数控机床仿真实验报告

数控机床仿真实验报告
数控机床仿真实验报告

数控机床仿真实验报告

班级:

姓名:

学号:

指导老师:

实验日期:

实验一数控车床操作加工仿真实验

一、实验目的

(1)掌握手工编程的步骤;

(2)掌握数控加工仿真系统的操作流程。

二、实验内容

(1)了解数控仿真软件的应用背景;

(2)掌握手工编程的步骤;

(3)掌握SEMENS 802seT数控加工仿真操作流程。

三、实验设备

(1)图形工作站;

(2)南京宇航数控加工仿真软件

四、实验操作步骤

1、实验试件

试件的形状、尺寸如图1-1所示。

2、工序卡片根据零件材料、加工精度、工艺路线、刀具参数表与切削用量等内容,确定加工

工序卡,如表1-2所列。

表1-2数控车削加工工序卡

单位名称产品名称零件名称零件图号

数控车削实验件零件1 1

工序号程序编号夹具名称使用设备工作地点

001 三爪卡盘数控车铣综合实验台CAD/CAM(2)

工步工步内容刀具号刀具规格主轴转速

(r/min) 进给速度

(mm/min)

背吃刀

量(mm)

备注

1 对刀01—03 所有刀具800 手动手动

2 毛坯粗加工01 外圆车刀800 240 2、5 刀宽25

3 精加工外圆01 外圆车刀800 180 1、2 刀宽25

4 切槽02 割刀800 180 2、

5 刀宽25

5 加工螺纹03 螺纹刀800 180 1 刀宽15

6 割断02 割刀800 180 2、5 刀宽25 3程序如下:

ZKHX、MPF

M3 S1000 T01 D01

Z120、X120、

_CNAME="L05"

R105=1、R106=1、2 R108=5、R109=7、R110=1、5 R111=0、3 R112=0、1

LCYC95

R105=5、R106=0、

LCYC95

G0 X40、Z-35、

G05 Z-75、X40、IX=26、53 KZ=-55、G0 G90 X120、

Z120、

T02 D01

G0 X45、Z-35、

G01 X30、F0、2

G0 X100、

Z100、

T03D01

R100=40 R101=0 R102=40 R103=-30

R104=2 R105=1 R106=0、5

R109=1 R110=5 R111=3

R112=0 R113=3 R114=1

LCYC97

M05

M2

4子程序:

L05、SPF

G90 G0 X40、Z0、

G01 Z-85、

X60、

Z-105、

X100、Z-165、

M02

4 数控加工仿真系统中的操作步骤

5 打开操作界面,返回机床坐标原点,选择合适尺寸的工件,选择刀具并添加到相应的刀具号,然后对刀,添加程序,最后开始仿真加工。

6加工窗口

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

电工和电子技术(A)1实验报告解读

实验一 电位、电压的测定及基尔霍夫定律 1.1电位、电压的测定及电路电位图的绘制 一、实验目的 1.验证电路中电位的相对性、电压的绝对性 2. 掌握电路电位图的绘制方法 三、实验内容 利用DVCC-03实验挂箱上的“基尔霍夫定律/叠加原理”实验电路板,按图1-1接线。 1. 分别将两路直流稳压电源接入电路,令 U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路中。) 2. 以图1-1中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 各点的电位值φ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,数据列于表中。 3. 以D 点作为参考点,重复实验内容2的测量,测得数据列于表中。 图 1-1

四、思考题 若以F点为参考电位点,实验测得各点的电位值;现令E点作为参考电位点,试问此时各点的电位值应有何变化? 答: 五、实验报告 1.根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。 答: 2. 完成数据表格中的计算,对误差作必要的分析。 答: 3. 总结电位相对性和电压绝对性的结论。 答:

1.2基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、实验内容 实验线路与图1-1相同,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1. 实验前先任意设定三条支路电流正方向。如图1-1中的I1、I2、I3的方向已设定。闭合回路的正方向可任意设定。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 三、预习思考题 1. 根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。 答: 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字电流表进行测量时,则会有什么显示呢? 答:

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

数控车床模拟仿真实验指导书

数控车床编程加工模拟仿真实验指导书 一、实验目的 1.了解数控车床编程仿真软件。 2.利用仿真软件,学习数控车床的编程加工仿真过程,为实际FANUC 0 i—TC数控车床操作加工打下良好基础。 3.能够对给出零件图进行模拟仿真编程加工。 二、实验设备 计算机、宇龙数控仿真软件 三、预习与参考 1.数控车床的加工特点 数控车床是数字程序控制车床(CNC 车床)的简称,它集通用性好的万能型车床、加工精度高的精密型车床和加工效率高的专用型普通车床的特点于一身,是国内使用量最大、覆盖面最广的机床之一。 数控车床主要用于轴类和盘类回转体零件的加工,能够自动完成内外圆柱面、圆锥面、圆弧面、螺纹等工序的切削加工,并能进行切槽、钻、扩、铰孔和各种回转曲面的加工。数控车床具有加工效率高,精度稳定性好,加工灵活、操作劳动强度低等特点,特别适用手复杂形状的零件或中、小批量零件的加工。 2.车床原点、车床参考点、程序原点 车床原点又称机械原点,它是车床坐标系的原点。该点是车床上的一个固定点,是车床制造商设置在车床上的一个物理位置,通常不允许用户改变。车床原点是工件坐标系、车床参考点的基准点。车床的机床原点为主轴旋转中心与卡盘后端面的点。 车床参考点是机床制造商在机床上用行程开关设置的一个物理位置,与机床原点的相对位置是固定的,车床出厂之前由机床制造商精密测量确定。 程序原点是编程员在数控编程过程中定义在工件上的几何基准点,有时也称为工件原点,是由编程人员根据情况自行选择的。 3. FANUC 0 i—TC车床面板操作说明

按钮名称功能说明 进给倍率调节进给倍率,调节范围为0~150%。置光标于旋钮上,点击鼠标左键,旋钮逆时针转动,点击鼠标右键,旋 钮顺时针转动。 单段将此按钮按下后,运行程序时每次执行一条数控指令。空运行进入空运行模式 跳段当此按钮按下时,程序中的“/”有效。 机床锁住机床锁住 尾架暂不支持 回零进入回零模式,机床必须首先执行回零操作,然后才 可以运行。 手轮倍率X1、X10、X100分别代表移动量为0.001mm、0.01mm、 0.1mm。 轴选择手轮方式时按下表示手轮移动Z轴,否则表示手轮移 动X轴 复位机床复位 主轴倍率每按一次主轴转速减少10%,每按一次主轴转速增加10%,按主轴转速恢复为100% 机床移动手动方式下-X/+X/-Z/+Z方向移动机床 快速移动手动方式下配合-X/+X/-Z/+Z方向快速移动机床自动进入自动加工模式。 编辑进入编辑模式,用于直接通过操作面板输入数控程序 和编辑程序。 MDI 进入MDI模式,手动输入指令并执行。 JOG 手动方式,连续移动。 手摇进入手轮模式 主轴控制主轴正转/停止/反转 循环启动程序运行开始,系统处于自动运行或“MDI”位置时按下有效,其余模式下使用无效。 停止运行程序运行停止,在程序运行过程中,按下此按钮运行暂停,再按循环启动从头开始执行。 系统开关系统启动、系统停止紧急停止紧急停止 手轮将光标移至此旋钮上后,通过点击鼠标的左键或右键 来转动手轮。

电子技术基础实验报告要点

电子技术实验报告 学号: 222014321092015 姓名:刘娟 专业:教育技术学

实验三单级交流放大器(二) 一、实验目的 1. 深入理解放大器的工作原理。 2. 学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方法。 3. 观察电路参数对失真的影响. 4. 学习毫伏表、示波器及信号发生器的使用方法。 二. 实验设备: 1、实验台 2、示波器 3、数字万用表 三、预习要求 1、熟悉单管放大电路。 2、了解饱和失真、截止失真和固有失真的形成及波形。 3、掌握消除失真方法。 四、实验内容及步骤 ●实验前校准示波器,检查信号源。 ●按图3-1接线。 图3-1 1、测量电压参数,计算输入电阻和输出电阻。 ●调整RP2,使V C=Ec/2(取6~7伏),测试V B、V E、V b1的值,填入表3-1中。 表3-1 Array ●输入端接入f=1KHz、V i=20mV的正弦信号。 ●分别测出电阻R1两端对地信号电压V i及V i′按下式计算出输入电阻R i : ●测出负载电阻R L开路时的输出电压V∞,和接入R L(2K)时的输出电压V0 , 然后按下式计算出输 出电阻R0;

将测量数据及实验结果填入表3-2中。 2、观察静态工作点对放大器输出波形的影响,将观察结果分别填入表3-3,3-4中。 ●输入信号不变,用示波器观察正常工作时输出电压V o的波形并描画下来。 ●逐渐减小R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真的波形描 画下来,并说明是哪种失真。( 如果R P2=0Ω后,仍不出现失真,可以加大输入信号V i,或将R b1由100KΩ改为10KΩ,直到出现明显失真波形。) ●逐渐增大R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真波形描画 下来,并说明是哪种失真。如果R P2=1M后,仍不出现失真,可以加大输入信号V i,直到出现明显失真波形。 表 3-3 ●调节R P2使输出电压波形不失真且幅值为最大(这时的电压放大倍数最大),测量此时的静态工 作点V c、V B、V b1和V O 。 表 3-4 五、实验报告 1、分析输入电阻和输出电阻的测试方法。 按照电路图连接好电路后,调节RP2,使Vc的值在6-7V之间,此时使用万用表。接入输入信号1khz 20mv后,用示波器测试Vi与Vi’,记录数据。用公式计算出输入电阻的值。在接入负载RL和不接入负载时分别用示波器测试Vo的值,记录数据,用公式计算出输出电阻的值。 2、讨论静态工作点对放大器输出波形的影响。 静态工作点过低,波形会出现截止失真,即负半轴出现失真;静态工

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

数控机床仿真实验报告

数控机床仿真实验报告 班级: 姓名: 学号: 指导老师: 实验日期:

实验一数控车床操作加工仿真实验 一、实验目的 (1)掌握手工编程的步骤; (2)掌握数控加工仿真系统的操作流程。 二、实验内容 (1)了解数控仿真软件的应用背景; (2)掌握手工编程的步骤; (3)掌握SEMENS 802seT数控加工仿真操作流程。 三、实验设备 (1)图形工作站; (2)南京宇航数控加工仿真软件 四、实验操作步骤 1、实验试件 试件的形状、尺寸如图1-1所示。 2、工序卡片根据零件材料、加工精度、工艺路线、刀具参数表和切削用量等内容,确定加 工工序卡,如表1-2所列。

3程序如下: ZKHX.MPF M3 S1000 T01 D01 Z120. X120. _CNAME="L05" R105=1. R106=1.2 R108=5. R109=7. R110=1.5 R111=0.3 R112=0.1 LCYC95 R105=5. R106=0. LCYC95 G0 X40.Z-35. G05 Z-75. X40. IX=26.53 KZ=-55. G0 G90 X120. Z120. T02 D01 G0 X45.Z-35. G01 X30.F0.2 G0 X100. Z100. T03D01 R100=40 R101=0 R102=40 R103=-30 R104=2 R105=1 R106=0.5 R109=1 R110=5 R111=3 R112=0 R113=3 R114=1 LCYC97 M05 M2 4子程序: L05.SPF G90 G0 X40. Z0. G01 Z-85. X60. Z-105. X100.Z-165. M02 4 数控加工仿真系统中的操作步骤 5 打开操作界面,返回机床坐标原点,选择合适尺寸的工件,选择刀具并添加到相应的刀具号,然后对刀,添加程序,最后开始仿真加工。 6加工窗口

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

电工电子技术实验报告

电工电子技术实验报告 学院 班级 学号 姓名 天津工业大学电气工程与自动化学院电工教学部 二零一三年九月

目录 第一项实验室规则------------------------------------------------------------------ i 第二项实验报告的要求------------------------------------------------------------ i 第三项学生课前应做的准备工作------------------------------------------------ii 第四项基本实验技能和要求----------------------------------------------------- ii 实验一叠加定理和戴维南定理的研究------------------------------------------ 1实验二串联交流电路和改善电路功率因数的研究--------------------------- 7实验三电动机的起动、点动、正反转和时间控制--------------------------- 14实验四继电接触器综合性-设计性实验----------------------------------------20 实验五常用电子仪器的使用---------------------------------------------------- 22实验六单管低频电压放大器---------------------------------------------------- 29实验七集成门电路及其应用---------------------------------------------------- 33 实验八组合逻辑电路------------------------------------------------------------- 37实验九触发器及其应用---------------------------------------------------------- 40 实验十四人抢答器---------------------------------------------------------------- 45附录实验用集成芯片---------------------------------------------------------- 50

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

数控车床编程与仿真操作实验报告答案分析

机床数控技术实验报告 实验二数控车床编程与仿真操作 1. 数控车床由哪几部分组成?答:数控车床由数控装置、床身、主轴箱、刀架进给系统、尾座、液压系统、冷却系统、润滑系统、排屑器等部分组成。数控车床分为立式数控车床和卧式数控车床两种类型。 2. 为什么每次启动系统后要进行“回零”操作? 答:机床断电后, 就不知道机床坐标的位置, 所以进行回零, 进行位置确定每次开机启动数控系统的机械零点和实际的机械零点可能有误差,回零操作是对机械零点的校正。 4. 简述对刀过程? 答:(1)一般对刀,一般对刀是指在机床上使用相对位置检测手动对刀。下面以Z 向对刀为例说明对刀方法:刀具安装后,先移动刀具手动切削工件右端面,再沿X向退刀,将右端面与加工原点距离N输入数控系统,即完成这把刀具Z向对刀过程。 (2)机外对刀仪对刀,机外对刀的本质是测量出刀具假想刀尖点到 刀具台基准之间X及Z方向的距离。利用机外对刀仪可将刀具预先在机床外校对好,以便装上机床后将对刀长度输入相应刀具补偿号即可以使用。(3)自动对刀,自动对刀是通过刀尖检测系统实现的,刀尖以设定的速度向接触式传感器接近,当刀尖与传感器接触并发出信号,数控系统立即记下该瞬间的坐标值,并自动修正刀具补偿值。 5. G00与G01指令有何不同?

答:G00 指令表示刀具以机床给定的快速进给速度移动到目标点,又称为点定位指令,G01 指令使刀具以设定的进给速度从所在点出发,直线插补至目标点。 6. 简述用MDI方式换2号刀的操作过程。 答:按下程序建按下MDI建输入一段换刀程序T0101的刀具指令按 循环启动 实验三数控铣床编程与仿真操作 1. 数控铣床由哪几部分组成? 答:(1)主轴箱包括主轴箱体和主轴传动系统。 (2)进给伺服系统由进给电动机和进给执行机构组成。 (3)控制系统是数控铣床运动控制的中心,执行数控加工程序控制机床进行加工。 (4)辅助装置如液压、气动、润滑、冷却系统和排屑、防护等装置。(5)机床基础件指底座、立柱、横梁等,是整个机床的基础和框架。(6)工作台 2. 为什么每次启动系统后要进行“回零”操作? 答:机床断电后, 就不知道机床坐标的位置, 所以进行回零, 进行位置确定每次开机启动数控系统的机械零点和实际的机械零点可能有误差,回零操作是对机械零点的校正。 3. “超程”是什么意思?出现超程后应如何处理?为什么加工前要进行程序校验或空运行? 答:超程就是机床各个轴向的限位开关。绝大多数机床都设置有“超程解除”触点,一旦出现“硬限位”报警,在确认限位被压和后,使该

数控车(铣)床编程VNUC仿真实验报告

实验名称:数控车床编程仿真实验 一、实验目的: 1、了解数控车床的数控系统、机床结构及数控铣削加工的基本原理和特点; 2、掌握数控车床的编程方法、模拟仿真加工,根据图纸要求,独立完成较简单的零件编程和加工。 二、实验设备:微型计算机、VNUC仿真软件。 三、实验内容及步骤: 1、选择机床类型和操作系统 双击桌面上的VNUC3.0图标进入软件,从软件的主菜单里面“选项”中选择“选择机床和系统”进入选择机床对话框,在“机床类型”中选择卧式车床,在“数控系统”中选择华中世纪星型,按确定按钮。按压“急停”开关,开启机床,点“回参考点”到回零状态,分别按压+X、+Z按钮,使机床回零。 2、确定毛坏 (1)点击主界面菜单栏“工艺流程”下的“毛坯”项,打开车床的毛坯库。按窗口中的“新毛坯”键,弹出毛坯设置窗口。在窗口左侧设置毛坯的有关参数,右侧查看框里显示设置的情况;在“名称”这一项设置毛坯名称。在外径、内径、高三个空白栏里分别输入毛坯的尺寸。尺寸单位mm。在“材料”后的下拉单里选择45#钢。在“夹具”下拉单里选择夹具三爪卡盘。按“确定”键关闭毛坯窗口,返回毛坯库窗口。 (2)安装毛坯。选中毛坯列表中要安装的毛坯。按“安装此毛坯”键。按“确认”键关闭毛坯库窗口。机床的工作台上被安装上毛坯,同时弹出调整夹具窗口。点击“向左”“向右”键,可以调整毛坯和夹具的相对位置。点击“掉头”键,系统会自动把毛坯调个头,以便加工毛坯的另一端。调整完毕后,按“关闭”键。 3、选择、安装刀具 从菜单栏“工艺流程”中选择“车刀刀库”,打开刀具库管理窗口,从中建

立新刀具。选定安装刀具。 4、建立工件坐标系 使用试切法确定每一把刀具起始点的坐标值,结合测量视图进行计算,然后将值输入系统。其操作过程如下:(1)选一把加工所使用的刀具。(2)使用手动进给操作,平端面,得到工件坐标系的z轴坐标。(3)在工件端面试切,使用“测量”图测量工件直径,刀尖所在的x轴绝对坐标加上试切直径的一半的负值,得到工件坐标系的x轴坐标。(4)把计算出来的工件坐标系的x、z值输入到G55坐标系。 5、编辑程序 根据所给图形,编辑程序。 6、校验程序,检查无误后,按“自动加工”完成。 图形及程序附后。

电子技术实验报告

电子技术实验报告 一、元器件认识 (一)、电阻 电阻元件的的标称阻值,一般按规定的系列值制造。电阻元件的误差有六级,对应的标称值系列有E192、E96、E12和E6。电阻在电路中的主要作用为分流、限流、分压、偏置等。 电阻器的标称值和误差等级一般都用数字标印在电阻器的保护漆上。但体积很小的和一些合成的电阻器其标称值和误差等级常以色环的方便之处,能清楚地看清阻值,便于装配和维修。 电阻色码图 颜色黑棕红橙黄绿蓝紫灰白金银本色对应0 1 2 3 4 5 6 7 8 9 / / / 数值 4 567890123对应/ / / 10 10 10 10 10 10 10 10 10 10 n10 方 次 表示/ +1% +2% / / +0.5% +0.25% +0.1% / / +5% +10& +20% 误差-1% -2% -0.5% -0.25% -0.1% -5% -10% -20% 值 色环表示方法有两种形式,一种是四道环表示法,另外一种是五道环表示法。 四道色环:第1,2色环表示阻值的第一、第二位有效数字,第3色环表示两位n数字再乘以10 的方次,第4色环表示阻值的误差。五道色环:第1,2,3色环

n表示阻值的3位数字,第4色环表示3位数字再乘以10的方次,第5色环表示阻值的误差。 ,二,电容值识别 电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容).电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件.电容的特性主要是隔直流通交流. 电容容量的单位为皮法(pf)或(uf),大多数电容的容量值都印其外封装上,主要有两种识别方法,一种是直接识别方法,例如220UF就是220uF,4n7就是 4.7nF;另一种是指数标识,一般以数值乘以倍率表示,倍率值一般用最后 3一位数字表示,单位为pf。比如103,表示容量为10*10pf,即0.01uf;而224表示容量为22*10000pf,即0.22uf;331,表示容量为33*10pf,即330pf。误差用字母表示。“k”表示误差额为10%,“j”表示误差额为5%。而字母“R”可用于表示小数点,例如3R3=3.3 1 (三)用万用表测试半导体二极管 将一个PN结加上正负电极引线,再用外壳封装就构成半导体二极管。由P区引出的电极为正(或称阳极),由N区引出的电极为负极(或称阴极)。 (1) 鉴别二极管的正,负极电极 用万用表表测量二极管的极性电路图,黑表棒接内部电池正极,红表棒接内部电池负极。测量二极管正向极性时按“A”连接,万用表的欧姆档量程选在R*10档。若读数在几百到几百千欧以下,表明黑表棒所接的一段为二极管的正极,二极管正向导通,电阻值较小;若读数很大,则红表棒所接的一端是二极管的正极,此时二极管反向截止。二极管的基本特性是单向导电性。 (四)用万用表测试小功率晶体三极管

电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

数控机床仿真模拟加工实验报告

数控机床仿真模拟加工实验报告 实验目的 1、熟悉典型数控加工仿真软件——宇龙数控加工仿真软件的特点及其应用; 2、通过软件系统仿真操作和编程模拟加工,进一步熟悉实际数控机床操作,提高编写和调试数控加工程序的能力。 3、了解如何应用数控加工仿真软件进行加工过程预测,以及验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验基本原理 宇龙数控加工仿真软件是模拟实际数控机床加工环境及其工作状态的计算机仿真加工系统;应用该软件,可以基于虚拟现实技术,模拟实际的数控机床操作和数控加工全过程。本实验在熟悉软件的用户界面及使用方法的基础上,针对典型零件进行机床仿真操作运行和零件数控编程模拟加工,从而预测加工过程,验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验内容及过程 本实验通过指导老师讲解和自己的实际操作练习,分两个阶段完成实验任务;具体如下: 一、初步熟悉数控加工仿真软件的用户界面及基本使用方法: 通过实际练习,了解应用宇龙数控加工仿真软件系统进行仿真加工操作的基本方法,包括: 如何选择机床类型; 如何定义毛坯、使用夹具、放置零件; 如何选择刀具; FANUC 0i 数控系统的键盘操作方法; 汉川机床厂XH715D加工中心仿真操作方法等。 二、针对汉川机床厂XH715D数控加工中心,应用宇龙数控加工仿真软件对凸轮零件进行机床仿真操作运行和数控编程模拟加工: 凸轮零件图如下所示:

机床仿真操作运行和数控编程模拟加工过程如下: 1、机床开启 启动数控铣系统前必须仔细检查以下各项:1.所有开关应处于非工作的安全位置;2.机床的润滑系统及冷却系统应处于良好的工作状态;3.检查工作台区域有无搁放其他杂物,确保运转畅通。之后打开数控机床的电器总开关,启动数控车床。 2、机床回参考点 启动数控铣系统后,首先应手动操作使机床回参考点。将工作方式旋钮置于“手动”,按下“回参考点”按键,健内指示灯亮之后,按“+X”健及“+Z”键,刀架移动回到机床参考点 3、设置毛坯,并使用夹具放置毛坯 通过三爪卡盘将工件夹紧。 4、选择刀具并安装

电子技术基础实验仿真报告

学院:微电子与固体电子学院指导老师: 学生: 学号:

3.16多级放大电路设计及测试 一、实验目的 1.理解多级直接耦合放大电路的工作原理和设计方法。 2.学习并熟悉设计高增益的多级直接耦合放大电路的方法。 3.掌握多级放大器性能指标的测试方法。 4.掌握在放大电路中引入负反馈的方法。 二、设计要求 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V,VEE=-12V,要求设计差分放大器恒流源的射极电流 IEQ=2~3mA;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大器的不失真电压增益不少于100倍; 三、电路原理. 直接耦合式多级放大器的主要设计任务是模仿运行运算放大器op07的等效内部结构,简化部分电路,采用差分放大,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。实验原理图如下:

各部分原件参数如下: R1=5KΩ;R2=9KΩ;R3=10KΩ;R4=500Ω;R5=10KΩ;R6=10KΩ;R7=1kΩ;R8=1Ω; R9=1Ω;R10=1Ω P1=10KΩ, P2=20KΩ V1=1mV,VCC=+12V,VEE=-12V, C1=0.01PF C2=4uF C3=0.01PF 晶体管为2SC1815和2SA1015 二极管为1N3208 四、实验内容:

所测得各数据如图 性能指标一:IEQ3=1~2mA。 如上图所示,IEQ3=1.143mA符合要求。 性能指标二:IEQ4=2~3mA 如上图所示IEQ4=2.209mA,符合要求。 性能指标三:差分放大器的单端输入单端输出不失真电压增益至少大于10倍。 如上图所示,vpp=26.476mV相对于1mV放大约26倍符合要求。 性能指标四:主放大级的不失真电压增益不小于100倍。 如上图所示,vpp=2.809V相对于26.476mV放大了约106倍,符合要求

模拟电子技术电路设计

一、课程设计目的 1通过课程设计了解模拟电路基本设计方法以及对电路图进行仿真,加深对所学理论知识的理解。 2通过解决比较简单的电路图,巩固在课堂上所学的知识和实验技能。 3综合运用学过的知识,并查找资料,选择、论证方案,完成电路设计并进行仿真,分析结果,撰写报告等工作。 4 使学生初步掌握模拟电子技术电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力。 二、方案论证 2.1设计思路 一般来说,正弦波振荡电路应该具有以下四个组成部分: 1.放大电路 2.反馈网络 3.选频网络 4.稳幅环节 其中放大电路和反网络构成正反馈系统,共同满足条件1=? ? F A 选频网络的作用是实现单一频率的正弦波振荡。稳幅环节的作用是使振荡幅度达到稳定,通常可以利用放大元件的非线形特性来实现。 如果正弦波振荡电路的选频网络由电阻和电容元件组成,通常成为RC振荡电路。 2.2工作原理

1.电路组成 振荡电路的电路图如2.3原理图所示。其中集成运放A 工作在放大电路,RC 串并联网络是选频网络,而且,当 f f o = 时,它是一个接成正反馈的反馈 网络。另外,R f 和R ' 支路引入一个负反馈。由原理图可见 RC 串并联网络中的串联支路和并联支路,以及负反馈支路中的R F 和R ' ,正好组成一个电桥的四个臂,所以又称文氏电桥振荡电路。 2.振荡频率和起振条件 (1)振荡频率 为了判断电路是否满足产生振荡的相位平衡条件,可假设在集成运放的同相输入端将电路断开,并加上输入电压? Ui 。由于输入电压加在同相输入端,故集成运放的输出电压与输入电压同相,即0=A ?已经知道,当 f f o = 时,RC

相关文档
最新文档