椭圆知识点及经典例题汇总

椭圆知识点及经典例题汇总
椭圆知识点及经典例题汇总

椭圆知识点

知识要点小结: 知识点一:椭圆的定义

平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121

F F a PF PF >=+ ,这个动

点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121

F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121

F F PF PF <+,则动点P 的轨迹无图形.

知识点二:椭圆的标准方程

1.当焦点在x 轴上时,椭圆的标准方程:12222=+b

y a x )0(>>b a ,其中2

22b a c -=

2.当焦点在y 轴上时,椭圆的标准方程:12222=+b

x a y )0(>>b a ,其中2

22b a c -=;

3.椭圆的参数方程)(sin cos 为参数??

?

??

?==b y a x

注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;

2.在椭圆的两种标准方程中,都有)0(>>b a 和2

2

2

b a

c -=; 3.椭圆的焦点总在长轴上.

当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -

知识点三:椭圆的简单几何性质

椭圆:122

22=+b

y a x )0(>>b a 的简单几何性质

(1)对称性:对于椭圆标准方程122

22=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、

或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122

22=+b

y a x 是以x 轴、y 轴为对称轴

的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:

椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,

b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆122

22=+b

y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为

)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分

别叫做椭圆的长半轴长和短半轴长。

(4)离心率:

①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a

c

a c e ==

22。 ②因为)0(>>c a ,所以e 的取值范围是)10(<

22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这

时椭圆就越接近于圆。 当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为

a y x =+22。

注意: 椭圆122

22=+b

y a x 的图像中线段的几何特征(如下图):

(1))2(2

1a PF PF =+;

e PM PF PM PF ==

2

21

1;

)2(2

2

1c

a PM PM =+;

)(21a BF BF ==;)(21c OF OF ==;2221b a B A B A +==;

(3)c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;

知识点四:椭圆第二定义

一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率

左准线c

a x l 2

1:-= 右准线c a x l 22:=

知识点五:椭圆的焦半径公式:

(左焦半径)01ex a r += (右焦半径)02ex a r -= 其中e 是离心率

焦点在y 轴上的椭圆的焦半径公式:

?

?

?-=+=020

1ey a MF ey a MF ( 其中21,F F 分别是椭圆的下上焦点)

知识点六:直线与椭圆问题(韦达定理的运用)

弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-=

221221)()(kx kx x x -+-= 2121x x k -+=

2122124)(1x x x x k -++=

知识点七:椭圆12222=+b y a x 与 122

22=+b

x a y )0(>>b a 的区别和联系

标准方程

122

22=+b

y a x )0(>>b a 122

22=+b

x a y )0(>>b a 图形

性质

焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F

焦距 c F F 221= c F F 221=

范围 a x ≤,b y ≤

b x ≤,a y ≤

对称性 关于x 轴、y 轴和原点对称

顶点

)0,(a ±,),0(b ± ),0(a ±,)0,(b ±

轴长

长轴长=a 2,短轴长=b 2

离心率

)10(<<=

e a

c

e 准线方程

c

a x 2

±=

c

a y 2

±=

焦半径

01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=

注意:椭圆12222=+b y a x ,122

22=+b

x a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系

都有)0(>>b a 和)10(<<=e a

c

e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。

规律方法:

1.如何确定椭圆的标准方程?

任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。

确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。

2.椭圆标准方程中的三个量c b a ,,的几何意义

椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,

)0(>>c a ,且)(222c b a +=。

可借助右图理解记忆:

显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。

3.如何由椭圆标准方程判断焦点位置

椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2

y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。

4.方程均不为零)C B A C By Ax ,,(2

2

=+是表示椭圆的条件

方程C By Ax =+2

2

可化为

122=+C

By C Ax ,即12

2=+B

C By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆。当

B C A C >时,椭圆的焦点在x 轴上;当B

C

A C <时,椭圆的焦点在y 轴上。

5.求椭圆标准方程的常用方法:

①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。其主要步骤是“先定型,再定量”;

②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。 6.共焦点的椭圆标准方程形式上的差异

共焦点,则c 相同。与椭圆122

22=+b

y a x )0(>>b a 共焦点的椭圆方程可设为

12

222=+++m

b y m a x )(2

b m ->,此类问题常用待定系数法求解。

7.判断曲线关于x 轴、y 轴、原点对称的依据:

① 若把曲线方程中的x 换成x -,方程不变,则曲线关于y 轴对称; ② 若把曲线方程中的y 换成y -,方程不变,则曲线关于x 轴对称;

③ 若把曲线方程中的x 、y 同时换成x -、y -,方程不变,则曲线关于原点对称。

8.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题?

思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2

1

21PF F PF PF S F PF ∠??=

?相结合的方法进行计算解题。 将有关线段2121F F PF PF 、、

,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ?之间的关系.

9.如何计算椭圆的扁圆程度与离心率的关系?

长轴与短轴的长短关系决定椭圆形状的变化。离心率)10(<<=

e a

c

e ,因为222b a c -=,0>>c a ,用b a 、表示为)10()(12

<<-=e a

b e 。

显然:当

a b 越小时,)10(<

b

越大,)10(<

经典例题:

一、椭圆的定义

例1、已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=16,则点P 的轨迹为( )

A 圆

B 椭圆

C 线段

D 直线

例2、椭圆

22

1169

x y -=左右焦点为F 1、F 2,CD 为过F 1的弦,则⊿CDF2的周长为______ 二、椭圆的标准方程

例3、已知方程

22

111x y k k

+=+-表示椭圆,则k 的取值范围是( ) A -10 C k ≥0 D k>1或k<-1

例4、已知方程12-m x +m

y -22

=1,表示焦点在y 轴上的椭圆,则m 的取值范围为 .

例5、求满足以下条件的椭圆的标准方程

(1)长轴长为10,短轴长为6

(2)长轴是短轴的2倍,且过点(2,1) (3) 经过点(5,1),(3,2)

例6、若⊿ABC 顶点B 、C 坐标分别为(-4,0),(4,0),AC 、AB 边上的中线长之和为30,求⊿ABC 的重心G 的轨迹方程。

例7、 已知动圆P 过定点()03,

-A ,且在定圆()64322

=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.

例8、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3

5

2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

三、离心率

例9、椭圆22

221(0)x y a b a b

-=>>的左右焦点分别是F 1、F 2,过点F 1作x 轴的垂线交椭圆于P 点。

若∠F 1PF 2=60°,则椭圆的离心率为_________

例10、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的的离心率为______

例11、椭圆122

22=+b

y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使

AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.

四、最值问题

例12、椭圆2

214

x y +=两焦点为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值为_____,最小值为_____

例14、已知椭圆2

214

x y +=,A(1,0),P 为椭圆上任意一点,求|PA|的最大值和最小值。

六、直线和椭圆

例16、已知直线l :y=2x+m ,椭圆C :22

142

x y +=,试问当m 为何值时: (1)有两个不重合的公共点;

(2)有且只有一个公共点; (3)没有公共点.

例17、已知斜率为1的直线l 经过椭圆2

214

x y +=的右焦点,交椭圆于A 、B 两点,求弦AB 的长.

例18、已知椭圆142

2

=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5

10

2,求直线的方程.

例19、已知椭圆C :2

214

x y +=,直线l:y=kx+1,与C 交于AB 两点,k 为何值时,O A ⊥OB

例20、 已知椭圆1222=+y x ,(1)求过点??

?

??2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足2

1-

=?OQ OP k k , 求线段PQ 中点M 的轨迹方程.

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高中数学 命题知识点考点典型例题

高二数学选修1-1知识点 第一章:命题与逻辑结构 知识点: 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ?,则p ?”. 6、四种命题的真假性:

例题:一个命题与他们的逆命题、否命题、逆否命题这4个命题中()A.真命题与假命题的个数相同 B.真命题的个数一定是偶数 C.真命题的个数一定是奇数 D.真命题的个数可能是奇数,也可能是偶数 答案(找作业答案--->>上魔方格) 一个命题与他们的逆命题、否命题、逆否命题这4个命题, 原命题与逆否命题具有相同的真假性, 否命题与逆命题具有相同的真假性, ∴真命题的若有事成对出现的, 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. ?,则p是q的充分条件,q是p的必要条件. 7、若p q ?,则p是q的充要条件(充分必要条件). 若p q

椭圆知识点及经典例题

椭圆知识点及经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中 222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中 222b a c -=; 3.椭圆的参数方程)(sin cos 为参数??? ? ??==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和 222b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c , )0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质

(1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把 y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分 别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率: ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。 ②因为)0(>>c a ,所以e 的取值范围是)10(<

数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位 置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就 叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211 ,,,,… 数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ① {}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列 实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 (1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1 (1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆 知识点 一.椭圆及其标准方程 1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c}; 这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。 (212F F a =时为线段21F F ,212F F a <无轨迹)。 2.标准方程: 222c a b =- ①焦点在x 轴上:122 22=+b y a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:122 22=+b x a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围 (1)椭圆12222=+b y a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+b x a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心

3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ) (2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭 圆的长半轴长和短半轴长。 4.离心率 (1)我们把椭圆的焦距与长轴长的比 22c a ,即a c 称为椭圆的离心率, 记作e (10<

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质 基础卷 1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >0 2.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为 (A ) 221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22 11625 x y += 3.已知P 为椭圆 22 1916 x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A ) 54 (B )45 (C )4 17 (D ) 7 4 7 4.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A ) 23 (B )33 (C )3 16 (D ) 6 1 6 5.在椭圆122 22=+b y a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有 (A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C ) 123111,,r r r 成等差数列 (D )123 111 ,,r r r 成等比数列 6.椭圆 22 1925 x y +=的准线方程是 (A )x =± 254 (B )y =±165 (C )x =±165 (D )y =±25 4 7.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 . 8.对于椭圆C 1: 9x 2 +y 2 =36与椭圆C 2: 22 11612 x y +=,更接近于圆的一个是 . 9.椭圆122 22=+b y a x 上的点P (x 0, y 0)到左焦点的距离是r = . 10.已知定点A (-2, 3),F 是椭圆22 11612 x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

公开课椭圆习题课教学设计

椭圆习题课 北京化工大学附属中学李爱惠 教材版本:高中数学人教A版选修2-1,第二章圆锥曲线与方程的第四节 一、教学背景分析 (1)学习内容分析: 已经学习了椭圆的定义、标准方程和几何性质这些基础知识,本节课在学习了这些基础知识和基本方法的前提下,以椭圆的焦点三角形为平台,进一步研究用定义和性质解决椭圆问题的方法,并了解与运用椭圆和其它知识点的联系。为后面学习双曲线、抛物线的概念打下良好的基础,学会利用圆锥曲线的定义来解决相关问题的一般性方法,让学生经历解析法解题的过程;本节椭圆习题课的学习是对其学习内容的进一步深化和提高。 (2)学生状况分析 1.学生水平:所任教的班级是普通理科班,有些学生思维水平相对较好,具有一定的分析、解决问题的能力。但因本班是我校的普通班,学生数学基础弱,计算能力弱,对试题的分析解决要在老师的引导下慢慢训练。 2.认知基础:学生在学习这节课之前,已掌握了椭圆的定义和标准方程,也具备自主利用椭圆定义和性质解决一些简单的椭圆问题,所以说从知识和学习方式上来说学生已具备了进一步自行探索和解决问题的基本能力。 3.可能存在的学习困难:等价转化有一定困难;同时代数运算方面有困难;椭圆与三角、不等式等其它知识点的联系存在困难。 二、教法和学法的选择 解析几何要体现用代数研究几何,要教会学生抓住焦点三角形中的不变量和变量,用定义建立运算关系解决几何问题。学生已经对椭圆的定义、性质有了一定的掌握,所以本节课我采用了“启发引导”式的教学方法,重点突出以下两点: (1)以老师引导与学生探究相结合作为本节的学习方法。 (2)教学过程中突出数形结合、方程等数学思想方法的渗透。 以信息技术演示与学生动手实际操作相结合为主要教学手段。

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

(完整版)一元一次不等式组知识点及题型总结(可编辑修改word版)

x 一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 不等式:用不等号表示不等关系的式子,叫做不等式。不等号包括 . 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x≥5 ② 2x -y <0 ③ 2 + 5 ≥ 3 ④ -3<0 ⑤ x=3 ? x 2 + xy + y 2 ⑦ x≠5 ⑧ x 2 - 3x + 2>0 ⑨x + y ≥ 0 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的 5 倍不大于 3 可表示为 . ③.x 与 17 的和比它的 2 倍小可表示为 . ④.x 和 y 的差是正数可表示为 . ⑤. x 的3 5 与 12 的差最少是 6 可表示为 . 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若 a >b ,ac >bc ,则 c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若 a >b ,ac <bc ,则 c 0. 4、如果不等式两边同乘以 0,那么不等号变成等号,不等式变成等式。 练习:1、指出下列各题中不等式的变形依据 ①.由 3a>2 得 a> 2 理 3 由: . ②. 由 a+7>0 得 a>-7 理 由: -1 . 5 ③.由-5a<1 得 a> 理

由:. ④.由 4a>3a+1 得 a>1 理 由:. 2、若x>y,则下列式子错误的是() A.x-3>y-3 B.x > y 3 3 3、判断正误 ①. 若a>b,b<c 则a>c. () ②.若a>b,则ac>bc. () ③.若ac2>bc2,则a>b. () ④.若a>b,则ac2>bc2. () ⑤.若 a>b,则a(c2+1)>b(c2+1) C. x+3>y+3 D.-3x>-3y () ?. 若a>b,若c 是个自然数,则ac>bc. () 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是() A.x=2 是不等式x+3<2 的解 B.x =3 是不等式3x<7 的解。 C.不等式3x<7 的解是x<2 D.x=3 是不等式3x≥9的解 2.下列说法错误的是() A.不等式 x<2 的正整数解只有一个 B.-2 是不等式 2x-1<0 的一个解 C. 不等式-3x>9 的解集是 x>-3 D.不等式 x<10 的整数解有无数个 2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一会求不等式的解集 练习:1、不等式x-8>3x-5 的解集是. 2、不等式x≤4的非负整数解是. 3、不等式2x-3≤0的解集为. 题型二知道不等式的解集求字母的取值范围 2、如果不等式(a-1)x<(a-1)的解集是x<1,那么a 的取值范围是. x< 1

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

相关文档
最新文档