《比例的应用》教学设计优秀4篇
《比例的应用》教学设计

《比例的应用》教学设计用比例解决问题教学反思篇一纵观这节课的教学,本人主要有以下几个方面的感受:1、信息窗4是用正比例的意义来解决基本的应用题。
为了加强知识间的联系,我先让学生用以前学过的方法(算术法和用方程解)解答,然后过渡到用正比例的意义来解决问题的教学。
通过问答式帮助学生梳理用正比例解决问题的思考过程。
2、通过进行比较,加深方程和比例概念的理解和正确使用。
3、通过对比分析用方程解和用比例解的思考过程,引导学生独立思考概括出用正比例解决问题的基本策略,提高学生运用正比例解决问题的有效性,也培养了学生参与知识结构的建构意识,同时提高了学生的概括能力和口头表达能力。
4、备课时,没有充分考虑学生对本节课知识的元认知,过高预测学生的预习能力,造成课堂的懈怠。
5、时间分配把握不准,复习阶段占用时间过多,造成教学重点不突出。
6、由于过度关注课堂的生成和对知识结构的重视,忽略了本节课的教学任务,造成没有按时完成教学任务。
学生没有时间进行即时练习对新知识的巩固,没有达到预期的教学目标。
《比例的应用》教学设计篇二教学目标:使学生进一步理解和掌握用比例知识解答应用题的方法。
抓住解题关键进行熟练准确的判断,从而找准题中的`等量关系。
通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。
教学过程:师:谁能够说说用比例知识解应用题的关键是什么?判断下题中各量成什么比例?并说明理由?指导学习题例。
让学生独立解答例7。
在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。
相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。
不同点:第一种解法是直接设所求问题为X。
第二种解法是间接设,即解出X后,还要用X减3才是所求问题。
师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。
学习例6师:请同学们在教材上完成例6后,再用算术方法解答。
说说用比例解例6的关键。
六年级上册数学《比的应用》教案

六年级上册数学《比的应用》教案六年级上册数学《比的应用》教案(6篇)作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。
我们应该怎么写教案呢?以下是小编为大家收集的六年级上册数学《比的应用》教案,仅供参考,希望能够帮助到大家。
六年级上册数学《比的应用》教案1学情分析:掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。
教学难点:能根据实际情况,判断各部分量之间应该按怎样的比例来分配。
教学重点:掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用教学目标:1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;2、培养学生应用所学数学知识解决实际问题的能力;3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学策略:引导学生将比转化成分数、份数,指导学生试算教学准备:学生课前作调查;教学过程:一、导入1、看题目:“比的应用”,你想知道什么?2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。
下面,请汇报一下你调查到的信息。
3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的联系。
今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?二、新课1、配置奶茶星期天的上午,小明家来了一位客人。
刚巧爸爸妈妈有事出去了。
于是小明就做起了小主人,亲自招待这位王叔叔。
师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的'基本礼仪。
小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。
(1)奶茶中,奶和茶的比是2:9。
看了这句话,你知道了些什么?(2)小明想要配制220毫升的奶茶,(a)先要解决什么问题?(奶和茶各取多少毫升?)(b)请你先独立计算一下,奶和茶各取多少毫升?(4)评价(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?(b)其实,这些方法都很好。
《比例的应用》的教案设计

《比例的应用》的教案设计第一章:比例的概念回顾1.1 教学目标:让学生理解比例的定义和基本性质。
能够列出比例并解比例问题。
1.2 教学内容:比例的定义和基本性质。
比例的表示方法。
解比例问题的基本步骤。
1.3 教学活动:通过实际例子引入比例的概念。
引导学生发现比例的基本性质。
让学生练习列出比例并解比例问题。
1.4 作业设计:练习题:列出给定比例并解相关问题。
第二章:比例的运算2.1 教学目标:让学生掌握比例的运算规则。
能够进行比例的乘除运算。
2.2 教学内容:比例的乘除运算规则。
比例的乘除运算示例。
2.3 教学活动:通过示例讲解比例的乘除运算规则。
让学生进行比例的乘除运算练习。
2.4 作业设计:练习题:进行给定比例的乘除运算。
第三章:比例的应用3.1 教学目标:让学生理解比例在实际问题中的应用。
能够运用比例解决实际问题。
3.2 教学内容:比例在实际问题中的应用示例。
比例解决实际问题的步骤。
3.3 教学活动:通过实际问题引入比例的应用。
引导学生运用比例解决实际问题。
3.4 作业设计:练习题:运用比例解决给定的实际问题。
第四章:比例尺的应用4.1 教学目标:让学生理解比例尺的概念和应用。
能够正确使用比例尺进行测量和计算。
4.2 教学内容:比例尺的定义和表示方法。
比例尺的应用示例。
4.3 教学活动:通过实际例子介绍比例尺的概念和表示方法。
引导学生使用比例尺进行测量和计算。
4.4 作业设计:练习题:使用比例尺进行测量和计算。
第五章:比例解决实际问题综合练习5.1 教学目标:让学生综合运用比例解决实际问题。
能够灵活运用比例解决不同类型的实际问题。
5.2 教学内容:综合运用比例解决实际问题的示例。
不同类型实际问题的解决方法。
5.3 教学活动:通过不同类型的实际问题引导学生综合运用比例解决。
让学生进行综合练习,巩固比例解决实际问题的能力。
5.4 作业设计:练习题:综合运用比例解决给定的实际问题。
第六章:比例在几何中的应用6.1 教学目标:让学生理解比例在几何图形中的应用。
比例的应用教学设计(热门17篇)

比例的应用教学设计(热门17篇)比例的应用教学设计第1篇教学要求:1、使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2、使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:一、揭示课题1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。
这节课,我们来复习用不同的方法解答比和比例应用题。
(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系1、提问:比与除法、分数有什么关系?2、出示:甲数与乙数的比是1:4。
提问:根据甲数与乙数的比是1:4,你能用分数、倍数关系表示甲数与乙数的关系吗?3、做练习二十二第4题。
小黑板出示。
指名一人板演,其余学生做在课本上。
集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。
这样,就可以用不同的知识来解答关于比和比例方面的应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。
提问:盐和水的重量比1:15可以怎样理解?提问:按照1:15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。
(老师巡视辅导)指名学生口答算式,老师板书三种解法。
提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1:15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
比的应用教案7篇

比的应用教案7篇比的应用教案篇1教学目标1、让同学了解比在生活中的广泛应用,探究按比例安排的解决方法,并能用来解决有关实际问题。
2、培育同学自主探究解决问题的技能,培育同学的制造性思维和实践技能。
3、树立用自己学来的知识帮忙解决问题的意识。
教学重点掌控按比例安排的解决方法.教学难点敏捷解决实际问题。
教材分析:这部分内容是在同学学习了比与分数的联系,已掌控简约分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌控了按比例安排的解题方法,不仅能有效地解决生活、工作中把一个数量根据肯定的比进行安排的问题,也为以后学习比例比例尺奠定了基础。
学情分析:对于按比例安排问题同学在以往的学习生活过程中曾经遇到过,甚至解决过,每个同学都有肯定体悟和阅历,但是对于这种安排方法没有总结和比较过,没有一个系统的思维方式。
通过今日的学习,将同学的无序思维有序化、数学化、系统化,总结并内化成同学的一个巩固的规范的安排方法。
教学过程活动一1、课前调查奶茶中牛奶和红茶的比是2∶9。
从这句话中你看出了什么?牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作要配置220毫升奶茶,需要多少牛奶和多少红茶?同学争论,讨论不同算法。
解法一:220/〔2+9〕=20ml,20*2=40ml,20*9=180ml解法二:2+9=11220*〔9/11〕=180ml220*〔2/11〕=40ml争论出几种就是集中不强求,比较后找出自己认为的最简约的解法。
同学配置奶茶,共同品尝。
活动二1、教学例2书上例2,列式计算2、生活中经常要把一个数量按肯定的比来进行安排,这节课我们来讨论比的应用。
〔板书:比的应用〕接下来盼望大家能够学以致用,来解决更多的实际问题。
活动三:1、请帮忙配糖:一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?〔鼓舞求异思维〕3、帮刘爷爷收电费刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?住户王家张家赵家李家分电表度数403829533、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样安排才合理?4、总结全课比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观测生活,在实际生活中运用所学的知识来解决问题。
小学数学六年级《比例的应用》教案(8篇)

小学数学六年级《比例的应用》教案(8篇)学校数学六班级《比例的应用》教案篇1设计说明1、注意培育同学学习的自主性。
引导和培育同学的自主学习力量是切实可行的,对同学养成终身学习的习惯起着不行估量的重要作用。
本设计通过让同学找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动同学的学习热忱,使同学的学习爱好和求知欲望得到激发,思维得到拓展。
2、培育同学的解题力量。
本设计以扶代讲,奇妙地引导同学主动探究,使同学在解决问题的过程中,不但能理解和把握解比例的方法,而且能体会到数学与生活的亲密联系,使同学的解题力量、合作力量及归纳力量得到提高。
课前预备老师预备多媒体课件教学过程⊙创设情境,提出问题1、介绍“物物交换”的背景学问。
人类使用货币的历史产生于最早消失物质交换的时代。
在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。
我们今日所学的数学学问就从“物物交换”开头。
2、呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?设计意图:通过“物物交换”,激发同学的爱好,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发同学学习的热忱,为探究新知奠定基础。
⊙尝试解决,体会联系1、想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2、说一说。
老师引导同学沟通各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设方法一14÷4=3。
5,3。
5×10=35〔本〕。
方法二10÷2=5,14÷2=7,5×7=35〔本〕。
方法三4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35〔本〕。
方法四4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14〔个〕,30+5=35〔本〕。
用比例解决问题 《比例的应用》教学设计(优秀8篇)

用比例解决问题《比例的应用》教学设计(优秀8篇)作为一名老师,可能需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果较优的原则吗,是课件开发质量高低的关键所在。
教学设计应该怎么写才好呢?它山之石可以攻玉,如下是作者人美心善的小编为大伙儿收集整理的8篇《比例的应用》教学设计,欢迎阅读。
《用比例解决问题》教学反思篇一用比例解决问题是在学生学习正比例、反比例关系的基础上来解决归一、归总应用题。
通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。
成功之处:1、抓住用比例解决问题的关键,体会用比例解决问题的优势。
在教学中着重让学生找出题目中两种相关联的量,判断这两种量是否成比例,成什么比例。
在例5中根据8吨水的水费是12、8元,可以得出每吨水的单价一定,所以水费和用水的吨数这两种量成正比例。
也就是说,两家的水费和用水吨数的比值相等。
因此可以写成y/x=y/x的形式。
而在例6中根据每包20本和18包,可以得出总本数一定,所以包数和每包的本数成反比例。
也就是说,每包的本数和包数的乘积相等,因此可以写成xy=xy的形式。
2、理清思路,归纳概括解题步骤。
在教学完两个例题之后,让学生思考怎样用比例来解决问题,步骤是怎样的。
通过学生的归纳总结得出:一是解设未知数x。
二是找到两种相关联的量,判断它们是否成比例,成什么比例。
三是列出比例式子形如:y/x=y/x(成正比例)xy=xy(成反比例)。
四是解比例检验。
不足之处:1、学生对于算术法掌握的较牢,有的'学生不愿意接受用比例来解决问题,没有体会到用比例解决问题的优势,主要受定势思维的影响。
2、个别学生没有掌握住用正比例解决问题用y/x=y/x的形式,用反比例解决问题用xy=xy 的形式,导致不会列式子。
六年级上册数学《比的应用》教案(通用13篇)

六年级上册数学《比的应用》教案(通用13篇)六年级上册数学《比的应用》教案篇1教学分析:按比例分配的练习。
学情分析:已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:能运用比的意*决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:练习、反思、总结。
教学准备:小黑板教学过程:一、基本练习(一)六1班男生和女生的比是3:21.男生人数是女生人数的()2.女生人数是男生人数的(),女生人数和男生人数的比是().3.男生人数占全班人数的(),男生人数和全班人数的比是().4.全班人数是男生人数的(),全班人数和男生人数的比是().5.女生人数占全班人数的(),女生人数和全班人数的比是().6.全班人数是女生人数的(),全班人数和女生人数的比是().(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。
学校买来小足球和小篮球各多少个?把250按2比3分配,部分数各是多少二、变式练习1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?2、有一种药水,按药液与水的比为1比5000配制而成。
用这样的药液0.5千克,可配制这样的药水多少千克?:提高练习的灵活度,以及练习的形式。
六年级上册数学《比的应用》教案篇2教材分析本节课的教学内容是学生学习了百分数和百分数的基本应用以后学习的内容,主要是利用百分数进行利息的计算,同时让学生学会解决储蓄的有关问题,养成不乱花钱的好习惯学情分析在五年级的下册,学生已经学习了百分数的意义及运用方程解决的百分数问题,在此基础上,本单元进一步学习百分数的应用。
本节课是利用百分数计算利息,与已有知识联系紧密,难度不大,易于掌握。
同时也可以让学生真切地体会到百分数与生活的紧密联系,从而激发学习的欲望。
教学目标知识与技能1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《比例的应用》教学设计优秀4篇比例的应用篇一教学内容:比例尺应用课题:比例尺设计教师:屈菊红学习目标:1、使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2、认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3、理解比例尺的书写特征。
学习重点:比例尺的意义。
教学难点:将线段比例尺改写成数值比例尺。
学习方法:自学合作探究学习过程:一、揭示课题1.出示地图。
(挂图)比例尺1:500000000(1)学生观察地图,找到图中标注的比例尺。
(2)教师说明比例尺的作用。
(3)引出课题,并出示本节课学习目标及自学要求(4)结合课件检验自学情况:师:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
这个比就是我们要学习的内容比例尺。
二、探索新知1、什么叫做比例尺?提问:一幅地图的图上距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺2、数值比例尺。
(1)出示课文插图。
(2)找到比例尺1:100000000。
(3)认识数值比例尺。
①1:100000000是数值比例尺。
②1:100000000表示图上距离1厘米相当于实际距离100000000厘③因为1千米=1000米1米=100厘米所以1厘米:100000000厘米=1厘米:1000千米1:10000000也可以表示图上距离1厘米相当于实际距离1000千米。
④1:100000000有时也写成分数形式。
3.线段比例尺。
(1)050km(2)表示什么?因为:1千米=100000厘米,50千米=5000000厘米出示课文插图。
(2)找到比例尺050千米。
认识线段比例尺。
①说明:比例尺050千米是线段比例尺。
②比例尺050千米表示图上距离1厘米相当于实际距离50千米。
(写出相应板书)(4)改写成数值比例尺。
(例1)①你会把这个线段比例尺改成数值比例尺吗?②学生尝试改写,并与同学交流,最后师生共同改写。
板书格式:图上距离:实际距离=1㎝:5000000㎝=1:50000004.放大比例尺。
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。
(1)出示课文中的图纸。
(2)找到比例尺2:1。
(3)比例尺2:1表示图上距离2厘米相应于实际距离1厘米。
板书:比例尺2:1图上距离实际距离(4)这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5.比例尺书写特征。
(1)观察:比例尺1:100000000比例尺1:5000000比例尺2:1(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
三、目标检测练习1.做一做。
过程要求:(1)学生独立完成。
(要求写出数值比例尺)(2)同学之间互相交流。
(3)汇报交流结果。
2.完成课文练习八第1~3题。
四、课堂小结:比例的应用篇二教材分析小学数学十二册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。
用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。
数学目标一、知识目标1、使学生能正确判断应用题中涉及的量成什么比例关系2、使学生能利用正、反比例的意义正确解答应用题二、能力目标1、培养学生的判断推理能力2、培养学生的分析能力三、情感目标引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。
教学生点、难点正确判断题中数量成何比例,根据相等关系等式教学方法引导探究,合作学习教学手段多媒体辅助教学教学流程复习导入本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的。
意义的理解,能正确判断成正、反比的量。
二、探究新知学习例题正、反比例的应用题学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此有教学中先让学生用已学过的方法解:答:再引导运用新知做这样用移类。
比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。
首先让学生用以前方法解答,然后问:这道题里有哪两种量成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。
三、新课小结通过例题的讲解,学生总结用比例解答应用题关键?四、练习提高1、基础练习2、判断说理不解答由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。
3、变成练习五、全课小结六、布置作业请同学们课后讨论我们学过的归一、归总应用题分别是哪种比例的应用题。
七、效果预测本节课学会找两种相关联的量,并学会判断这两种是否成正反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。
《比例的应用》教学设计篇三教学内容第2324页例1、例2以及相应的“做一做”,练习五第14题、教学目的1、让学生掌握用比例解应用题的方法、2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、教学重难点利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。
教学过程一、复习1、判断下面各题中的两个量成什么比例关系?1)、速度一定,路程和时间(正)2)、三角形的面积一定,底和高(反)3)、一个为0的自然数与它的倒数(反)4)、Y=3XY与X(正)5)、每块砖的面积一定,砖的。
块数和总面积(正)二、引入一辆汽车从甲地开往乙地行驶路程和时间表:路程(千米)70140350……时间(小时)125……(1)、观察提问:1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?为什么?师从表中圈出14035025师:将其中一个数当作未知数能编一道就用题吗?2)、学生试编如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?3)、生汇报所编之题,(选其中一题)师出示例1师:你们自编的题目会用以前学过的方法解答吗:学生试做;汇报:(师板书)生:归一140÷2×5倍比140÷(5÷2)分数140÷2/5或140×5/2方程140÷2=X÷5师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?今天我们就探讨如何用比例解答应用题(板书课题)二、新知1、学生分组讨论,尝试用所学的比例知识来解答应用题。
2、讨论后,请两组学生上来写写他们的列式。
解:设两地之间的距离有X千米140/2=X/5师:请讲讲你们的解题思路学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。
所以,路程和时间成正比,根据比例的意义列出等式。
师:140/2表示什么?X/5表示什么?3、学生总结一下解比例应用题的步骤:1)、读题,找出条件和问题。
2)、找准变量和定量,判断两种相关联的量成什么比例。
3)、设未知数。
4)、根据比例意义列出等式并解答。
齐读解题步骤,师:这几步中,最关键的是哪步?4、出示刚才学生编的另一题:一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。
用比例解答该怎样解答。
师:这道题的定量变了吗?路程和时间成什么比例关系?生试独立完成。
集体订正。
请学生讲讲解题思路。
三,巩固练习:1、补充条件,使它成为一道完整的应用题,并用比例解答。
一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米?学生1:补充“3小时”后,全体学生试做。
学生2:补充“再织3小时”学生试做。
请不同做法的学生板书,并说说解题思路。
生1:间接设生2:直接设解设3小时织布X米解设一共可织布X米80/4=X/4+380/4=X/3X=60X=14060+80=140《比例的应用》教学设计篇四教学目标:1、初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。
教学重点:会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点:会根据正比例的意义判断两种相关联的量是不是成正比例。
预习指导:一、自学教材。
阅读教材第6263页。
二、检查学习。
1、怎样两个量成正比例?2、完成试一试。
教学准备:课件和口算题。
教学过程:一、导入谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。
什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1 1.课件出示例1的表⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?⑴表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。
2、那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。
建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。
3、我们可以写出这么几组路程和对应时间的比。
⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?⑴这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律⑴同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
课件出示:路程和时间成正比例。
⑴现在你能完整地说一说表中路程和时间成什么关系吗?4、刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。
⑴课件出示试一试⑴请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?课件出示表中的数据。