, (1)求BC 边的长; (2)记AB 的中点为D ,求中线CD 的长 解:8.教材P113页习题2.5A 组1、2题,B 组3题. 解;【学习链接】链接1.有关向量问题的基本题型有:(1)有关向量概念的判断题;(2)有关向量的基本运算问题(向量的线性运算、数量积、模、夹角、单位向量等);(3)有关向量平行与垂直的问题(三点共线问题、满足向量平行或垂直的条件下求参数值等);(4)向量及向量数量积在几何中的运用;(5)向量及向量数量积在三角中的运用(特别与三角形的中位线、“四心”等的联系);(6)平面向量的综合性问题.求解有关向量问题的思想方法有:(1)函数与方程的思想数;(2)形结合的思想;(3)划归与转化的思想;(4)分类讨论法;(5)性质、公式法;(6)坐标法;(7)纯向量法(直接运用向量求解问题的方法);(8)构造法;(9)特殊化法;用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”;连接2.求解有关向量问题的易错点有:(1)对向量一些基本概念与基本关系的理解不清(如:向量的平行与共线、向量的坐标与点的坐标、向量的夹角与数量积等概念);(2)向量的相关运算出错;(3)对一些向量中的重要性质及结论理解不清、掌握不准;(4)忽视一些特殊向量的特殊性;(5)忽视向量的一些特殊位置关系;(6)忽视向量的综合性与工具性,特别是与平面几何的联系.链接3. 运用向量法解决几何问题的三步曲(见教材P110页):(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3) 把运算结果“翻译”成几何关系,请用心体会.链接4.向量集数形于一身,既有代数的抽象性又有几何的直观性,因而向量方法是几何研究的一个有力工具.而“三步曲”给出了利用向量的代数运算研究几何问题的基本思想.在解决平面几何问题时,将几何问题转化为向量问题是关键.对于具体问题,是选用基向量法还是选用向量的坐标法是难点,利用向量的坐标法有时会给解决问题带来方便.在用向量法证明时,一定要找到向量与结合的联系,把它们灵活的相互转换.。

《用向量法求直线与平面所成的角》教案

《用向量法求直线与平面所成的角》教案第一章:向量基本概念回顾1.1 向量的定义1.2 向量的几何表示1.3 向量的运算1.4 向量的长度与方向第二章:向量投影的概念与计算2.1 向量投影的定义2.2 正投影与斜投影2.3 投影的计算方法2.4 投影在坐标系中的应用第三章:直线与平面所成角的定义与性质3.1 直线与平面所成角的定义3.2 直线与平面所成角的性质3.3 直线与平面所成角的计算方法3.4 直线与平面所成角的应用第四章:向量法求直线与平面所成的角4.1 向量法的基本思路4.2 向量法求直线与平面所成的角的步骤4.3 向量法在实际问题中的应用4.4 向量法求直线与平面所成的角的局限性第五章:练习题及解答5.1 选择题5.2 填空题5.3 解答题5.4 思考题第六章:向量法在空间几何中的应用6.1 向量法在求解空间直线与直线间的角中的应用6.2 向量法在求解空间直线与平面间的角中的应用6.3 向量法在求解空间平面与平面间的角中的应用6.4 向量法在空间几何其他问题中的应用第七章:空间向量与解析几何的综合应用7.1 解析几何的基本概念回顾7.2 空间向量与解析几何的关联7.3 向量法在解析几何问题中的应用7.4 解析几何在向量法中的应用第八章:数值计算方法在向量法中的应用8.1 数值计算方法的基本概念8.2 数值计算方法在向量法中的应用8.3 常见数值计算方法的比较与选择8.4 数值计算方法在实际问题中的应用第九章:案例分析与实践9.1 用向量法求直线与平面所成的角的实际案例分析9.2 向量法在建筑设计中的应用9.3 向量法在导航中的应用9.4 向量法在其他领域中的应用第十章:总结与拓展10.1 本课程的主要内容和收获10.2 向量法在未来的发展趋势10.3 向量法在相关领域的拓展10.4 课程实践与思考重点和难点解析一、向量基本概念回顾难点解析:向量的概念理解,向量的几何表示与坐标表示的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何中的向量方法教学设计
2013-01-15 00:40高燕[博客]2143 字, 阅读66, 评论0
本文收录在82714: 教学设计
教学过程:
一、复习引入:
1. 两个向量的数量积:
2. 平面两向量数量积的坐标表示:
3. 向量平行与垂直的判定:
4. 平面内两点间的距离公式:
5. 求模:
练习
教材P.106练习第1、2、3题.;教材P.107练习第1、2题.
二、讲解新课:
例1. 已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.
证明:设
例2. 如图,AD,BE,CF是△ABC的三条高.求证:AD,BE,CF相交于一点.
例3. 平行四边形是表示向量加法与减法的几何模型.如图,
你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
思考1:
如果不用向量方法,你能证明上述结论吗?
思考2:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
例4.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
课堂小结
用向量方法解决平面几何的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
课后作业
1.阅读教材P.109到P.111;
2. 《习案》作业二十五.。

相关文档
最新文档