5.1-2离散数学
武汉大学《离散数学》课件-第5章

vi是终点), 则称为通路, v0是通路的起点, vl是通路的终点, l为通路的长度. 又若v0=vl,则称为回路.
(2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为 初级通路(初级回路).初级通路又称作路径, 初级回路又称 作圈.
32
通路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的初级通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的简单回 路,则存在v到自身长度小于等于n的初级回路.
D
D[{e1,e3}]
D[{v1,v2}]
26
补图
定义 设G=<V,E>为n阶无向简单图,以V为顶点集, 所有使G成为完全图Kn的添加边组成的集合为边集 的图,称为G的补图,记作 G . 若G G , 则称G是自补图.
例 对K4的所有非同构子图, 指出互为补图的每一对 子图, 并指出哪些是自补图.
图论
1
图论部分
第5章 图的基本概念 第6章 特殊的图 第7章 树
2
第5章 图的基本概念
5.1 无向图及有向图 5.2 通路, 回路和图的连通性 5.3 图的矩阵表示 5.4 最短路径, 关键路径和着色
3
5.1 无向图及有向图
▪ 无向图与有向图 ▪ 顶点的度数 ▪ 握手定理 ▪ 简单图 ▪ 完全图 ▪ 子图 ▪ 补图
27
5.2 通路、回路、图的连通性
离散数学第五版习题答案

离散数学第五版习题答案【篇一:自考2324离散数学第五章课后答案】txt>5.1习题参考答案1、设无向图g有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:g中至少有几个结点。
阮允准同学提供答案:解:设度数小于3的结点有x个,则有解得:x≥4所以度数小于3的结点至少有4个所以g至少有11个结点2、设无向图g有9个结点,每个结点的度数不是5就是6,证明:g中至少有5个6度结点或至少有6个5度结点。
阮允准同学答案:证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。
若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。
若度数为5的结点数为6,8个,结论显然成立。
由上可知,g中至少有5个6度点或至少有6个5度点。
3、证明:简单图的最大度小于结点数。
阮同学认为题中应指定是无向简单图.晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n.4、设图g有n个结点,n+1条边,证明:g中至少有一个结点度数≥3 。
阮同学给出证明如下:证明:设g中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以g的边数必小于等于n,这和已知g有n+1条边相矛盾。
所以结论成立。
5、试证明下图中两个图不同构。
晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。
我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。
6、画出所有5个结点3条边,以及5个结点7条边的简单图。
解:如下图所示: (晓津与阮同学答案一致)7、证明:下图中的图是同构的。
证明如下:在两图中我们可以看到有a→e,b→h,c→f,d→g两图中存在结点与边的一一对应关系,并保持关联关系。
离散数学 第五章 无限集合

那么Fk包括所有这样的函数, 其象是包含在B的枚举的前k个元素
组成的集合中; |Fk|=kn。 因为A是有限的, 对每一函数f:A→B存在某
m∈N, 如果取k>m, 那么f∈Fk; 所以
。 但每一集合Fk
是有限的因而BA是可数的。证毕。
5.1.3 基数c
不是所有无限集都是可数无限的, 下一定理说明需要新的无 限集基数。
。
(b) 设Σ={a,b}, S是Σ上以a带头的有限串集合, 考虑S的基数。 因为
f: Σ*→S, f(x)=ax
是一个双射函数。所以, |S|=|Σ*|=
。
第一个定理叫做三歧性定律。
定理5.2-2(Zermelo) 成立:
A和B是集合,那么下述情况恰有一个
N所
属等价类的名称。
(ii) 要证明一个集合S有基数α, 只需选基数为α的任意集合S′, 证明从S到S′或从S′到S存在一双射函数。选取集合S′的原则是使 证明尽可能容易。
例1 (a) 设E是正偶数集合, 考虑E的基数。因为
f: I+→E, f(x)=2x
是从I+到E的双射函数, 所以, |E|=|I+|=
(b) |(0,1)|=|[0,1]|。这两个集合的不同仅在于区间 的两端点; 为了构造从[0,1]到(0,1)的一个双射函数, 我们必须 在(0,1)中找出0和1的象而保持映射是满射的。定义集合A是
, 定义映射f如下:
图 5.1-4
(c) |R|=c。 我们定义一个从(0,1)到R的双射函数如下:
是Ai的枚举; 如果Ai是有限的我们用无限重复枚举。如果Ai= ,
我们置第i行等于第i-1行。这样, 数组包含所有A的元素而无其它
元素。A元素的一个枚举由图5.1-3中的有向路径指定。 从定理
离散数学第5章_函数

第5章 函数
证明 f和ρf的图示如图5 ― 2所示。 1) 任取a∈A, 有f(a)=f(a), 所以 (a, a)∈ρf, 故ρf自反; 任取a, b∈A, 若(a, b)∈ρf, 则f(a)=f(b), 所以 f(b)=f(a), 即(b 任取a, b, c∈A, 若(a, b)∈ρf, (b, c)∈ρf, 则f(a)=f(b), f(b)=f(c) , 所以 f(a)=f(c), 即(a, c)∈ρf; 故ρf传递。 综上ρf是A上的等价关系。
第5章 函数
任取b∈Rf, 由Rf的定义, 有a∈A, 使f(a)=b, 即有[a]∈A/ρf, 使得 g([a])=f(a)=b。 所以 g是满射。 综上g是双射。 定义 5.1 ― 5 恒等关系IA={(a, a)|a∈A}是A 到A的双射, 它称为A上的恒等函数。 定义 5.1 ― 6 若函数f: A→B, 对一切a∈A, 都 有f(a)=b, b∈B, 则f称为常函数。
第5章 函数
定义 5.1 ― 2 设有函数f: A→B, g: C→D, 若 有A=C、 B=D且对所有的x∈A, 有f(x)=g(x), 则称 函数f和g相等, 记为f=g。 定义 5.1 ― 3 集合A到集合B的所有函数的集合记 为BA, 即 BA={f|f: A→B}
第5章 函数
定理 5.1 ― 1 当A和B是有限集合时,有 |BA|=|B||A| 证明 设|A|=m, |B|=n(m, n∈N); 又设A={a1, a2, …, am}。 因为 Df=A,所以 f={(a1, f(a1)), (a2, f(a2)), …, (am , f(am))}。 而每个f(ai)(i∈Nm)都有n种可能, {n·n·…·n } =n +m个 m个即 |BA|=|B||A|
《离散数学》总复习上课讲义

第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))
离散数学 第五章

5.1 一阶逻辑等值式与置换规则定义5.1设A,B是一阶逻辑中任意两个公式,若A B是永真式,则称A与B 是等值的。
记做A B,称A B是等值式。
谓词逻辑中关于联结词的等值式与命题逻辑中相关等值式类似。
下面主要讨论关于量词的等值式。
一、基本等值式第一组代换实例由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永真式,因而第二章的16组等值式给出的代换实例都是一阶逻辑的等值式的模式。
例如:xF(x)┐┐xF(x)x y(F(x,y)→G(x,y))┐┐x y(F(x,y)→G(x,y))等都是(2.1)式的代换实例。
又如:F(x)→G(y)┐F(x)∨G(y)x(F(x)→G(y))→zH(z)┐x(F(x)→G(y))∨zH(z))等都是(2.1)式的代换实例。
第二组消去量词等值式设个体域为有限域D={a1,a2,…,a n},则有(1)xA(x)A(a1)∧A(a2)∧…∧A(a n)(2)xA(x)A(a1)∨A(a2)∨…∨A(a n) (5.1)第三组量词否定等值式设A(x)是任意的含有自由出现个体变项x的公式,则(1)┐xA(x)x┐A(x)(2)┐xA(x)x┐A(x)(5.2)(5.2)式的直观解释是容易的。
对于(1)式,“并不是所有的x都有性质A”与“存在x没有性质A”是一回事。
对于(2)式,“不存在有性质A的x”与“所有x都没有性质A”是一回事。
第四组量词辖域收缩与扩张等值式设A(x)是任意的含自由出现个体变项x的公式,B中不含x的出现,则(1)x(A(x)∨B)xA(x)∨Bx(A(x)∧B)xA(x)∧Bx(A(x)→B)xA(x)→Bx(B→A(x))B→xA(x) (5.3)(2)x(A(x)∨B)xA(x)∨Bx(A(x)∧B)xA(x)∧Bx(A(x)→B)xA(x)→Bx(B→A(x))B→xA(x) (5.4)注意:这些等值式的条件。
第五组量词分配等值式设A(x),B(x)是任意的含自由出现个体变项x的公式,则(1)x(A(x)∧B(x))xA(x)∧xB(x)(2)x(A(x)∨B(x))xA(x)∨xB(x) (5.5)二、基本规则1.置换规则设Φ(A)是含公式A的公式,Φ(B)是用公式B取代Φ(A)中所有的A之后的公式,若A B,则Φ(A)Φ(B).一阶逻辑中的置换规则与命题逻辑中的置换规则形式上完全相同,只是在这里A,B 是一阶逻辑公式。
离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)
12
5.1 无向图及有向图
五、握手定理(定理5.1-5.2)
设G=<V,E>为任意无向图,V={1,2,……,n},|E|=m,则
n
d ( i ) = 2 m
i =1
设D=<V,E>为任意有向图,V={1,2,……,n},|E|=m,则
20
5.1 无向图及有向图
例5:下列图中那些图具有子图、真子图、生成子图的
关系?
e4 2
1 e5
e1 3
e3 4 e2
(1)
2 e4
1
e5
(2)
e4 1 2
e1 3
e3 4
(3)
1 e1
e3
2
e2 3
1 e1
e3
2
3
1 e1
2
e4
(4)
(5)
(6)
21
5.1 无向图及有向图
23
5.1 无向图及有向图
例3: (1)画出4阶3条边的所有非同构的无向简单图。 (2)画出3阶2条边的所有非同构的有向简单图。
24
5.1 无向图及有向图
例4:下列图中那些图互为同构?
e a
b
d
c
1
4
5
2
3
(1)
(2)
(3)
(4)
(5)
(6)
25
第五章 图的基本概念 5.1 无向图及有向图 5.2 通路、回路、图的连通性 5.3 图的矩阵表示 5.4 最短路径及关键路径
十一、补图的定义(定义5.9)
离散数学_第5章_代数系统(学生用)
2013-7-31
离散数学
22
吸收律
定义5-2.5:设<A, *,△>,若x,y,zA, 有x*(x△z)=x称运算*满足吸收律; 有x△(x*y)=x称运算△满足吸收律。 【例】 N为自然数集, x,yN,x*y=max{x,y},x△y=min{x,y}, 试证:*,△满足吸收律。 证明: x,yN,x*(x△y)=max{x,min{x,y}}=x ∴ *满足吸收律 x,yN,x△(x*y)=min{x,max{x,y}}=x ∴ △满足吸收律。
离散数学
24
【例】设ρ(s)是集合S的幂集,在ρ(s)上定义的两个 二元运算,集合的“并”运算∪和集合的“交” 运算∩,验证∪,∩满足幂等律。
证明:对于任意的A∈ρ(s),有A∪A=A和A∩A=A,
因此运算∪和∩都满足等幂律。 【例】普通的加法和乘法不适合幂等律。但0是加法 的幂等元(0+0=0),0和1是乘法的幂等元( 0*0=0且1*1=1)。
2013-7-31
离散数学
9
例:以下哪些运算是封闭的?
(1) 自然数集合N上的减法运算。 不封闭
(2) 整数集合I上的除法运算。 不封闭
(3) 设A={1,2,3,…,10},二元运算x*y=质数p的个数,
使得x ≤p≤y。 不封闭,当x=y=4时,x与y之间的质数个数为0, 而0不属于A集合。
2013-7-31 离散数学 26
特殊元素
在某些代数系统中存在着一些特定的元素,它们 对于系统的一元或二元运算起着重要的作用。 例:<Z,+>中的+运算有单位元0。 例:矩阵乘法运算中的单位矩阵。 将这些特殊元素作为代数系统的性质进行讨论, 这时称这些元素为该代数系统的特异元素或代数 常数。
离散数学知识点总结
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
离散数学讲解第五章
2018/12/20
20
例5 *
e a b c
设G= {a,b,c,e}, * 是G上的二元运算, e
e a b c
a
a e c b
b
b c e a
c
c b a e
a*=b*a=c,
b*c=c*b=a, a*c=c*a=b <G;*>是一阿贝尔群,但它不
是循环群,一般称这个群为
2018/12/20 2
例3 设S={|是集合A上的关系},对于关系的复合运 算可构成代数系统 <S; >,<S;>是半群。
若F={f |f :AA},则对于函数的复合运算,代
数系统<F;>也是半群。 对任意 a∈S ,定义 an+1=an*a a1=a (n=1,2,……) (* )
例7 对于半群 <S;*>的任一元素a S ,令集合 T={a,a2,a3,…}
<T;*>是<S;*>的子半群。
2018/12/20 6
定义5-6 设<S;*>是一独异点,若<T;* >是<S;*>的子代
数,且单位元 e T,则称<T;*>是<S;*>的子独 异点。 例8 对于独异点<Z;+ > , 子集N2, N3, N4, … ,它们均不 能构成<Z;+>的子独异点, 令Z2={2n|nZ}, Z3={3n|nZ}, Z4={4n|nZ} 则<Z2 ;+ >, <Z3 ;+ >, <Z4 ;+ >都是 <Z ;+>的子独异点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
推论
推论1 设f, g, h为函数, 则(f∘g)∘h 和 f∘(g∘h)都是函数, 且 (f∘g)∘h = f∘(g∘h) 证 由上述定理和关系合成运算的可结合性得证.
推论2 设f : A→B, g : B→C, 则 f∘g : A→C, 且x∈A都有 f∘g(x) = g(f(x)). 证 由上述定理知 f∘g是函数, 且 dom(f∘g) = { x | x∈domf ∧ f(x)∈domg} ={ x | x∈A ∧ f(x)∈B} = A ran(f∘g) rang C 因此 f∘g : A→C, 且x∈A 有 f∘g(x) = g(f(x)).
6
B上 A
定义5.4 所有从A到B的函数的集合记作BA, 读作“B上A” 符号化表示为 BA ={ f | f : A→B } 计数: |A|=m, |B|=n, 且m, n>0, |BA|=nm.
7
实例
例1 设A = {1, 2, 3}, B = {a, b}, 求BA. BA = { f0, f1, … , f7 }, 其中 f0={<1,a>,<2,a>,<3,a>} f1={<1,a>,<2,a>,<3,b>} f2={<1,a>,<2,b>,<3,a>} f3={<1,a>,<2,b>,<3,b>} f4={<1,b>,<2,a>,<3,a>} f5={<1,b>,<2,a>,<3,b>} f6={<1,b>,<2,b>,<3,a>} f7={<1,b>,<2,b>,<3,b>}
4
函数相等
定义5.2 设f, g为函数, 则 f=g fg∧gf 如果两个函数 f 和 g 相等, 一定满足下面两个条件: (1) domf = domg (2) x∈domf = domg 都有 f(x) = g(x) 实例 函数 f(x)=(x21)/(x+1), g(x)=x1 不相等, 因为 domfdomg.
构造从A到B的双射函数
有穷集之间的构造
例3 A=P({1,2,3}), B={0,1}{1,2,3} 解 A={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. B={ f0, f1, … , f7 }, 其中 f0={<1,0>,<2,0>,<3,0>}, f1={<1,0>,<2,0>,<3,1>}, f2={<1,0>,<2,1>,<3,0>}, f3={<1,0>,<2,1>,<3,1>}, f4={<1,1>,<2,0>,<3,0>}, f5={<1,1>,<2,0>,<3,1>}, f6={<1,1>,<2,1>,<3,0>}, f7={<1,1>,<2,1>,<3,1>}.
12
重要函数的定义(续)
W : Z+Z+作为算法的时间复杂度函数 W(n)的含义:对于规模为 n 的输入,该算法在最坏情况 下所执行的基本运算次数是W(n). 复杂度函数 f(n) 的阶的表示: f(n)=O(g(n)) f(n)的阶不超过g(n)的阶 f(n)=(g(n)) f(n)=O(g(n))且g(n)=O(f(n)) 例如: f(n)=n2+n=(n2), g(n)=nlogn=O(n2) 其中 logn 是 log2n 的简写 算法:二分搜索 W(n)=O(logn) 归并排序 W(n)=O(nlogn)
f1({a,b}) ={1,2,3}, f1({b,c}) ={3},
15
函数的性质
定义5.7 设 f : A→B, (1)若ranf = B, 则称 f : A→B是满射的. (2)若 y∈ranf 都存在唯一的 x∈A使得 f(x)=y, 则 称 f : A→B是单射的. (3)若 f : A→B既是满射又是单射的, 则称 f : A→B 是双射的
第5章 函数
1
第5章 函数
• 5.1 函数定义及其性质 • 5.2 函数的复合与反函数
2
5.1 函数定义及其性质
• 5.1.1 函数的定义
– 函数定义 – 从A到B的函数
• 5.1.2 函数的像与完全原像 • 5.1.3 函数的性质
– 函数的单射、满射、双射性 – 构造双射函数
3
函数定义
定义5.1 设 f 为二元关系, 若 x∈domf 都存在唯一的 y∈ranf 使 x f y 成立, 则称 f为函数. 对于函数f, 如果有 x f y, 则记作 y=f(x), 并称 y 为 f 在 x 的值. 例如 f1={<x1,y1>,<x2,y2>,<x3,y2>} f2={<x1,y1>,<x1,y2>} f1是函数, f2不是函数
14
实例
1. 设 f : N→N, 且
x / 2 若x为偶数 f ( x) x 1 若x为奇数 令A={0,1}, B={2}, 那么有 f(A) = f({0,1}) = { f(0), f(1) }={ 0, 2 }
f(B) = { f(2) } = { 1 }
2. A={1, 2, 3}, B={a, b, c}, f={<1,a>,<2,a>,<3,b>},则
25
函数复合的性质
定理5.2 设 f : A→B, g : B→C. (1) 如果 f : A→B, g : B→C都是满射的, 则 f∘g : A→C也是 满射的.
令 f : A→B, f()=f0, f({1})=f1, f({2})=f2, f({3})=f3, f({1,2})=f4, f({1,3})=f5, f({2,3})=f6, f({1,2,3})=f7
19
构造从A到B的双射函数(续)
实数区间之间构造双射
构造方法:直线方程 例4 A=[0,1] B=[1/4,1/2] 构造双射 f : A→B 解 令 f : [0,1]→[1/4,1/2] f(x)=(x+1)/4
9
重要函数的定义(续)
(4) 设 A 为集合, 对于任意的 A’ A, A’ 的特征函数 A’ : A→{0,1} 定义为
1, a A' A' (a ) 0, a A A'
实例:设A={a,b,c}, A的每一个子集 A'都对应于一个 特征函数, 不同的子集对应于不同的特征函数. 如 = {<a,0>,<b,0>,<c,0>}, {a,b} = {<a,1>,<b,1>,<c,0>}.
x0 2x f : Z N, f ( x ) 2 x 1 x 0
21
5.2 函数的复合与反函数
• 5.2.1 函数的复合
– 函数复合的基本定理及其推论 – 函数复合的性质
• 5.2.2 反函数
– 反函数存在的条件 – 反函数的性质
22
函数复合的基本定理
定理5.1 设f, g是函数, 则f∘g也是函数, 且满足 (1) dom(f∘g)={ x | x∈domf f(x)∈domg} (2) x∈dom(f∘g) 有 f∘g(x) = g(f(x)) 证 先证明 f∘g 是函数. 因为 f, g 是关系, 所以 f∘g 也是关系. 若对某个 x∈dom(f∘g),xf∘gy1和 xf∘gy2, 则 <x, y1>∈f∘g <x, y2>∈f∘g t1(<x,t1>∈f <t1,y1>∈g) t2(<x,t2>∈f <t2,y2>∈g) t1t2 (t1=t2 <t1,y1>∈g <t2,y2>∈g) f是函数 y1=y2 g是函数 所以 f∘g 为函数.
f 满射意味着:y B, 都存在 xA 使得 f(x)=y. f 单射意味着:f(x1)=f(x2) x1=x2
16
实例
例2 判断下面函数是否为单射, 满射, 双射的, 为什么? (1)f : R→R, f(x)= x2+2x1 (2)f : Z+→R, f(x)=lnx, Z+为正整数集 (3)f : R→Z, f(x)=x (4)f : R→R, f(x)=2x+1
5
从A到B的函数
定义5.3 设A, B为集合, 如果 (1) f 为函数 (2) domf = A (3) ranf B, 则称 f 为从A到B的函数, 记作 f : A→B.
实例 f : N→N, f(x)=2x 是从 N 到 N 的函数 g : N→N, g(x)=2也是从 N 到 N 的函数
23
证明
再证明结论 (1) 和 (2) . 任取x,
x∈dom(f ∘g) t y (<x,t>∈f∧<t,y>∈g) t (x∈domf ∧ t=f(x) ∧ t∈domg) x∈{ x | x∈domf ∧ f(x)∈domg } 任取x,
x∈domf ∧ f(x)∈domg <x, f(x)>∈f ∧<f(x), g(f(x))>∈g <x, g(f(x))>∈f∘g x∈dom(f∘g)∧f∘g(x)=g(f(x))