Gamma-ray Burst host galaxy gas and dust
我眼中的宇宙英语作文

我眼中的宇宙英语作文Title: The Universe Through My Eyes。
As I gaze upon the vast expanse of the universe, I am captivated by its sheer magnitude and complexity. The universe, with its countless galaxies, stars, and planets, holds within it mysteries waiting to be unraveled. From the depths of space to the intricacies of celestial bodies, each aspect of the universe tells a story that fascinates and inspires.One of the most awe-inspiring aspects of the universe is its scale. Stretching billions of light-years across, the universe encompasses everything that exists, from the smallest subatomic particles to the largest galaxies. Contemplating this immense scale fills me with a sense of wonder and humility, reminding me of the vastness of existence beyond our comprehension.Within this vastness lie galaxies, the building blocksof the universe. Galaxies come in various shapes and sizes, from spiral galaxies like the Milky Way to elliptical and irregular galaxies. Each galaxy contains billions or even trillions of stars, along with interstellar dust, gas clouds, and other celestial objects. The beauty and diversity of galaxies serve as a testament to the creative forces at work in the cosmos.Stars, the luminous beacons of the universe, hold a special fascination for me. Formed from the collapse of clouds of gas and dust, stars shine brightly across the cosmos, illuminating the darkness of space. From massive, fiery giants to small, dim dwarfs, stars come in a multitude of sizes and colors, each with its own unique characteristics and life cycle. The birth, evolution, and death of stars are fundamental processes that shape the universe and contribute to its ongoing transformation.Planets, including our own Earth, are another integral part of the universe. These celestial bodies orbit stars, serving as homes for a diverse array of life forms and geological features. From the rocky terrain of Mercury tothe gaseous clouds of Jupiter, each planet offers insights into the processes that shape planetary bodies and influence their environments. Exploring the planets of our solar system and beyond provides valuable knowledge about the potential for life beyond Earth and the conditions necessary for its existence.Beyond the familiar realms of stars and planets lie phenomena that challenge our understanding of the universe. Black holes, for example, are regions of space wheregravity is so intense that nothing, not even light, can escape. These enigmatic objects are formed from the remnants of massive stars and play a crucial role in the evolution of galaxies and the structure of the cosmos. Studying black holes pushes the boundaries of our knowledge and opens new avenues for exploring the mysteries of the universe.Cosmic phenomena such as supernovae, gamma-ray bursts, and cosmic rays also intrigue me with their immense power and complexity. These events occur on cosmic scales, shaping the landscape of the universe and influencing theconditions for life. By studying these phenomena,scientists gain insights into the fundamental processesthat govern the cosmos and the interconnectedness of its various components.As I contemplate the universe through my eyes, I am filled with a sense of awe and wonder at the beauty and complexity of existence. From the grandeur of galaxies to the intricacies of subatomic particles, the universe offers endless opportunities for exploration and discovery. By delving into its mysteries, we gain a deeper understanding of ourselves and our place in the cosmos, unlocking the secrets of the universe one discovery at a time.。
On the Gamma-Ray Bursts Origin

On the Gamma-Ray Bursts OriginA. G. Syromyatnikov【期刊名称】《天文学与天体物理学国际期刊(英文)》【年(卷),期】2016(6)4【摘要】Gamma-ray (GRBs) and X-ray Bursts are millisecond-10 and 1000 seconds-long events of unknown origin. Recent simulations of the merger of binary neutron star systems do not generate a magnetically dominated called funnel nor a relativistic outflow. New models for the detection the afterglow of GRB 121024A, measured 0.15 days after the burst, invoke anisotropy as required to produce the complex microphysics of realistic shocks in relativistic jets. On the other hand the non-thermal gamma-rays are supposed to be produced by a fireball ofrelativistic e<sup>?</sup>e<sup>+</sup> pairs that are created by annihilation of neutrino-antineutrino pairs in the vicinity of the hot, merged object. It is also known that in a system of a large number of fermions with pairs, gravitational interaction occurs a spontaneous breaking of the vacuum spatial symmetry, accompanied by gravitational mass defect. If spherical symmetry is broken, as in the known case of the merger scenario where a rapidly rotating disk can be formed and material is pulled away from rotation axis by centrifugal forces, then a baryon-free funnel along the rotation axes may allow relativistic beam of γ’s ande<sup>?</sup>e<sup>+</sup> to escape. It might lead to matterejection with Lorentz factors of ~10<sup>2</sup> - 103</sup> which are in the right range to enable copious gamma production during shock interaction with ambient interstellar gas. Here we show that the space rays generation mechanism on a method of direct transformation of intergalactic gamma-rays to the proton current on spin shock-waves ensure precise agreement between generated proton currents (spin shock waves theory) with the angular distribution data of Galactic gamma-rays as well as for the individual pulses of gamma-/X-ray bursts. There is a precise confirmation of the generated currents (theory) with the burst radiation data characterized by the standard deviation of ±1% in intensity in relative units within the sensitivity of the equipment. Thus, it was found that the spin angular momentum conservation law (equation of dynamics of spin shock waves) in the X-ray/gamma ranges is fulfilled exactly in real time. The next step involves setting the inverse problem of determining the wave function disturbance on the differential of measured smoothing pulses. In the asymptotic large times the problem is reduced to the solutions of the functional equation with shift of the argument. This will give additional information about the change speed of the wave, as well as on the interaction.【总页数】11页(P425-434)【作者】A. G. Syromyatnikov【作者单位】Department of Physics, St. Petersburg State University, St. Petersburg, Russia【正文语种】中文【中图分类】O57【相关文献】1.Origins of short gamma-ray bursts deduced from offsets in their host galaxies revisited2.A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts3.Statistical properties of fast radio bursts elucidate their origins:magnetars are favored over gamma-ray bursts4.On the Origin of the Gamma-Ray Burst Redshift Distribution in the Early Universe5.Lsyn-Esyn,p-δrelation in active galactic nucleus jets and implication for the physical origin of the Lp-Ep,z-Γ_0 relation of gamma-ray bursts因版权原因,仅展示原文概要,查看原文内容请购买。
星际奇观:宇宙中的神秘光芒

1. 科学家们对宇宙充满了无尽的好奇和探索欲望。
通过各种仪器和技术,他们不断发现着宇宙中的奇观和神秘光芒。
这些光芒穿越亿万光年的距离,向我们展示了宇宙的壮丽景象,同时也带来了许多未解之谜。
2. 在宇宙中,有一些神秘的光芒被称为“星际奇观”。
它们的特点是非常亮且持续时间很短暂。
科学家们对这些光芒的起源和性质进行了深入研究,但至今仍然无法完全解释其背后的奥秘。
3. 一种著名的星际奇观是“伽玛射线暴”(gamma-ray burst, GRB)。
GRB是宇宙中最亮的事件之一,释放出的能量比太阳在整个寿命中释放的能量还要多。
它们通常持续几秒钟到几分钟不等,但有时也会持续更长时间。
GRB的观测数据显示,它们来自宇宙中不同的方向,与超新星爆炸或黑洞的活动有关。
4. 另一种引人注目的星际奇观是“快速射电暴”(fast radio burst, FRB)。
FRB是以毫秒为单位的短暂射电脉冲,其持续时间极短,但能量巨大。
最初被误认为是干扰信号,后来科学家们发现它们来自宇宙中的远离地球数亿光年的地方。
至今为止,FRB的起源仍然是未解之谜,但有人认为它们可能与中子星碰撞或黑洞有关。
5. 还有一类神秘光芒被称为“闪耀光点”(flashing dots),它们出现在宇宙中的遥远星系中。
这些光点具有非常高的亮度和变化速度,很难用传统的天文学模型来解释。
科学家们认为闪耀光点可能是由于恒星的碰撞或者其他未知的物理过程导致的。
6. 星际奇观不仅帮助我们了解宇宙的演化历史,还为科学家们提供了一些重要的线索,以推动我们对宇宙的理解更深入一步。
通过观测和研究这些神秘的光芒,科学家们可以揭示宇宙中隐藏的物理过程和天体现象。
7. 近年来,随着观测设备和技术的不断改善,我们对星际奇观的了解也在不断增加。
例如,通过多波段的观测,科学家们能够更准确地追踪GRB和FRB的来源,并尝试解开它们的谜团。
同时,新的天文台和探测器的发射也将进一步拓展我们对宇宙中神秘光芒的认识。
伽玛射线暴的特征与机制分析

伽玛射线暴的特征与机制分析伽玛射线暴(Gamma-ray bursts,缩写为GRB)是宇宙中最强烈的爆发事件之一。
它们以极高的能量释放出强烈的伽玛射线,并且在其他波长上也有明显的辐射。
过去几十年来,科学家通过观测和研究逐渐揭示了伽玛射线暴的一些特征和可能的机制。
首先,让我们来了解一下伽玛射线暴的特征。
伽玛射线暴通常持续时间很短,从几毫秒到几千秒不等,强度也非常强大。
这使得它们成为天文学中最具挑战性的研究对象之一。
此外,伽玛射线暴还具有高能辐射的特点,伽玛射线的能量可以达到很高,甚至超过了宇宙中其他电磁波的能量。
这使得伽玛射线对宇宙物理和高能物理的研究具有重要意义。
关于伽玛射线暴的机制,科学家们提出了几种可能的解释。
其中一种是“超新星爆发模型”,认为伽玛射线暴是恒星死亡的结果。
当恒星质量超过一个临界值时,它会发生超新星爆发,并释放出巨大的能量。
这种能量释放会在恒星核心塌缩时产生伽玛射线暴。
然而,这一模型并不能解释伽玛射线暴的所有特征,因此科学家们还需要进一步的研究来完善这个理论。
另一种可能的解释是“双星合并模型”。
这个模型认为,伽玛射线暴是由两颗中子星或黑洞合并引起的。
当两个紧密相连的天体合并时,它们会释放出大量的能量,产生伽玛射线暴。
这个模型解释了一些伽玛射线暴的特征,但仍有一些问题需要进一步探索和解答。
此外,还有一种相对较新的理论是“磁体重力坍缩模型”。
这个模型认为,伽玛射线暴是由一个非常大质量的恒星或天体在极端条件下坍缩形成的。
在这个过程中,磁场和引力相互作用,释放出强大的能量,产生伽玛射线暴。
这个模型解释了伽玛射线暴持续时间短暂的特征,并且与观测结果相符合,但仍需要更多的观测数据和理论支持。
尽管我们已经有了一些关于伽玛射线暴的认识,但这个领域仍然存在许多谜团等待我们去解开。
我们需要更多的观测数据来验证和完善不同的理论模型,以更好地理解伽玛射线暴的形成机制。
同时,我们也希望新的观测设备和技术的发展能够为我们揭示更多关于伽玛射线暴的秘密。
高中英语Unit4Astronomythescienceofthestars天文学专业词汇素材新人教

天文学专业词汇CAMC, Carlsberg Automatic Meridian 卡尔斯伯格自动子午环Circlecannibalism 吞食cannibalized galaxy 被吞星系cannibalizing galaxy 吞食星系cannibalizing of galaxies 星系吞食carbon dwarf 碳矮星Cassegrain spectrograph 卡焦摄谱仪Cassini 〈卡西尼〉土星探测器Cat's Eye nebula ( NGC 6543 )猫眼星云CCD astronomy CCD 天文学CCD camera CCD 照相机CCD photometry CCD 测光CCD spectrograph CCD 摄谱仪CCD spectrum CCD 光谱celestial clock 天体钟celestial mechanician 天体力学家celestial thermal background 天空热背景辐射celestial thermal background radiation 天空热背景辐射central overlap technique 中心重迭法Centaurus arm 半人马臂Cepheid distance 造父距离CFHT, Canada-Franch-Hawaii Telecope 〈CFHT〉望远镜CGRO, Compton Gamma-Ray Observatory 〈康普顿〉γ射线天文台chaos 混沌chaotic dynamics 混沌动力学chaotic layer 混沌层chaotic region 混沌区chemically peculiar star 化学特殊星Christmas Tree cluster ( NGC 2264 )圣诞树星团chromosphere-corona transition zone 色球-日冕过渡层chromospheric activity 色球活动chromospherically active banary 色球活动双星chromospherically active star 色球活动星chromospheric line 色球谱线chromospheric matirial 色球物质chromospheric spectrum 色球光谱CID, charge injected device CID、电荷注入器件circular solution 圆轨解circumnuclear star-formation 核周产星circumscribed halo 外接日晕circumstellar dust disk 星周尘盘circumstellar material 星周物质circumsystem material 双星周物质classical Algol system 经典大陵双星classical quasar 经典类星体classical R Coronae Borealis star 经典北冕 R 型星classical T Tauri star 经典金牛 T 型星Clementine 〈克莱芒蒂娜〉环月测绘飞行器closure phase imaging 锁相成象cluster centre 团中心cluster galaxy 团星系COBE, Cosmic Background Explorer 宇宙背景探测器coded mask imaging 编码掩模成象coded mask telescope 编码掩模望远镜collapsing cloud 坍缩云cometary burst 彗暴cometary dynamics 彗星动力学cometary flare 彗耀cometary H Ⅱ region 彗状电离氢区cometary outburst 彗爆发cometary proplyd 彗状原行星盘comet shower 彗星雨common proper-motion binary 共自行双星common proper-motion pair 共自行星对compact binary galaxy 致密双重星系天文学专业词汇compact cluster 致密星团; 致密星系团compact flare 致密耀斑composite diagram method 复合图法composite spectrum binary 复谱双星computational astrophysics 计算天体物理computational celestial mechanics 计算天体力学contact copying 接触复制contraction age 收缩年龄convective envelope 对流包层cooling flow 冷却流co-orbital satellite 共轨卫星coplanar orbits 共面轨道Copernicus 〈哥白尼〉卫星coprocessor 协处理器Cordelia 天卫六core-dominated quasar ( CDQ )核占优类星体coronal abundance 冕区丰度coronal activity 星冕活动、日冕活动coronal dividing line 冕区分界线coronal gas 星冕气体、日冕气体coronal green line 星冕绿线、日冕绿线coronal helmet 冕盔coronal magnetic energy 冕区磁能coronal red line 星冕红线、日冕红线cosmic abundance 宇宙丰度cosmic string 宇宙弦cosmic void 宇宙巨洞COSMOS 〈COSMOS〉底片自动测量仪C-O white dwarf 碳氧白矮星Cowling approximation 柯林近似Cowling mechnism 柯林机制Crescent nebula ( NGC 6888 )蛾眉月星云Cressida 天卫九critical equipotential lobe 临界等位瓣cross-correlation method 交叉相关法cross-correlation technique 交叉相关法cross disperser prism 横向色散棱镜crustal dynamics 星壳动力学cryogenic camera 致冷照相机cushion distortion 枕形畸变cut-off error 截断误差Cyclops project 〈独眼神〉计划D abundance 氘丰度Dactyl 艾卫dark halo 暗晕data acquisition 数据采集decline phase 下降阶段deep-field observation 深天区观测density arm 密度臂density profile 密度轮廓dereddening 红化改正Desdemona 天卫十destabiliizing effect 去稳效应dew shield 露罩diagonal mirror 对角镜diagnostic diagram 诊断图differential reddening 较差红化diffuse density 漫射密度diffuse dwarf 弥漫矮星系diffuse X-ray 弥漫 X 射线diffusion approximation 扩散近似digital optical sky survey 数字光学巡天digital sky survey 数字巡天disappearance 掩始cisconnection event 断尾事件dish 碟形天线disk globular cluster 盘族球状星团dispersion measure 频散量度dissector 析象管distance estimator 估距关系distribution parameter 分布参数disturbed galaxy 受扰星系disturbing galaxy 扰动星系Dobsonian mounting 多布森装置Dobsonian reflector 多布森反射望远镜Dobsonian telescope 多布森望远镜dominant galaxy 主星系double-mode cepheid 双模造父变星double-mode pulsator 双模脉动星double-mode RR Lyrae star 双模天琴 RR 型星double-ring galaxy 双环星系DQ Herculis star 武仙 DQ 型星dredge-up 上翻drift scanning 漂移扫描driving system 驱动系统dumbbell radio galaxy 哑铃状射电星系Du Pont Telescope 杜邦望远镜dust ring 尘环dwarf carbon star 碳矮星dwarf spheroidal 矮球状星系dwarf spheroidal galaxy 矮球状星系dwarf spiral 矮旋涡星系dwarf spiral galaxy 矮旋涡星系dynamical age 动力学年龄dynamical astronomy 动力天文dynamical evolution 动力学演化。
Swift的主要任务是揭开γ射线暴 (Gamma Ray Burst, GRB

SN 2008D超新星和Swift太空望遠鏡美國太空總處的Swift 太空望遠鏡,主要任務是揭開γ射線暴(GRB) 之謎,但在偶然的機會下卻捕捉到SN2008D 超新星爆炸的瞬間,這次發現見台灣國立清華大學新聞稿.tw/newsphoto/97news/hotnews-970522.php,順此謹向研究小組(Dr. Alicia Soderberg、江國興博士等人) 致賀。
Swift 取名自一種飛翔敏捷的同名鳥叫「雨燕」。
顧名思義,它裝了三支配合得宜,行動迅速的望遠鏡,可以在短時間內探測GRB 及隨後的X-ray,UV 和可見光餘暉。
這三支鏡分別簡稱為BAT、XRT 和UVOT,見插圖一。
BAT (Burst Alert Telescope) 是一台廣角爆炸預警器,視場1000x 600,台底是一大塊由半導體組成的感應板,用來接收能量15 ~ 150 kev 的γ-ray/hard X-ray,台頂是“編碼孔遮罩”,罩面排列五萬個互相交織,能夠阻隔輻射的鉛粒,故此某些感應板角度可以接收到輻射源的訊號,而另一些則無訊號,從無訊號處的角度便可推算出輻射源的方向,全部定向過程在10 秒內完成。
在偵測到爆炸後,BAT 立即發警報至地面,Swift 也會更準確地轉向目標,讓所載的另外兩支望遠鏡:XRT (X-ray Telescope) 與UVOT (Ultraviolet / Optical Telescope) 繼續跟進,前後5 分鐘就有初步的觀測結果了,在地面的天文台也可以同時進行觀測。
SN 2008D 始于Swift 在2008 年1 月9 日發現的X 射線暴,它並非由BAT 捕獲,那天Swift 依照預定程序指向天貓座Lynx 330 N 的天區,無意中就從XRT 圖像發現該射線暴了。
它爆發時十分凌厲,70 秒內X-ray 強度已升至頂點,持續了400 秒才消失,見圖二,期內釋放能量2x1039 J,相當于2005 年全球能源消耗的四百億億倍! 爆發後一天半左右,在夏威夷的八米雙子北望遠鏡即進行分光監察,初時的光譜還算平靜(圖三頂部曲線),幾天後就漸露頭緒,頻段出現明顯的He I (中性氦) 和數種特定元素吸收線,形勢似是超新星爆發,加上Chandra X-ray、哈勃、幾個地面光學望遠鏡和射電的同步觀測,天文學家証實這次爆炸不存在相對論性噴流(近似光速的噴流),況且在Swift BAT 身上也找不到任何γ-ray 對應,所以肯定爆炸源和GRB 無關,它的確是一顆超新星,位于天貓座一個旋渦星系NGC 2770 裡,距離九千萬光年,現時編號SN 2008D。
常见自然灾害英文单词
灾难英文词汇10英本3班1.交通事故aground 搁浅be<go,run>aground <船>搁浅,触礁belly out 底部朝上black box <飞机等的>黑匣子bound 准备〔或正在〕到……去的〔飞机,船等〕bow 船头canyon 峡谷capsize 〔船等〕倾覆castaway 乘船遇难者〔的〕cliff 悬崖collide <车船等>碰撞crash 碰撞crosswind 侧风derail 火车出轨distress signal 船只遇难时的求救信号ditch 飞机迫降在水面上,汽车开到沟里escaping hatch <潜艇的>逃生舱口ferry 渡船flip over 翻过来foul play 不正常运作fragment 碎片fuselage 〔飞机〕机身gondola 吊舱hatch 舱门head-on train collision 火车迎面相撞heavy seas 波涛汹涌的海面hull 船壳,船体life vest 救生背心mangle 压碎,plunge 投入,跳进raft 救生筏ram 猛撞ravine 沟壑山涧深谷rescue team 援救人员rough seas 波涛汹涌的海面rudder 舵shipwreck 船只失事,失事船的残骸skip over 翻过来strand 使搁浅turbulence 湍流turbulent 狂暴的湍流的wind shear 风切变wreck on a rock 触礁失事2.地震等sei earthquake、temblor〔美〕earthshock、quake、cataclysm、seism、地震epicenter、epicentre、epicentrum 、seismic vertical震中seismic belt/seismic zone/seismic area地震带; 地震区seismic center 震中aftershock 余震Richter Scale<1—10> 里氏震级seismographer/seismologist地震学家earthquake monitoring 地震监控seismic coefficient 地震系数dislocation earthquake断层地震folding earthquake褶皱地震local earthquake局部地震palintecticearthquake深源地震plutonic earthquake深源地震shallow-focus earthquake浅源地震simulated earthquake模拟地震submarine earthquake海底震tsunami海啸tectonic earthquake壳构地震volcanic earthquake火山地震earthquake monitoring 地震监控seismic discontinuity 地震间断面seismic regionalization 地震区划分after shock 余震magnitude 震级seismology 地震学buckle 变形,坍塌calamity 灾祸debris 碎片废墟devastate 毁坏devastating quake 毁坏性地震dilapidated house 部分毁坏的房屋earthquake belt 地震带earthquake prone zone 易震带epicenter 震中eruption 喷发,爆发jolt 振摇killer earthquake <死伤人数很多的>强烈地震landslide 塌方,滑坡,山崩lava 熔岩mudslide 泥石流open-ended Richter Scale 里氏地震级earthquake-stricken area<earthquake disaster region> 地震灾区reduce to rubbles 化为瓦砾rock 震动seism 地震shantytown 棚户区贫民窟shanty 棚屋shoddy building 偷工减料的建筑物skimp 克扣,偷工减料sniffer dog 警犬,嗅探器sniffer 嗅探器stench of putrefaction 腐烂东西发出的恶臭temblor 地震tide wave 海啸tracking dog 警犬trained-dog 受过训练的狗,警犬traumatized 受过精神创伤的tremor 震颤tsunami 海啸unscrupulous 是无忌惮的不讲道理的volcano 火山形容地震的破坏程度的动词有〔按破换程度从小到大排序〕:damage 损害,损伤;〔口语〕伤害,毁坏destroy 毁坏,破坏;摧残shatter 破坏;捣毁;破灭devastate 蹂躏,破坏;使荒废;毁灭level 推倒,夷平flatten 夷为平地national day of mourning 全国哀悼日mourning ceremony 哀悼仪式national flags fly at half-mast 降半旗致哀silent tribute 默哀online tribute 网上悼念earthquake relief 赈灾post-disaster reconstruction 灾后重建altitude sickness 高原反应quake victims 遇难者relief work 救援工作Tibetan treatment 藏医疗法medical team 医疗队relief goods 救援物资slide-proof rug 防滑垫cold-proof coat 防寒大衣heat sensor 生命探测仪signs of life 生命迹象plague prevention 防疫plague prevention 鼠疫防疫oxygen deprivation 缺氧oxygen supply 氧源,供氧oxygen mask 氧气罩gala devoted to quake relief 赈灾晚会telethon 为募捐播放的长时间的电视节目campaign-style donation activity 大型募捐活动charity donor 慈善捐赠者donation agreement 捐赠协议charity sale 义卖giveaway buffet 慈善餐会地震知识:震源epicenter地震波seismic wave纵波P-wave横波S-wave震级magnitude里氏震级Richter scale小于2.5级的地震叫小地震,2.5-4.7级地震叫有感地震,大于4.7级地震称为破坏性地震主震main shock前震pre-earthquake余震aftershock震带earthquake zone地震烈度seismic intensity构造地震Tectonic earthquake火山地震V olcanic earthquake塌陷地震Earthquake collapse诱发地震Induced earthquake人工地震Artificial earthquake3.火灾,风灾,水灾,旱灾avalanche 雪崩back-to-back storms 接踵而来的暴风雨batter <恶劣的天气>连续袭击blaze 火,熊熊燃烧blizzard 暴风雪carcase<carcass> 〔动物的〕尸体,〔蔑〕人的尸体cataclysm 洪水flood、deluge、spate洪水rock and mud slides/debris flow/mud-rock flow 泥石流landslide 山体滑坡tornado龙卷风typhoon 台风hurricane 飓风whirlwind 龙卷风twister 龙卷风storm 暴风雨sandstorm 沙尘暴gale 狂风gust 阵风char 烧焦choppy 风向不定的,波浪涛涛的collapse 倒坍crest 洪峰cyclone 气旋,旋风dam 水坝deluge 洪水depression 低气压dismal 凄凉的driving rain 倾盆大雨drizzle 牛毛细雨drought 干旱drown 淹死dump 〔雨水〕倾泻embankment 堤岸embank 筑堤防护engulf 席卷吞噬flame 火焰flood-ravaged area 〔洪水〕受灾区fume <浓烈或难闻的>烟,气,汽gale 狂风gust 阵风,〔风雨雹〕突然一阵gut 损毁〔房屋等〕内部装置hurricane 飓风inundate 水淹jetty 防波堤knee-deep <积雪等>齐膝深的,没膝的levee 大堤low-lying 地势低洼的maroon <杯水围困>处于孤立无援的境地monsoon 季风monsoon rain 〔印度洋〕季雨pelt 连续打击,〔雨雪〕大降pound 〔连续〕猛击pour 下倾盆大雨rainfall 降雨量〔typhoon-〕ravaged area 被〔台风〕破坏的地区scorch 烧焦sift 筛选详查silt 淤泥,使淤塞sleet 雨夹雪smoulder 焖烧spell <某种天气的>一段持续时间squall 〔冰雹〕暴风stampede 惊跑乱窜stifle 使窒息submergence 浸没,淹没subside <洪水>减退suffocate 使窒息sweep 〔风等〕刮起,浪等冲走terrified 恐惧的torrential rain 骤雨trample 踩twister 陆海卷风,沙柱尘旋uproot 连根拔wash away 冲走water-logged 涝的Space disasters 空间灾害Solar flares 太阳耀斑Gamma ray burst 伽玛射线暴4. 其他用语<flood>-struck area <洪水>受灾区aid worker 救援人员make-shift 临时凑用的代用品makeshift house 临时住房philanthropic 慈善的philanthropist 慈善家philanthropoid 慈善基金会经纪人philanthropy 慈善事业puddle 水坑race against the clock 争分夺秒rage 〔风〕狂吹,浪汹涌,病猖獗ready-made 现成的,预制的rescue worker 救援人员自然灾害学常用的100个英语单词和词组1、natural disaster 自然灾害;2、prevention of disaster 防灾;3、reduction of disaster 减灾;4、geological disaster 地质灾害;5、environment 环境;6、land 土地;7、resource 资源;8、history 历史;9、status 现状;10、water and soil 水土;11、washing away 流失;12、floodwater 洪水;13、breaking out 爆发;14、mountain coast 山体滑坡;15、vegetation 植被;16、soil fertility 土壤肥力;17、climate 气候;18、EI Nino phenomenon厄尔尼诺现象;19、marsh 湿地;沼泽;20、drought disaster旱灾;21、waterlog 涝灾;22、hail 冰雹;23、frost 霜冻;24、gale 大风;25、cold wave 寒潮;26、plant diseases and insect pests 病虫害;27、earthquake 地震;28、plague 瘟疫;29、fire disaster火灾;30、heavy snow disaster 大雪灾;31、lightning strike 雷击;32、ecology 生态;33、balance 平衡;34、original frost 初霜;35、end frost 终霜;36、spring frost 春霜;37、winter frost 冬霜;38、geological disaster 地质灾;39、heavy fog 大雾;40、animal disaster 兽害灾;41、law of drought disaster 旱灾规律;42、law of waterlog disaster 涝灾规律;43、change tendency 变化趋势;44、change law 变化规律;45、territorial disaster 区域性灾害;46、globe disaster 全球性灾害;47、environment 环境;48、protection 保护;49、surface water 地表水;50、groundwater 地下水;51、pollution 污染;52、tropic rain forest 热带雨林;53、typhoon 台风;54、cyclone 飓风;55、tornado 龙卷风;56、crypt 地穴;57、landform 地形;58、physiognomy 地貌;59、geogeny 地球成因学;60、land surface 地面;61、doing down 下沉;62、water resource 水资源;63、serious pinch 严重匮乏;64、grasshopper disaster 蝗虫灾;65、heavy drought 大旱;66、heavy waterlog 大涝;67、famine 饥荒;68、visitation of Providence 天灾;69、man-made disaster 人祸;70、surface of sea 海平面;71、moving up 上升;72、mankind 人类73、facing 面临;74、breathe 生存;75、challenge 挑战;76、volcano 火山;77、crater 火山口;78、eruption 火山灰;79、sea disaster 海洋灾害;80、storm tide 风暴潮;81、ground sea 海啸;82、red tide 赤潮;83、biologic disaster 生物灾害;84、insect pest 虫害;85、rat pest 鼠害;86、greenhouse gas 温室气体;87、greenhouse effect 温室效应;88、heavy fire from forest 森林大火;89、forestation 森林管理;90、deforestation 森林开发;91、silvics 森林生态学;92、disaster 灾害;93、measure 措施;94、strategy 策略;95、prevention and control 防治;96、countermeasure of reducing disaster 减灾对策;97、countermeasure of preventing disaster 防灾对策;98、risk analysis of natural disaster 自然灾害风险分析;99、risk assessment of natural disaster自然灾害风险评价;100、factor of leading to disaster 致灾因子。
天文学专用词汇
Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜Geoalert, Geophysical Alert Broadcast 地球物理警报广播giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GroupGPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatoryheavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy (NGC 2685 )螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar (HPQ )高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;高金属度星系团high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Ida 艾达(小行星243号)IEH, International Extreme Ultraviolet 〈IEH〉国际极紫外飞行器HitchhikerIERS, International Earth Rotation 国际地球自转服务Serviceimage deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy (UGC 3697 )积分号星系integrated diode array (IDA )集成二极管阵intensified CCD 增强CCDIntercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame (ICRF )intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- 红外光度计/分光计meterirregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet 〈IUE〉国际紫外探测器ExplorerJewel Box (NGC 4755 )宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper-belt object 柯伊伯带天体Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre 大型多天体分光望远镜Spectroscopic TelescopeLaplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar 〈LEST〉大型地基太阳望远镜Telescopelevel-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数(LCN )light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table (LUT )对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;低金属度星系团low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-α forest 莱曼-α 森林MACHO (massive compact halo 晕族大质量致密天体object )Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding 斯特朗洛山和赛丁泉天文台Spring Observatorymultichannel astrometric photometer 多通道天测光度计(MAP )multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物。
介绍space的英语作文
介绍space的英语作文Space, the vast expanse that surrounds our planet Earth, has always been a subject of fascination and intrigue for humankind. From the twinkling stars in the night sky to the endless darkness beyond, space has captivated generations with its mystery and wonder. In this essay, we will explore the wonders of space and discuss the various aspects that make it such a fascinating topic.One of the most mesmerizing features of space is the sheer size and scale of it. The universe is incomprehensibly vast, with billions of galaxies, each containing billions of stars. The distances involved are mind-boggling, with light taking millions of years to travel from one end of the universe to the other. The enormity of space is almost impossible to grasp, and it is this scale that makes it such a fascinating and awe-inspiring subject of study.Another intriguing aspect of space is the possibility of extraterrestrial life. While there is currently no concrete evidence of aliens, the vastness of space and the sheer number of planets and moons in our galaxy make it statistically probable that there is other life out there. Scientists have identified several exoplanets that lie within the habitable zone of their stars, where conditions are right for life to exist. The search for extraterrestriallife is an ongoing quest, and the discovery of even microbial life on another planet would be a game-changer for our understanding of the universe.Space is also a place of incredible beauty, with the stunning colors and shapes of nebulae, the glowing trails of comets, and the fiery explosions of supernovas. The Hubble Space Telescope has provided us with breathtaking images of galaxies, stars, and planets like never before, allowing us to see the beauty and grandeur of the cosmos in exquisite detail. The aesthetics of space have inspired artists, poets, and dreamers for centuries, and continue to do so to this day.In addition to its beauty, space is also a place of extreme conditions and phenomena. Black holes, for example, are regions of space where gravity is so strong that not even light can escape. These enigmatic objects warp the fabric of spacetime and challenge our understanding of the laws of physics. Other phenomena, such as supernovas, gamma-ray bursts, and pulsars, are equally mysterious and fascinating, offering insights into the violent and dynamic nature of the universe.Space exploration is another aspect that makes space so captivating. In the past century, humans have ventured beyond Earth's atmosphere and landed on the moon, explored thesurface of Mars with rovers, and sent spacecraft to the outer reaches of our solar system and beyond. The potential for discovery and exploration in space is limitless, and projects such as the James Webb Space Telescope and the Mars Sample Return mission promise to revolutionize our understanding of the cosmos.In conclusion, space is a subject of endless fascination and wonder. Its vastness, beauty, mysteries, and potential for discovery make it a topic that will continue to inspire and captivate us for generations to come. Whether we are gazing at the stars from our backyard, peering through a telescope at distant galaxies, or planning the next manned mission to Mars, the allure of space is undeniable. As we continue to explore and study the universe, we can only imagine what wonders and revelations await us in the infinite expanse of space.。
The blue colors of Gamma-ray burst host galaxies
a rXiv:as tr o-ph/211252v112Nov22To appear in “Galaxy Evolution:Theory and Observations (2002)”RevMexAA(SC)THE BLUE COLORS OF GAMMA-RAY BURST HOST GALAXIES E.Le Floc’h 1,P.-A.Duc 1and I.F.Mirabel 1,2There is now an increasing number of evi-dence supporting the idea that the cosmic Gamma-ray Bursts (GRBs)originate from the collapse of massive stars in distant star-forming galaxies.Because GRBs are likely detectable up to very high redshift,and be-cause the gamma-rays are not attenuated by intervening columns of gas and dust,these phenomena thus offer a unique perspective to probe the star formation in the early Uni-verse independently of the biases associated with dust extinction.In a first step of a long-term study to characterize the physical properties of the starbursts pinpointed by GRBs,we report here on the R–K colors of GRB host galaxies.Such colors,in principal,should pro-vide indications about the fraction of star formation occuring in blue galaxies as opposed to that tak-ing place in highly reddened sources.In Figure 1we compare the R–K colors of GRB hosts with those of field galaxies from the HDF (Fernandez-Soto et al.1999).The K magnitudes of GRB hosts were partly derived from our near-infrared (NIR)observations at the VLT,whereas the remaining data points and the R magnitudes were gathered from the -ing the optical and NIR local templates of Coleman et al.(1980)and Mannucci et al.(2001),we have also overplotted the colors that would exhibit such templates if they were shifted to higher z assuming no evolution.One can clearly see that GRB hosts display rather blue colors,typical of the population of blue faint sources at high z.They moreover appearsignificantly bluer than the local irregular galaxies,which reveals an even stronger contribution of the UV-continuum from star-forming regions.On one hand,this result seems to be consis-tent with the blue colors characteristic of the ac-tive star-forming HII regions that dominate the op-tical emission of starburst galaxies at high redshift.On the other hand,several authors have recently ar-gued that a significant fraction of the star forma-tion history may have occured in reddened sources enshrouded in dusty environments,such as those。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:as tr o-ph/7139v12Jan27GAMMA-RAY BURST HOST GALAXY GAS AND DUST ∗RHAANA STARLING,RALPH WIJERS AND KLAAS WIERSEMA University of Amsterdam Kruislaan 403,1098SJ Amsterdam,The Netherlands rlcs1@ ;rwijers@science.uva.nl ;kwrsema@science.uva.nl We report on the results of a study to obtain limits on the absorbing columns towards an initial sample of 10long Gamma-Ray Bursts observed with BeppoSAX ,using a new approach to SED fitting to nIR,optical and X-ray afterglow data,in count space and including the effects of metallicity.When testing MW,LMC and SMC extinction laws we find that SMC-like extinction provides the best fit in most cases.A MW-like extinction curve is not preferred for any of these sources,largely since the 2175˚A bump,in principle detectable in all these afterglows,is not present in the data.We rule out an SMC-like gas-to-dust ratio or lower value for 4of the hosts analysed here (assuming SMC metallicity and extinction law)whilst the remainder of the sample have too large an error to discriminate.We provide an accurate estimate of the line-of-sight extinction,improving upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample.1.Introduction The accurate localisation of Gamma-Ray Bursts (GRBs)through their optical and X-ray afterglows has enabled detailed studies of their environments.Selection solely by the unobscured gamma-ray flash has allowed the discovery of a unique sample of galaxies spanning a very wide range of redshifts from z ∼0.009to 6.3.3Hence,detailed and extensive host galaxy observations provide a wealth of information on the properties of star-forming galaxies throughout cosmological history.Afterglow spectroscopy and/or photometry can be used to provide an estimate of the total extinction along the line-of-sight to the GRB.Absorption within our own Galaxy along a particular line of sight can be estimated and removed,but absorption which is intrinsic to the GRB host galaxy as a function of wavelength is unknown,and is especially difficult to determine given its dependence on metal-licity and the need to distinguish it from that of intervening systems.In general,low amounts of optical extinction are found towards GRBs,unexpected if GRBs are located in dusty star-forming regions,whilst the X-ray spectra reveal a differ-ent picture.At X-ray wavelengths we often measure high values for the absorbing columns,where the absorption is caused by metals in both gas and solid phase.11The apparent discrepancy between optical and X-ray extinction resulting in high gas-to-dust ratios in GRB host galaxies (often far higher than for the MW,LMC or SMC,e.g.GRB 0201242)is not satisfactorily explained,though the suggestion that dust destruction can occur via the high energy radiation of the GRB 9could possibly account for the discrepancy.2Traditionally the optical and X-ray spectra have been treated seperately in ex-tinction studies.Since the underlying spectrum is likely a synchrotron spectrum (power law or broken power law)extending through both wavelength regimes,it is most accurate to perform simultaneousfits.We perform simultaneous broadband fits of the spectral energy distributions(SEDs)in count space,so we need notfirst assume a model for the X-ray spectrum.Inclusion of nIR data and R band opti-cal data together with the2–10keV X-ray data,regions over which extinction has the least effect,allows the underlying power law slope to be most accurately deter-mined.This sample of10long GRBs observed with the BeppoSAX Narrow Field Instruments is chosen for the good availability(3bands or more)of optical/nIR photometry.2.Results and DiscussionDetailed results offits to the SEDs for all GRBs in the sample,and further refer-ences,can be found in Starling et al.(2007).Figure1shows a comparison of the absorption measurements with Galactic,LMC and SMC gas-to-dust ratios.This plot has been constructed in a number of previous works1846and here we show the observed distribution of E(B−V)and N H for thefirst time derived simultane-ously from afit to X-ray,optical and nIR data.Wefind a large excess in absorption above the Galactic values in two sources:GRBs000926(E(B−V)only)and010222, whilst no significant intrinsic absorption is necessary in GRBs970228and990510. The cooling break can be located in three of the afterglows:GRBs990123,990510 and010222and to all other SEDs a single power law is an adequatefit.Wefind a wide spread in central values for the gas-to-dust ratios,and for4GRBs the gas-to-dust ratios are formally inconsistent with(several orders of magnitude higher than)MW,LMC and SMC values at the90%confidence limit assuming the SMC metallicity.This must mean that either gas-to-dust ratios in galaxies can span a far larger range than thought from the study of local galaxies,or the ratios are disproportionate in GRB hosts because the dust is destroyed by some mechanisms (likely the GRB jet),or that the lines of sight we probe through GRBs tend to be very gas-rich or dust-poor compared with random lines of sight through galaxies.A dust grain size distribution which is markedly different than considered here may also affect these ratios.We have compared the results of this method to those of other methods of determining E(B−V).In particular wefind that with respect to continuumfit-ting methods such as this,optical extinction is overestimated with the depletion pattern method,5and we have quantified this for a small number of cases.7We note,however,that since this is a line-of-sight method,the measured columns may not be representative of the host galaxy as a whole,therefore comparison with the integrated host galaxy methods is important.Swift,robotic telescopes and Rapid Response Mode on large telescopes such as the William Herschel Telescope and the Very Large Telescopes now allow early,high3 quality data to be obtained,which will help immensely in discriminating between the different extinction laws at work in the host galaxies.Fig.1.Intrinsic absorption in optical/nIR(E(B−V))and X-rays(log N H)measured for the GRB sample with90%error bars.We compare these with three different optical extinction laws overlaid with solid curves:Galactic(top panel),LMC(middle panel)and SMC(lower panel).Appropriate metallicities are adopted for LMC(1/3Z⊙)and SMC(1/8Z⊙)calculations(diamonds),and stars mark the centroids of the Solar metallicityfits.For GRB000926the data were too sparse tofit for N H,so we plot the E(B−V)range at log N H=17.0for clarity.References1.Galama T.J.and Wijers R.A.M.J.,2001,ApJ,549,L2092.Hjorth J.et al.,2003,ApJ,597,6993.Jakobsson P.et al.,2006,A&A,447,8974.Kann D.A.,Klose S.and Zeh A.,2006,ApJ,641,9935.Savaglio S.,Fall S.M.and Fiore F.,2003,ApJ,585,6386.Schady P.et al.,MNRAS submitted7.Starling R.L.C.et al.,ApJ in press,astro-ph/06108998.Stratta G.et al.,2004,ApJ,608,8469.Waxman E.and Draine B.T.,2000,ApJ,537,79610.Wijers R.A.M.J.and Galama T.J.,1999,ApJ,523,17711.Wilms J.,Allen A.and McCray R.,2000,ApJ,542,914。