比例应用题含有答案

合集下载

解比例应用题

解比例应用题

1、某工厂生产A、B两种产品,已知生产1吨A产品需要2小时,生产1吨B产品需要3小时。

若该工厂有60小时的生产时间,且要求生产A、B产品的数量比为2:1,则应生产A产品多少吨?A. 20吨B. 24吨C. 30吨D. 36吨(答案)B2、甲、乙两人同时从两地出发,相向而行。

甲每分钟走60米,乙每分钟走40米。

经过15分钟后两人相遇,那么两地相距多少米?A. 1200米B. 1500米C. 1800米D. 2100米(答案)B3、学校图书馆有科技书和文艺书两种,科技书的数量是文艺书的2倍。

如果每位学生借3本科技书,则余8本;如果每位学生借2本文艺书,则缺12本。

那么学生人数是多少?A. 20人B. 24人C. 28人D. 32人(答案)A4、某班学生分两组参加植树活动,甲组人数是乙组的2倍,且甲组每人植树4棵,乙组每人植树5棵。

两组共植树150棵,那么乙组有多少人?A. 10人B. 15人C. 20人D. 25人(答案)C5、甲、乙两车从A、B两地同时出发,相向而行。

甲车每小时行驶60千米,乙车每小时行驶40千米。

两车相遇后,甲车再行驶4小时到达B地。

那么A、B两地相距多少千米?A. 400千米B. 480千米C. 560千米D. 640千米(答案)B6、某商场购进甲、乙两种商品,甲种商品每件进价20元,售价25元;乙种商品每件进价35元,售价40元。

若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,那么能购进甲种商品多少件?A. 30件B. 40件C. 50件D. 60件(答案)B7、某学校学生参加植树活动,四年级有3个班,共植树156棵;五年级有4个班,平均每个班植树42棵。

四、五年级平均每个班植树多少棵?A. 39棵B. 40棵C. 41棵D. 42棵(答案)A8、甲、乙两人分别同时从两地出发,相向而行,距离是50千米。

甲每小时走3千米,乙每小时走2千米,与甲同时同地出发的还有一条狗,每小时走5千米。

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶小时后,离乙地还有多远?16.一个零件长厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A 地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题——比例问题(1)年级姓名一、填空题 1. 4:=设4:x=16=?10=% 2016?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为亩、亩、亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728 540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210 325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?233 1112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B 两地同时出发相向而行,小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。

小学比例应用题和答案

小学比例应用题和答案

小学比例应用题和答案
1. 题目:水果篮子
题目描述:小明一共有18个水果,其中苹果、橙子和香蕉的数量
之比为3:4:1。

求苹果的个数。

题目答案:根据比例,苹果的数量为:18 × 3 ÷ (3 + 4 + 1) = 6个
2. 题目:足球队员
题目描述:一个足球队有22名队员,其中前锋、中场和后卫的数
量之比为2:3:4。

求中场的数量。

题目答案:根据比例,中场的数量为:22 × 3 ÷ (2 + 3 + 4) = 6个
3. 题目:图书借阅
题目描述:小明在一个月内借阅了12本图书,其中小说、科幻和
历史书的数量之比为4:3:5。

求小说的数量。

题目答案:根据比例,小说的数量为:12 × 4 ÷ (4 + 3 + 5) = 4本
4. 题目:面积比例
题目描述:一个直角三角形的两直角边的长度之比为3:4,求两直角边的长度。

题目答案:假设直角边的长度为3x和4x,根据比例,可以得出:
3x + 4x + 5x = 1(直角三角形斜边的长度为1),解方程可得:x = 1/12,因此直角边的长度分别为3/12和4/12。

5. 题目:时间比例
题目描述:小明用了2小时完成了一篇作业,小红用了5小时完成了同样的作业。

求小红完成这篇作业所需的时间比小明多多少。

题目答案:小红所需时间与小明所需时间之比为5:2,小红所需时间比小明多的部分为:5 - 2 = 3小时。

以上是一些小学比例应用题及其解答,通过这些题目可以帮助学生理解比例的概念,培养他们的计算能力和逻辑思维能力。

希望以上内容对您有帮助。

数学比的应用题有答案

数学比的应用题有答案

数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。

如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。

2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。

这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。

3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。

A型产品和B型产品的生产比是4:3。

如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。

4. 问题:在一个水果店,苹果和橘子的比例是5:3。

如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。

5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。

如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。

6. 问题:一个公园的树木中,松树和柏树的比例是7:4。

如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。

7. 问题:在一个合唱团中,男生和女生的人数比是5:4。

如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。

8. 问题:一个农场的奶牛和山羊的头数比是6:5。

如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。

9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。

如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。

10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。

如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。

小学比例应用题25道含答案

小学比例应用题25道含答案

小学比例应用题25道含答案1.一个箱子里有12个苹果和18个橘子,苹果和橘子的比例是多少?答案:2:3。

2.一个班级有48名学生,其中男生和女生的比例是3:5,男生有多少人?答案:18人。

3.一块土地被分为4份,其中3份分给了小王、小明、小李三人,他们的比例是1:2:3,小李分到的土地面积是60平方米,这块土地的总面积是多少?答案:160平方米。

4.某公司的员工有280人,其中男员工和女员工的比例是3:4,女员工有多少人?答案:160人。

5.某班级有30名学生,其中男生和女生的比例是2:3,女生有多少人?答案:18人。

6.一桶液体有48升,其中糖水和水的比例是1:3,糖水有多少升?答案:12升。

7.某个城市的总人口为800000人,其中男性和女性的比例是2:3,女性有多少人?答案:480000人。

8.一辆公交车上乘客的男性和女性的比例是1:2,如果有36名乘客是男性,公交车上有多少名乘客?答案:108名。

9.一家超市苹果和橙子一共60箱,苹果和橙子的比例是1:2,超市里有多少箱橙子?答案:40箱。

10.一个班级有60名学生,其中男生和女生的比例是1:3,女生有多少人?答案:45人。

11.某地区的总人口为500000人,其中男性和女性的比例是3:2,女性有多少人?答案:200000人。

12.一台机器由A、B、C三个部分组成,它们的价值比例是1:2:3,如果整台机器的价值为1500元,C部分的价值是多少元?答案:750元。

13.一栋楼房的高度是50米,它的模型高度是20厘米,模型与楼房的比例是多少?答案:1:250。

14.一种药物的瓶子里有15毫升药液和45毫升水,药液和水的比例是多少?答案:1:3。

15.一架飞机上有90名乘客,其中男性和女性的比例是2:3,女性有多少人答案:54人。

16.一个班级有40名学生,其中男生和女生的比例是3:2,男生有多少人?答案:24人。

17.一个班级有36名学生,其中男生和女生的比例是4:5,男生有多少人?答案:16人。

比的应用题及答案

比的应用题及答案

比的应用题及答案1. 题目:小明和小华一起买了一些苹果,小明买了苹果的3/5,小华买了苹果的2/5。

如果小明买了15个苹果,那么小华买了多少个苹果?答案:首先,我们需要确定苹果的总数。

小明买了苹果总数的3/5,已知他买了15个苹果,所以苹果总数为15除以3/5。

计算过程如下:苹果总数= 15 ÷ (3/5) = 15 × (5/3) = 25个接下来,我们计算小华买的苹果数。

小华买了苹果总数的2/5,所以:小华买的苹果数 = 苹果总数× (2/5) = 25 × (2/5) = 10个所以,小华买了10个苹果。

2. 题目:一个班级有40个学生,其中男生占3/5,女生占2/5。

如果班级中转来了2个男生,那么现在班级中男生和女生的比例是多少?答案:首先,我们计算原来班级中男生和女生的人数。

男生人数= 40 × (3/5) = 24人女生人数= 40 × (2/5) = 16人转来2个男生后,男生的人数变为:新的男生人数 = 24 + 2 = 26人班级总人数也增加了2人,变为:新的班级总人数 = 40 + 2 = 42人现在,我们计算男生和女生的新比例:男生比例 = 新的男生人数 / 新的班级总人数 = 26 / 42女生比例 = 新的女生人数 / 新的班级总人数 = 16 / 42化简比例:男生比例 = 13 / 21女生比例 = 8 / 21所以,现在班级中男生和女生的比例是13:8。

3. 题目:一个长方形的长是宽的4倍,如果长是16厘米,那么宽是多少厘米?答案:设长方形的宽为x厘米,根据题意,长是宽的4倍,所以长为4x厘米。

已知长为16厘米,我们可以列出方程:4x = 16解这个方程,我们得到:x = 16 / 4 = 4所以,长方形的宽是4厘米。

4. 题目:一个比例尺为1:500的地图上,一个长方形的长是2厘米,宽是1厘米。

求实际长方形的长和宽各是多少米?答案:首先,我们需要将比例尺转换为实际距离。

比例应用题含有答案

比例应用题含有答案

比例应用题含有答案比例应用题含有答案【试题】【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?【题5】把一个正方形的一边削减20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的.面积是多少平方公尺?【题6】已知甲校同学数是乙校同学数的40%,甲校女生数是甲校同学数的30%,乙校男生数是乙校同学数的42%,那么,两校女生数占两校同学总数的百分之几?【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?【题8】某次会议,昨天参与会议的男代表比女代表多700人,今日男代表削减10%,女代表增加5%,今日共1995人出席会议,昨天参与会议的有多少人?【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润削减10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?【参考答案】1.【解答】20%÷(1-20%)=25%。

2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。

3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。

4.【解答】45×60%-18×【25%÷(1-25%)】= 6(个)。

5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。

六年级比例应用题50道含答案难

六年级比例应用题50道含答案难

六年级比例应用题50道含答案难
一、题目
1. 小明有50元,买了一件衣服,价格是30元,小明还剩多少钱?
答案:小明还剩20元。

2. 小红有100元,买了一双鞋,价格是60元,小红还剩多少钱?
答案:小红还剩40元。

3. 小刚有120元,买了一件外套,价格是90元,小刚还剩多少钱?
答案:小刚还剩30元。

4. 小芳有150元,买了一件裙子,价格是100元,小芳还剩多少钱?
答案:小芳还剩50元。

5. 小强有200元,买了一件衬衫,价格是120元,小强还剩多少钱?
答案:小强还剩80元。

6. 小李有250元,买了一条裤子,价格是150元,小李还剩多少钱?
答案:小李还剩100元。

7. 小燕有300元,买了一件外套,价格是180元,小燕还剩多少钱?
答案:小燕还剩120元。

8. 小虎有350元,买了一双鞋,价格是210元,小虎还剩多少钱?
答案:小虎还剩140元。

9. 小龙有400元,买了一件衣服,价格是240元,小龙还剩多少钱?
答案:小龙还剩160元。

10. 小马有450元,买了一件裙子,价格是270元,小马还剩多少钱?
答案:小马还剩180元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例应用题含有答案
【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?
【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?
【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?
【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?
【题5】把一个正方形的一边减少20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的面积是多少平方公尺?
【题6】已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的.百分之几?
【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?
【题8】某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加5%,今天共1995人出席会议,昨天参加会议的有多少人?
【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润减少10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?
【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?
【参考答案

1.【解答】20%÷(1-20%)=25%。

2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。

3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。

4.【解答】45×60%-18×【25%÷(1-25%)】 = 6(个)。

5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。

6.【解答】
方法一:【40%×30%+(1-42%)】÷(1+40%)= 50%。

方法二:
解:∵甲校学生数=乙校学生数×0.4∴甲校学生数+乙校学生数=乙校学生数×1.4∵甲校女生数=甲校学生数×0.3∴甲校女生数=乙校学生数×0.4×0.3=乙校学生数×0.12∵乙校男生数=乙校学生数×0.42∴乙校女生数=乙校学生数×0.58∴甲校女生数+乙校女生数=乙校学生数×0.12+乙校学生数×0.58=乙校学生数×0.7∴(甲校女生数+乙校女生数)÷(甲校学生数+乙校学生数)=(乙校学生数×0.7)÷(乙校学生数×1.4)=0.5 即为百分之五十∴两校女生总数占两校学生总数的百分之五十。

7.【解答】含盐量是【25÷(25+100)】×100%=20%。

8.【解答】(1995-700×90%)÷(1+5%+90%)×2+700=2100
(人)。

9.【解答】(1-10%)÷(1+20%)=75%。

10.【解答】500-500×3.2%÷8%=300(公克)。

相关文档
最新文档