热循环测试(TCT)全

热循环测试(TCT)全
热循环测试(TCT)全

实验4循环伏安法测定电极反应参数实验报告

华南师范大学实验报告 学生姓名学号2014 专业新能源材料与器件年级、班级2014 课程名称电化学实验实验项目循环伏安法测定电极反应参数实验类型□√验证□设计□综合实验时间2016年4月25日 实验指导老师吕东生实验评分

一、实验目的 1.了解循环伏安法的基本原理及应用 2. 掌握循环伏安法的实验技术和有关参数的测定方法。 二、实验原理 循环伏安法(Cyclic Voltammetry)是一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法。该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多研究领域被广泛使用。循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),,一支参比电极,一支对电极。外加电压在工作电极和辅助电极之间,反应电流通过工作电极与辅助电极。 图1 循环伏安法测得的氧化还原曲线 正向扫描的峰电流i p 与v^0.5和C都成线性关系,对研究电极过程具有重要意义。标准 电极电势为:EΘ=(E pa +E pc )/2。所以对可逆过程,循环伏安法是一个方便的测量标准电极 电位的方法。 三、实验器材 CHI电化学工作站;玻碳电极;铂电极;Hg/Hg2SO4电极;0.1 mol/L VO2+ + 0.1 mol/L VO2+ +3 mol/L H2SO4溶液 四、实验步骤 1. 预处理电极

盐雾、高低温循环、后视镜撞击试验指导书

盐雾试验指导书 操作程序: 设备:经过鉴定符合国家标准的盐水喷雾试验箱。 盐水试验液配制: 调制方法:将公升的纯净水倒入专用的塑料桶内,用PH试纸测试其PH值是否在之间。 PH值若大于,加入少量的冰醋酸。 PH值若小于,加入少量的氢氧化钠。 加入㎏氯化钠后搅拌均匀。 试验用样品2个 操作程序: 将自动加水的入水口阀门排水阀和排气阀的开关打开。 将隔绝水槽加水至垫板位置。 将配制好的氯化钠盐水倒入到盐水补充槽,即自动充填盐水进入试验箱内的预热槽,使盐水流至盐水预热槽。 加少许水在湿球杯内,湿球温度覆盖着纱布,纱布末端置于湿球杯内。 开始试验前,试样必须充分冲洗,清洗方法视表面情况及污物的性质而定,不能使任何会侵蚀试样表面的磨料和溶剂,同时试样切口及因挂钩而造 成底材露出的部分,或因识别记号所造成的镀层缺陷处,试验前因用透 明胶带将以覆盖。放置试样或试片于置物架上,试样在箱内放置的位 置,应使受试平板试样与垂直线成15-30°角,试样的主要表面向上, 并与盐雾在箱内流动的主要方向平行。特殊试样有很多的主要表面需 要同时测试时,可取多件试样放置,务必使每个只要表面能同时进行盐 雾试验。 试验时,试样之间不得互相接触,也不与箱壁相碰,试样的间距一般不小于20mm,试样上每层必须交叉放置,试样间间隔应能使盐雾自由沉降在 试样的主要表面上。一个试样上的盐水溶液不得滴在任何别的试样 上。试样识别记号或装配孔应覆于下方。 设定试验温度、压力和时间:

将盐水桶和试验室的温度调整至35°C,压力桶温度调整至47°C(按 “+”为增加,按“-”为减少,H:时/M:分/S:秒)。喷压压力保持在 ±cm2,若压力不在范围内,可利用调压阀将压力调整至规定范围(顺 时针为增加,逆时针为减少)。测试时间一般为24小时(按△为增加, 按▽为减少),若客户有特殊要求则可另行设定,测试时间一般可设定 为8、16、24、48、96、168、336、672小时,在规定试验周期内喷雾 不得中断,只有当需要短暂观察试样时才能打开盐雾箱,开箱检查的时 间和次数应尽可能减少。 按下电源、操作两按键,先行预温至设定温度,注意试验盖盖上时需小心轻放以免破损。 试验中,用面积为80cm2的漏斗收集连续雾化16小时的盐雾沉降量,平均每小时需收集到的溶液,这可以利用观察计量筒内降雾量得之。试验时 间应扣除因检查试样而中断喷雾的时间,同时需记录其中断的原因和 时间。 测试结束后,依顺序将开关关闭。取出试样在室内自然干燥小时,然后用流动冷水轻轻洗涤或浸渍,以除去沉积在试样表面的盐类,用吹风机吹干后检 查,评定测试结果。 试验中若有异常之现象,可参照“功能异常判断表”处理。若有故障指示则可依照“故障指示”判断处理。 试验结束后,清洗试验内部,并将加热水槽内的水排放干净。 *加热槽内水的排放—打开红色排水阀。 *隔绝水槽内水的排放—将中间矽胶塞拔起。 *预热水槽内水的排放—将内部矽胶塞打开。 依据“维护事项”对设备进行维护。 试验条件及试验结果必须记录。 试验结果的评价: 试验后的外观 除去表面腐蚀产物后的外观。 腐蚀缺陷如点蚀、裂纹、气泡等的分布和数量和状态。

热循环试验不确定度09[1][1].8.20

热循环试验测试结果不确定度的评定 一、概述 1、测量方法:NES M0132 [2007-N] 2、使用仪器:恒温恒湿试验箱13-401-0002 3、环境条件:(20±5)℃(65±20)%RH 4、被测对象:汽车塑料零件 二、建立数学模型:N/A 三、不确定度来源的分析 不确定度评定的来源主要有以下几方面: 1、温湿度对试验结果的影响; 2、温变速率对试验结果的影响; 3、取样位置的影响; 4、样品间差异的影响; 5、样品试验前状态调节时间对试验结果的影响; 6、样品在试验箱中的放置状态对试验结果的影响; 7、实验室环境条件对试验结果的影响; 8、人员评价对检测结果的影响。 四、不确定度分量的评定 1、温湿度对检测结果有着直接影响,所以标准要求温度控制±2℃以内,湿度控制:±5%RH 以内。13-401-0002试验箱性能参数为:温度波动±0.5℃,温度均匀度±2.0℃,湿度波动度±2.5%RH,湿度均匀度±5%RH;13-401-0002试验箱2009年5月校准结果为:温度最大偏差 0.5℃,湿度最大偏差0.02%RH,扩展不确定度U=0.4℃,满足标准要求。试验时需要注意试 验温度要求、温湿度设定和温湿度显示是否一致。 2、温变速率对试验结果会有一定的影响,NES M0132上规定在30分以内可将槽内温度加热、冷 却到各设定温度,但实际恒温恒湿试验箱(13-401-0002)从23度降到-40度要在60分钟左右,达不到标准要求,此影响程度尚未得出明确答案,从与桥本等实验室的交流来看,认为有影响,但不明显。 3、选择成品中哪一段作为试验样品进行试验对试验结果有直接影响。NES M0132对样品选择要 求使用成品或成品切割件。成品切割样品时,需要注意应截取有外观要求的部分进行试验,并从不同成品上分别截取样品,使样品更具有代表性。

测试项目:功能测试报告范本

Official Test Report正式的测试报告 测试项目:功能测试报告范本 Project Information项目信息: Project Code: 项目代码 072V24S Project Phase: 项目阶段 研发 Software Version: 软件版本 V1.2 Sample Information样品信息: Sample Level: 样品类型 BMS Quantity: 数量 1 Serial Number: 序列号 020151025 Test Operation Information测试信息: Location: 地点上海博强 Start Date: 开始日期 2015-12-10 Finish Date: 完成日期 2015-12-21 Conclusion结论: Pass通过Fail不通过 Other其它:共8项,4项未测试验证,4项通过,详见报告正文 Performed by测试: 王银峰&樊佳伦Signature Date: 2015-12-22 Written by撰写: 邓文签名:日期:2015-12-23 Checked by核查: 董安庆2015-12-24 Approved by批准: 穆剑权2015-12-25

Revision History修订履历 SN 序号Report No. 报告编号 Report Version 报告版本 Contents 变更内容 Release Date 发行日期 1 BQ-72V-BMS-0009 V1.0 New release. 2015-12-25 2 BQ-72V-BMS-0009 V1.1 设计改进,再次验证报告2015-1-6

循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验 【实验目的】 学习和掌握循环伏安法的原理和实验技术。 了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【实验原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫 描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN) 63-/4- 的氧化还原行为作电化学探针。首先,固体 电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的 材料有金钢砂、CeO 2、ZrO 2 、MgO和α-Al 2 O 3 粉及其抛光液。抛光时总是按抛 光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨 后,再用一定粒度的α-Al 2O 3 粉在抛光布上进行抛光。抛光后先洗去表面污物, 再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙 醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳 图2:循环伏安曲线(i—E曲线)

电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105 )n 3/2 AD o 1/2ν1/2 C o 其中A 为电极的有效面积(cm 2 ),D o 为反应物的扩散系数(cm 2 /s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3 ),i p 为峰电流(A )。 【仪器和试剂】 1. CHI 660D 电化学系统,玻碳电极(d = 4mm ) 为工作电极,银/氯化银电极为参比电极,铂片电极为辅助电极; 2. 固体铁氰化钾、H 2SO 4 溶液、高纯水; 3. 100 mL 容量瓶、50 mL 烧杯、玻棒。 【实验内容】 1. 配制5 mM K 3Fe(CN)6 溶液(含0.5 M H 2SO 4),倒适量溶液至电解杯中; 2. 将玻碳电极在麂皮上用抛光粉抛光后,再用蒸馏水清洗干净; 3. 依次接上工作电极(绿)、参比电极(白)和辅助电极(红); 4. 开启电化学系统及计算机电源开关,启动电化学程序,在菜单中依次选择Setup 、Technique 、CV 、Parameter ,输入以下参数: 5. 点击Run 开始扫描,将实验图存盘后,记录氧化还原峰电位E pc 、E pa 及峰电流I pc 、I pa ; 6. 改变扫速为0.05、0.1 和0.2 V/s ,分别作循环伏安图; 7. 将4个循环伏安图叠加比较; Init E (V) 0.8 V Segment 2 High E (V) 0.8 V Smpl Interval (V) 0.001 Low E (V) ?0.2 V Quiet Time (s) 2 Scan Rate (V/s) 0.02 V Sensitivity (A/V) 5e?5

实验报告-循环伏安法测定亚铁氰化钾

循环伏安法测定亚铁氰化钾 实验目的 (1) 学习固体电极表面的处理方法; (2) 掌握循环伏安仪的使用技术; (3) 了解扫描速率和浓度对循环伏安图的影响 实验原理 铁氰化钾离子[Fe(CN)6]3--亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为 [Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表面活度的Nernst 方程式为 φ=φθ+ RT/Fln(C Ox /C Red ) -0.2 0.00.20.4 0.60.8 -0.0005 -0.0004-0.0003-0.0002-0.00010.0000 0.00010.00020.0003i pa i pc I /m A E /V vs.Hg 2Cl 2/Hg,Cl - 起始电位:(-0.20V) 终止电位:(0.80 V) 溶液中的溶解氧具有电活性,用通入惰性气体除去。 仪器与试剂 MEC-16多功能电化学分析仪(配有电脑机打印机);金电极;铂丝电极;饱和甘汞电极; 容量瓶:250 mL 、100mL 各2个,25 mL 7个。 移液管:2、5、10mL 、20mL 各一支。 NaCl 溶液、K 4[Fe(CN)6]、、Al 2O 3粉末(粒径0.05 μm ) 实验步骤

1、指示电极的预处理 金电极用金相砂纸细心打磨,超声波超声清洗,蒸馏水冲洗备用。 2、溶液的配制 配制0.20 mol/L NaCl溶液250mL,再用此溶液配制0.10 mol/L的K4[Fe(CN)6]溶液100mL备用。 3、支持电解质的循环伏安图 在电解池中,放入25mL 0.2 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为0.1V/s;起始电位为-0.20V,终止电位为0.80V。开始循环伏安扫描. 4、K4 [Fe(CN)6]溶液的循环伏安图 在-0.20至0.80V电位范围内,以0.1V/s的扫描速度分别作0.01 mol·L-1、0.02 mol·L-1、0.04 mol·L-1、0.06 mol·L-1、0.08 mol·L-1的K4 [Fe(CN)6]溶液(均含支持电解质NaCl浓度为0.20mol·L-1)循环伏安图 5、不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图 在0.08 mol·L-1 K4 [Fe(CN)6]溶液中,以0.1V/s、0.15 V/s、0.2V/s、0.25 V/s、0.3V/s、0.35V/s,在-0.20至0.80V电位范围内扫描,做循环伏安图 数据处理 1、从K4[Fe(CN)6]溶液的循环伏安图,测量i pa、i pc值。 -1;起始电位为-0.20V,终止电位为0.80V) 2、分别以i pa和i pc对K4[Fe(CN)6]溶液浓度c作图,说明峰电流与浓度的关系。

实验六 循环伏安法测定电极反应参数-091115

实验六循环伏安法测定电极反应参数 一、实验目的 1. 学习循环伏安法测定电极反应参数的基本原理。 2. 熟悉伏安法测量的实验技术。 二、方法原理 循环伏安法(CV)是最重要的电分析化学研究方法之一。在电化学、无机化学、有机化学、生物化学的研究领域广泛应用。由于它仪器简单、操作方便、图谱解析直观,常常是首先进行实验的方法。CV方法是将循环变化的电压施加于工作电极和参比电极之间,记录工作电极上得到的电流与施加电压的关系曲线。这种方法也常称为三角波线性电位扫描方法。 图6—1 循环伏安法的典型激发信号图6—2 图6—1中表明了施加电压的变化方式:起扫电位为0.8V,反向起扫电位为-0.2V,终点又回扫到0.8V,扫描速度可从斜率反映出来,其值为 50mV/s。图6-1循环伏安法的典型激发信号三角波电位,转换电位为0.8V和-0.2V(vs.SCE〉虚线表示的是第二次循环。一台现代的电化学分析仪具有多种功能,可方便地进行一次或多次循环,任意变换扫描电压范围和扫描速度。当工作电极被施加的扫描电压激发时;其上将产生响应电流。以该电流(纵坐标)对电位(横坐标)作图,称为循环伏安图。 典型的循环伏安图如图6-2所示。该图是在1.0mol/L KNO3电解质溶液中,6×10-3mol/LK3Fe(CN)6在Pt工作电极上的反应所得到的结果。从图可见,起始电位Ei为+0.8V(a点),电位比较正的目的是为了避免电极接通后发生电解。然后沿负的电位扫描,如箭头所指方向,当电位至可还原时,即析出电位,将产生阴极电流(b点)。其电极反应为:,随着电位的变负,阴极电流迅速增加(b→d),直至电极表面的浓度趋近零,电流在d点达到最高峰。然后电流迅速衰减(d→g),这是因为电极表面附近溶液中的几乎全部电解转变为而耗尽,即所谓的贫乏效应。当电压扫

【CN110261692A】母线干线热循环测试装置及其测试方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910287209.3 (22)申请日 2019.04.11 (71)申请人 浙江三辰电器股份有限公司 地址 323900 浙江省丽水市青田县油竹街 道江滨路6号 (72)发明人 徐永福 周伟 郭巍 夏杰  吕晓豪  (74)专利代理机构 杭州斯可睿专利事务所有限 公司 33241 代理人 周涌贺 丁晓光 (51)Int.Cl. G01R 31/00(2006.01) G01N 25/20(2006.01) (54)发明名称 母线干线热循环测试装置及其测试方法 (57)摘要 一种母线干线热循环测试装置,包括母线槽 热循环电源主机、母线槽热循环电源辅机、母线 干线、热电偶、连接铜母排、软连接和测试铜导 线,进行母线干线热循环测试。本发明有益的效 果是:解决了传统母线干线系统温升试验存在的 设备体积大、试验耗时长、能耗较高、效率较低和 操作灵活性差的问题,通过该母线干线热循环测 试装置及其测试方法,自动实现母线干线系统热 循环的测试,使用效果好, 利于推广。权利要求书1页 说明书6页 附图4页CN 110261692 A 2019.09.20 C N 110261692 A

权 利 要 求 书1/1页CN 110261692 A 1.一种母线干线热循环测试装置,其特征在于:包括母线槽热循环电源主机(1)、母线槽热循环电源辅机(2)、母线干线(3)、热电偶(4)、连接铜母排(5)、软连接(6)和测试铜导线(7),所述母线槽热循环电源主机(1)与母线干线(3)连接,所述母线槽热循环电源辅机(2)与母线干线(3)连接。 2.根据权利要求1所述的母线干线热循环测试装置,其特征在于:所述母线干线(3)上具有母线干线分接单元(31)、母线干线输入端(32),所述母线槽热循环电源主机(1)通过连接铜母排(5)、软连接(6)与母线干线输入端(32)连接,所述母线槽热循环电源辅机(2)通过测试铜导线(7)与母线干线分接单元(31)连接,所述母线槽热循环电源主机(1)连接热电偶(4),所述热电偶(4)连接母线干线(3),所述母线干线(3)上具有母线干线末端(33)。 3.根据权利要求1所述的母线干线热循环测试装置,其特征在于:所述母线槽热循环电源主机(1)与母线槽热循环电源辅机(2)通过R485通讯接口连接,或者通过WIFI无线通讯连接。 4.根据权利要求1所述的母线干线热循环测试装置的测试方法,其特征在于,包括如下步骤: (一)、母线槽热循环电源主机(1)输出端通过铜母排(5)、软连接(6)与母线干线输入端 (32)三相连接,母线槽热循环电源辅机(2)输出端通过标准测试铜导线(7)与母线干线分接单元(31)输出端三相连接;母线干线输出末端(33)用铜母排直接短接; (二)、母线槽热循环电源主机(1)通过航空插座多点热电偶(4)分布在母线干线(3)上,进行多点采集点; (三)、母线槽热循环电源主机(1)和母线槽热循环电源辅机(2)分别上电,操作电源主机人机界面设定母线干线(3)总电流、分接单元电流、循环次数、循环时间,并启动电源,使母线干线及分接单元分别达到测试额定电流; (四)、当母线干线(3)温升达到一个恒定值,母线干线温度测量点的温升变化不超过1k/h时符合标准恒温要求,母线干线热循环测试系统自动投入热循环试验,实现母线槽热循环电源主机(1)和母线槽热循环电源辅机(2)控制同时启停,并自动记录过程测试温度,84次循环后停止试验,完成热循环试验,并记录实验过程母线干线温度。 2

实验十 循环伏安法分析

实验十循环伏安法分析 一、实验目的 1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。 2.熟练使用循环伏安法分析的实验技术。 二、实验原理 循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。 现代电化学仪器均使用计算机控制仪器和处理数据。CV测试比较简便,所获信息量大。采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线

表1. 图1的实验条件和一些重要解释

零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。 分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。 循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。多圈电位扫描的循环伏安实验常可用于电化学合成导电高分子。 图1为3 mmol L-1 K4Fe(CN)6 + 0.5 mol L-1 Na2SO4水溶液中金电极上的CV实验结果。实验条件和一些重要的解释列于表1中。 三、仪器和试剂 仪器:CHI400电化学工作站 磁力搅拌器 铂片工作电极 铅笔芯对电极 KCl饱和甘汞电极 试剂:K3Fe(CN)6(分析纯或优级纯) KNO3(分析纯或优级纯) 溶液及其浓度:1.0 mol L-1 KNO3水溶液。实验中每组学员使用30.0 mL。 0.100 mol L-1 K3Fe(CN)6水溶液储备液。实验中每组学员使用100 L微量注射 器依次注射适量体积的0.100 mol L-1 K3Fe(CN)6水溶液到30 mL的1.0 mol L-1 KNO3水溶液中,详见如下4.3.节。

焊接热循环曲线的测定

焊接热循环曲线的测定 一、实验目的 (一)了解焊接热循环曲线的特征和主要参数; (二)了解焊接规范对热循环曲线的影响; (三)掌握测定焊接热循环曲线的方法。 二、实验装置及实验材料 (一)钨极氩弧焊机1台 (二)电容储能式热电偶焊机1台 (三)镍铬—镍硅或铂铑—铂热电偶丝(φ0.3~0.5mm)1对 (四)氩气1瓶 (五)X—Y/函数记录仪1台 (六)试件300×200×20mm低碳钢板2块(可用A3、A5、09Mn、16Mn等材料) (七)0~300(A)直流电流表、秒表、φ5mm钻头、φ5mm平头铰刀、深度尺等 三、实验原理 焊接热循环是指焊件上某点经历焊接过程时的温度变化,它可以用T=f(t)这一函 图1低合金钢手弧堆焊时焊缝附近各点的热循环 (t-从电弧通过测温点正上方时开始算起的时间) 数关系来描述。按此关系所画出的曲线称为该点的热循环曲线。焊接过程中,焊件上直接被热源加热的部位将被熔化形成熔池。连续相接的熔池冷却凝固后即成为焊缝。焊缝以远的部位则保持固态,焊件上各点由于在焊件上所处位置不同,受到焊接热的作用不同而经历着不同的热循环,它们的热循环曲线也就不同。图l为低合金钢手弧焊时焊件上热影响区不同点的焊接热循环曲线。从该图可以看出:离焊缝熔合线越近的点,加热速度越大,峰值温度越高,冷却速度也越大,并且所有各点的加热速度都比冷却速度要大得多。这表示焊接接头热影响区的金属都经历了一个自发的、特殊的热处理过程,产生了相变、晶粒长大、应力和变形等变化,从而对焊件金属的组织和性能发生强烈的影响。因此,测量并正确控制焊接热循环对于控制接头热影响区金属的组织和性能具有重要意义。 焊接热循环曲线固然可以借助焊接热过程的理论公式T=f(x,y,z,t)计算出来,但由于计算时所采用的假定条件与实际焊接条件出入较大,计算所得的理论热循环曲线对比实际测得的曲线仍有很大误差,故在实际上多用实测的方法来获得热循环曲线。 测定焊接热循环的方法,大体上可分为接触式和非接触式两类。在非接触式测定法中,

实验一 循环伏安法判断电极过程

实验一循环伏安法判断电极过程 一.实验目的 1.学习和掌握循环伏安法的原理和实验技术。 2.了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 3.学会使用电化学工作站 二.实验原理 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN)63-/4-的氧化还原行为作电化学探针。首先,固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的材料有金钢砂、CeO2、ZrO2、MgO和α-Al2O3粉及其抛光液。抛光时总是按抛光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨后,再用一定粒度的α-Al2O3粉在抛光布上进行抛光。抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳电极放入含一定浓度的K3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc/i pa=1),峰峰电位差ΔE p约为70mV(理论值约60 mV),即说明电极表面已处理好,否则需要重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik公式: 在25℃时,i p=(2.69×105)n3/2AD o1/2v1/2C o 其中A为电极的有效面积(cm2),D o为反应物的扩散系数(cm2/s),n为电极反

线性扫描伏安法与循环伏安法实验

**大学本科实验报告专用纸 课程名称 仪器分析实验 成绩评定 实验项目名称 线性扫描伏安法与循环伏安法实验 指导教师 实验项目编号 实验项目类型 实验地点 学生姓名 学号 学院 系 化学系 专业 实验时间2015年11月13日下午~11月13日下午 温度 ℃湿度 一.实验目的 1.掌握线性扫描伏安法及循环伏安法的原理; 2.掌握微机电化学分析系统的使用及维护。 3.掌握利用线性扫描伏安法进行定量分析及利用循环伏安法判断电极反应过程。 二.实验原理 1. 线性扫描伏安法: 线性扫描伏安法是在电极上施加一个线性变化的电压,记录工作电极上的电解电流的方法。记录的电流随电极电位变化的曲线称为线性扫描伏安图。 ⑴可逆电极反应的峰电流如下: c v AD n i p 121351069.2?= 式中,n 为电子交换数;A 为电极有效面积;D 为反应物的扩散系数;v 为电位扫描速度;c 为反应物(氧化态)的本体浓度。当电极的有效面积A 不变时,上式可简化为:c Kv i p 21= 即峰电流与电位扫描速度v 的1/2次方成正比,与反应物的本体浓度成正比。这就是线性扫描伏安法定量分析的依据。 ⑵可逆电极反应,峰电位与扫描速度无关,nF RT E E p /1.121±= 电极反应为不可逆时,峰电位p E 随扫描速度v 增大而负(或正)移。 2. 循环伏安法: 循环伏安法的原理与线性扫描伏安法相同,只是比线性扫描伏安法多了一个回扫,所以称为循环伏安法。循环伏安法是电化学方法中最常用的实验技术,也是电化学表征的主要方法。循环伏安法有两个重要的实验参数,一是峰电流之比,二是峰电位之差。对于可逆电极反应,峰电流之比pa pc i i /(阴极峰电流pc i 与阳极峰电流pa i 之比)的绝对值约等于1。峰电位之差p E ?(阴极峰电位pc E 与阳极峰电位pa E 之差)约为60mV(25℃),即 nF RT E p /22.2=?。

软件性能测试报告

OfficialTestReport 正式的测试报告 测试项目:软件性能测试 ProjectInformation 项目信息: SampleInformation 样品信息: TestOperationInformation 测试信息: Conclusion 结论: Pass 通过 Fail 不通过 Other 其它: Performedby 测试: 樊佳伦 Signatur e Date: 2015-12-22 Writtenby 撰写: 邓文 ?签名: ?日期: 2015-12-23 Checkedby 核查: 董安庆 2015-12-24 Approvedby 批准: 穆剑权 2015-12-25 RevisionHistory 修订履历

Contents目录 SoftwarePerformanceTestReport Purpose目的 验证该BMS的软件性能指标是否在产品规范内。 References参考文件 Specification产品规格书:

Standard执行标准:GS95024-1,ISO26262 Glossary术语 SampleInformation样品信息 GeneralInformation基本信息 Hardware&SoftwareInformation软硬件信息软件版本:V1.2 硬件版本:V1.2 Equipment&DeviceInformation设备信息 Approach测试方法和步骤

Pass/FailCriteria通过标准 如章节6 Results分析与结果 共18项测试,其中6项未做,分别是:报文稳定性,死机复位,模拟故障,接收的Buf滤波(Bootloader),接收的Buf滤波(正常工作),信号传输时序要求;其中一项不通过测试,是ECU时序; 其余12项测试的试验数据和结果分析如下:

热机循环

热机循环 热力发动机(热机)是指各种利用内能做功的机械,其原理是将燃料的化学能转化成内能再转化成机械能的机器动力机械的一类,如蒸汽机、汽轮机、燃气轮机、内燃机、喷气发动机等。热机通常以气体作为工质(传递能量的媒介物质叫工质),利用气体受热膨胀对外做功。自热机出现以来,人们一直从实验和理论上研究其效率问题。大量研究工作一方面为提高热机效率指明了的方向,另一方面推动了热学理论的发展。 【实验目的】 (1)研究热机将热转换为功的过程和原理 (2)学会计算热机循环的效率 (3)探索提高热机循环效率的方法 【实验原理】 热机是依靠从热源吸收热量,向低温热源释放热量来工作一种的装置。其理论基础为: (一) 理想气体方程式:PV=nRT ,将热力系统视为理想气体,再经热力过程变化时,将满足理想 气体方程式。 (二) 热力学第一定律:热力过程的变化,由能量守恒的推导,可得: dU = dQ - dW 。dU 为系统内能变化,dQ 为加入系统的热能,dW 为系统对外界所做的功。 1. 内能函数U 为状态函数,故热力系统经一循环过程,末状态等于初状态,其内能相 同,故dU = 0。 2. dQ 为热力过程加入系统的热能,其值和变化的过程有关: 绝热过程:dQ = 0。 等压过程:dQ = nC p dT 。 定容过程:dQ = nC v dT 。 其中C p 、C v 分别为气体的定压比热及定容比热。若系统吸热,dQ 为正值;若排热,dQ 为负值。 3. dW 为热力系统在热力过程中对外界所做的功,其形式为: dW = PdV ,dW 为微量变化的功,在这一完整过程种做功为??==PdV dW W , 即热力系统P-V 图曲线下面积。故: 等压过程:W = P?V = P(12 V V -)。 等温过程:1 2ln 2 1 V V nRT dV V nRT PdV W V V == =??。

循环伏安法实验报告

循环伏安法实验报告 在电化学研究中,循环伏安法是一种简单而又强大的研究方法。通过循环伏安法, 可以对电极可逆性进行判断:反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称;判断电极反应机理的判断:如电极吸附现象、电化学反应过程中产物等;更重要的是,循环伏安法能够用于实验中的定量分析。接下来,运用实验数据来答疑解惑。通常我们选择铁氰化钾体系(Fe(CN)63-/4-)对电化学行为中的可逆过程进行研究,它的氧化与还原峰对称,两峰的电流值相等,两峰电位差理论值为0.059V 0 通常电极表面的处理对该理论值有很大的影响,一般选择玻碳电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极。选择AI2O3抛光粉将电极表面磨 光,然后在抛光机上抛成镜面,最后分别在1:1乙醇、1:1HNO3和蒸馏水中超 声波清洗15秒。另外,溶液是否除氧,这个也是必须考虑的,我们选择通高纯 N2除O2 o在电解池中放入 5.00 x l0-4mol/LK3(内含0.20mol/L KNO3 ,作为支持电解质。支持电解质的浓度实际上也对实验有影响,此处暂不考虑)。插入工作电极、铂丝辅助电极和饱和甘汞电极。设置电化学工作站中的参数,参数的设定需要不断的尝试,根据电化学工作站窗口显示的图形调节出合适的参数

图一的i-E曲线即为循环伏安图。从循环伏安图中可以看出有两个峰电流和两个峰电位,阴极峰电流ipc,峰电位以Epc(jpc)表示;阳极峰电流ipa,峰电位以 Epa 表示。ipc 或ipa 的下标的 a 代表 anode, c 代表 cathode。我们可知道, A Ep=Epa-Epc=56/n (单位:mV)( n为反应过程中的得失电子数),ipc与 ipa的比值越接近于1,则该体系的可逆程度就越高。这是判断可逆体系的最直接的方法。

冷热循环测试

一、检验项目:冷热循环 二、定 义:针对待测物(以下简称为试片)做-30℃~80℃之温度循环24次测试。 三、适用范围:本标准检验方法适用于公司所有须做信赖度测试之试片。 四、目 的:本实验的目的在仿真原料储存、运输及生产制造时所碰到的最恶劣情况。 五、样品准备: 1、制备FILM 试片的规格为150mm*150mm 。 2、制备GLASS 试片的规格为300mm*300mm 以上。 3、成品 六、使用装置:环境测试机*1。 七、操作步骤: 1、将试片测得线性,并制作表(一)。(请参考线性标准检验方法RY-STD-01-004)。 2、打开环境测试机扣环,将试片立于放置架上,扣上门环。 3、确认冷水塔及空压机有无运作,打开其开关。 4、按下POWER(红色),显示MENU 选单。 5、先按SHIFT + MONI 或直接按(1)进入MONITOR 1。 6、确认MODE = P. STOP(在停止状态中)。 7、进入MENU/SUB SET MENU 画面确认在OPERATE MODE 选择PRG 。 8、进入MONI 1,按R/S 键即可测试。 9、测试完毕后,仪器会自动停止,取出试片于室温下静置24小时。 10、进行线性后测。(请参考线性标准检验方法RY-STD-01-004) 11、进行外观测试,并制作表(二)。(请参考外观检测标准检验方法RY-STD-02全项) 12、进行透过率测试,并制作表(三)。(请参考透过率标准检验方法RY-STD-03-008) 冷 热 循 环 Figure4-2: 温度循环示意图 八、检验数据处理: 1、表(一):线性测试记录(《产品测试记录表》)。 2、表(二):外观检测记录。 3、表(三):透过率检测记录。

常用电池材料的循环伏安法测试 实验报告

实验一常用电池材料的循环伏安法测试 一.实验目的 1.让学生认识电化学工作站的基本功能; 2. 通过演示实验让学生更加深刻理解循环伏安法的测试方法; 3.通过观察在循环伏安法测试过程中电解池内的变化,更加深刻理解循环伏安法的原理。 二.实验原理 循环伏安法(Cyclic Voltammetry)是一种常用的动电位暂态电化学测量方法,是电极反应动力学、反应机理以及可逆性研究的重要手段之一,应用非常广泛。 何。

三.主要实验设备及样品 1. 电化学工作站 1台; 2. 电解池(包括三个电极) 1套; 3. 超级电容器电极材料 4. 3mol/L KOH溶液 30ml 四.实验步骤 1.准备好待测电极,电解液,组装好三电极电解池。 2.连接电化学工作站电源,并启动。 3. 将电化学工作站测试端和电解池中的工作电极,参比电极,辅助电极一一对应进行连接。 4. 打开电化学工作站工作菜单,点击进入测试任务选项,选择Cyclic Voltammetry项。 5. 在Cyclic Voltammetry菜单中输入测试起始电压,结束电压,扫描速度,循环次数等参数。 6. 点击“开始”进行测量。 7.测量结束后,将数据保存到指定位置。 五.注意事项 1. 实验前需要检查电解池组装是否规范,有无漏液,或者短路情况; 2. 连接三电极时,要一一对应。 3. 数据注意及时保存 六. 数据记录及处理 数据记录(取第二圈数据) Temperature('C): 25 Begin Information: Cell Information Surface Area: 1 Density: 7.8 Weight: 28 Polarity: 0 PolarityI: 0 Corrosion Unit Type: 1 Reference Type: 2 Reference Potential: 0.241 Reference User-Defined: 0 Stern-Geary: 18

RXQC-2C汽车线束热循环温升测试台工作原理

RXQC-2C汽车线束热循环温升测试台 本试验仪依据GB2099、GB7251、GB11022、GB11918、GB13140、GB14048、GB15092、GB15287、GB15288、GB16915、GB17465、GB20234.1、UL310、UL498、UL817、UL941、UL1059、IEC60309、IEC60998、IEC60669、IEC61058、IEC60439、EIA-364-70等电子连接器的电流和温度升高测试方法及其他电器附件的有关标准研制而成,可适用于接地电阻测试、器具开关、插头插座、开关柜、母线排等产品的温升试验。具有操作简便,准确可靠等特点,广泛用于厂家、质检和科研部门。也可用于考核电器附件在接上负载电流时其表面发热情况,电极温升是否符合标准的要求。 1、试验电流源:电流程序控制 最大输出电压: DC5V 输出电压显示精度:±(0.2%读数+5个字) 输出恒定可调试验电流:2档 DC 0~20.000~200.00A可调 电流显示精度:±(0.5%读数+5个字) 试验电流稳定性:±(1%设定值 + 5个字),反应时间1S 输出功率限制:不超过1KVA 2、控制器:通电/断电时间:1~99.99 分钟/小时 通断次数:1~9999次,带断电记忆功能,次数到自动停机 3、温升测试: 测温范围:0~260℃精度±0.3%读数+1℃;分辨率:0.1℃ 温度测量:16路(包含1点测量环境温度) 数据读取速度:1S 配置热电偶:美国Ω公司J型30AWG细丝热电偶,长度2米,共16条; 温度探头间可带电AC300V测试,不会损坏仪器, 热电偶精度:Ⅰ级。 热电偶测试温度范围:-50~260 ℃ 温度数据记录:由电脑自动完成,配置电脑测试软件,可导出Excel报表; 4、供电电源:AC220V±10%,50/60Hz,3KVA 5、配置触摸屏一体化工控电脑(奔4/1.8G以上CPU,2G内存,128G固态硬盘,15吋液晶显示器)一台、安装有XP中文操作系统,OFFICE处理软件。 程序功能:程控设置测试电流,自动生成电流、温升曲线,可查询、数据导出等功能 软件功能:A、可设定不同的工作模式:连续模式、通断模式 B、电流程控设置 C、自动记录数据、描绘曲线:温升—时间曲线,电流—时间曲线,温升—电流曲线 6、测试夹具:配置测试罩(依据具体要求定制),方便用户测试,配一副测试夹(夹具可客户提供或依据客户要求设计)。 7、尺寸:约宽800mm×深800mm×高1800mm,重约200kg

RXWS-2D连接器热循环温升测试台适用范围

RXWS-2连接器热循环温升测试台 符合GB15287、GB15288、GB20234.1、GB2099、GB16915、GB15092、GB17465、GB11918、GB13140、GB14048、GB7251、UL310、UL498、UL817、UL941、UL1059、IEC60309、IEC60998、IEC60669、IEC61058、IEC60439、EIA-364-70电子连接器的电流和温度升高测试方法及其他电器附件的有关标准研制而成。可用于考核电器附件在接上负载电流时其表面发热情况,电极温升是否符合标准的要求。1、程控电流源:(交流/直流可按客户要求定做) 最大输出电压:不超过DC5V 输出恒定可调试验电流:DC0~50~500.0A连续可调 电流显示精度:±(0.5%读数+5个字) 试验电流稳定性:±(1%设定值 + 5个字) 2、控制器:通电/断电时间:1~99.99 分钟/小时 通断次数:1~9999次,带断电记忆功能,次数到自动停机 3、温升测试: 测温范围:0~260℃精度±0.3%读数+1℃;分辨率:0.1℃ 温度测量:8路(包含1点测量环境温度) 配置8通道同时采集温度数据 配置热电偶:美国Ω公司T型30AWG细丝热电偶,长度2米,共8条; 温度数据记录:由电脑自动完成,配置电脑测试软件,可导出Excel报表; 4、供电电源:单相AC220V±10%,50/60Hz,5KVA 5、配置触摸屏一体化工控电脑(奔4/1.8G以上CPU,2G内存,256G固态硬盘,15吋液晶显示器)一台、安装有XP中文操作系统,OFFICE处理软件。 6、尺寸:约宽800mm×深800mm×高1600mm,重约350kg

相关文档
最新文档